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We propose an experimental protocol to directly observe the Kondo effect by scattering ultracold atoms. We
propose using an optical Feshbach resonance to engineer Kondo-type spin-dependent interactions in a system
with ultracold 6Li and 87Rb gases. We calculate the momentum transferred from the 87Rb gas to the 6Li gas in a
scattering experiment and show that it has a logarithmically enhanced temperature dependence, characteristic of
the Kondo effect, and analogous to the resistivity of alloys with magnetic impurities. Experimentally detecting
this enhancement will give a different perspective on the Kondo effect, and allow us to explore a rich variety of
problems such as the Kondo lattice problem and heavy-fermion systems.
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I. INTRODUCTION

Ultracold atomic gases provide a platform to engineer
model Hamiltonians relevant for condensed matter physics
phenomena. One such intriguing phenomenon is the Kondo
effect [1,2]. In this paper we propose an experimental protocol
to engineer and measure the scattering properties of Kondo-
like interactions between ultracold atoms. Such an experiment
would give a new perspective on an iconic problem.

The Kondo effect is a transport anomaly that arises
when itinerant electrons have spin-dependent interactions with
magnetic impurities. The source of the phenomenon is a spin-
singlet many-body bound state formed between the Fermi sea
and an impurity. This bound state leads to resonant scattering
of itinerant electrons off the screened impurities. As the
temperature is lowered, this resonant scattering dominates
over other scattering processes and leads to a characteristic
logarithmic temperature dependence of the resistivity of the
material. When the interactions between the electrons and the
impurity are spin independent, no such bound state is formed,
and the scattering is not enhanced.

Despite intense research, some questions about the Kondo
effect remain unresolved and some of the key theoretical
predictions have never been directly seen. For example, the
electron cloud which screens the spin on the impurity has
never directly been imaged [3–6]. More importantly the
analogous problem with an array of interacting impurities (the
Kondo lattice) has aspects which are not well understood [7].
Exploring the Kondo lattice problem is of paramount
importance to the understanding of heavy fermion systems
and quantum criticality [8,9].

In this paper we propose using cold atoms to directly
observe enhanced Kondo scattering. We envision a system
consisting of a spin-1/2 Fermi gas and a dilute Bose gas
with spin S, where bosonic atoms play the role of magnetic
impurities and fermionic atoms play the role of electrons.
To strengthen the analogy with immobile spin impurities
in the Kondo model, we consider bosons which are much
heavier than the fermions. Fermion-boson pairs such as
6Li - 87Rb, 7Li - 85Rb or 6Li - 133Cs are good candidates with
large mass ratios. Alkaline-earth-metal and rare-earth atoms
are also promising.

We consider a rotationally symmetric interaction between
the ultracold atoms, which includes both density-density and

spin-dependent interactions. We present an experimental pro-
tocol to produce such an interaction using an optical Feshbach
resonance. For this general interaction, we calculate that the
scattering cross section is strongly enhanced by the Kondo
effect. We propose directly measuring this enhancement by
launching the Bose gas into the Fermi gas with a small
velocity. One would then measure the momentum transferred
to the Fermi gas. A number of related experiments have been
used to probe atomic scattering in the past [10–13]. We show
that at temperatures smaller than the Fermi temperature, the
final momentum of the Fermi gas varies logarithmically with
temperature, analogous to the resistance of electrons in an alloy
with magnetic impurities. The temperature dependence of the
transferred momentum, depicted in Fig. 1, has a minimum
which is a signature of the Kondo effect, and this minimum
can be detected at experimentally accessible temperatures.
Alternatively, the enhanced scattering could be seen in the
damping of collective modes of the atomic clouds in a trap [14].

This paper is organized as follows. In Sec. II we introduce
our atomic system and the model we consider. In Sec. III
we explain how an optical Feshbach resonance can be used to
produce the interactions considered in our model. In Sec. IV we
calculate the momentum exchanged in a scattering experiment
between atomic clouds. We calculate the momentum trans-
ferred as a function of temperature perturbatively up to third
order in the interaction strength. We explicitly describe all parts
of our calculation in the appendix. We summarize in Sec. V.

II. MODEL

In this section we describe our model. In Sec. III we describe
how to experimentally implement our model.

We build our system out of spin-1/2 fermions and spin-S
bosons. In our implementation these will be hyperfine spins.
We let the operators ˆ̃a†

rα and ˆ̃b†rμ create fermionic and bosonic
atoms at position �r and spin projection α = ↑,↓ or μ =
−S,..,S along the z axis. Their Fourier transforms,

â
†
kα = 1√

V

∫
d3�r ˆ̃a†

rαei�k·�r ,

b̂
†
kμ = 1√

V

∫
d3�r ˆ̃b†rμei�k·�r ,

(1)
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FIG. 1. Temperature dependence of the momentum �P transferred
from bosons to fermions in a scattering experiment with photoinduced
interactions. Both �P and temperature have been rescaled to dimen-
sionless quantities. P0 denotes the momentum transferred to the Fermi
gas at zero temperature when the interactions are spin independent
(gs = 0). (Solid line) Spin-dependent interactions between spin-1/2
fermions and spin-1 bosons with gs = −1

3 gn = 0.1εF

N/v
; (dashed line)

spin-independent interactions (gs = 0 and gn = −3 × 0.1εF

N/v
). The

minimum in �P is a signature of the Kondo effect, and may be detected
experimentally. In Sec. III we estimate experimental parameters to
achieve the interaction strength used here. Inset shows a cartoon of
the collision.

create particles in momentum eigenstates. Above, V is the
volume of the system.

We explore a model with a Hamiltonian Ĥ = Ĥ0 + Ĥint.
The first term models the kinetic energy of the fermions and
bosons,

Ĥ0 = V

(2π )3

∫
d3�k

(∑
α

(εk − μ)â†
kαâkα +

∑
μ

Ekb̂
†
kμb̂kμ

)
,

εk = �
2k2

2ma

, Ek = �
2k2

2Mb

. (2)

For the interactions modeled by Ĥint, we consider a generic
form of local spherically symmetric pairwise Bose-Fermi
interactions. Since the fermions have spin-1/2, the most
general such interaction has the form,

Ĥint =
∫

d3�r
∑
αβμν

ˆ̃a†
rα

ˆ̃arβ
ˆ̃b†rμ

ˆ̃brν

(
gs �σ (a)

αβ · �σ (b)
μν + gnδαβδμν

)
.

(3)

We denote the vector of spin matrices for the fermions and
bosons by �σ (a) and �σ (b), and δ refers to the Kronecker delta
function. It is important to note that Ĥint contains terms
where α �= β and μ �= ν. This encodes the fact that the atoms
exchange spin when they collide. We point out that spherical
symmetry of the Hamiltonian is not a necessary feature
to observe Kondo physics. Any Hamiltonian which allows
spin exchange processes at third order of interaction strength
would produce an enhanced scattering cross section at low
temperatures. We restrict ourselves to interactions modeled

by Eq. (3), and we show in Sec. III that this has a simple
experimental realization.

It is useful to rewrite Ĥint in momentum space as

Ĥint = V 2

(2π )9

∫
d3�k

∫
d3 �p

∫
d3 �q

∑
αβμν

â
†
k+q,αâk+p,β b̂

†
k−q,μb̂k−p,ν

(
gs �σ (a)

αβ · �σ (b)
μν + gnδαβδμν

)
.

(4)

Our model in Eq. (4) differs from the one in the spin-S Kondo
model [1] in two respects. The bosonic atoms, which play the
role of impurities, are mobile. Due to their large mass, however,
the recoil of the bosonic atoms can be neglected, and formally
the physics is equivalent to that of immobile spin impurities. In
addition to the regular spin-S Kondo-like interaction, Eq. (4)
contains a density-density interaction. We show that in spite of
such an additional interaction term, the momentum transferred
to the Fermi gas in a scattering experiment still has a minimum
at a certain temperature, albeit at a lower temperature than the
case with no density-density interaction.

The interaction we have considered in Eq. (3) does not occur
in typical cold atom experiments in which interaction strengths
are tuned using a magnetic Feshbach resonance. In a typical
magnetic Feshbach resonance, spin-exchange collisions are
off-resonance and will not be observed. In the following
section we propose using an optical Feshbach resonance to
produce the interaction in Eq. (3).

III. AN EXPERIMENTAL SETUP

In this section we describe our proposal to experimentally
implement the model introduced in Sec. II using 6Li and 87Rb
atoms as our itinerant fermions and spin impurities. As we will
show, producing a strong interaction between 6Li and 87Rb
using an optical Feshbach resonance requires a large matrix
element for photoassociation. Experiments [15] show 7Li and
85Rb to have the highest photoassociation rate coefficient
among all the bialkali metal combinations. We expect their
isotopes 6Li and 87Rb to have similar photoassociation rates,
and we chose 6Li and 87Rb in our proposal to produce the
Kondo model because they are readily available in ultracold
atomic experiments. The 6Li and 87Rb atoms have quantum
numbers S = 1/2, L = 0, and I = 1 and 3/2.

In an optical Feshbach resonance, a laser beam provides a
coupling between the open scattering channel and a closed
channel containing a bound state [16–19]; here the open
channel is an electronic spin singlet of 6Li and 87Rb, and the
bound state is a highly excited LiRb molecular state. When
the laser is far detuned from resonance with the bound state,
the bound state can be adiabatically eliminated, and we are
left with an ac Stark shift for the 6Li - 87Rb singlet. The
triplet state sees no Stark shift. This provides a mechanism
for spin exchange. While this optically induced spin exchange
has not yet been experimentally observed, there have been
extensive studies of both elastic and inelastic scattering
properties near heteronuclear optical Feshbach resonances
of 7Li and 85Rb [15,20]. Thus the transition frequencies
for forming 7Li 85Rb molecules are well known. We expect
that the linewidths, transition matrix elements, and spectral
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densities for other alkali-metal combinations such as 6Li 87Rb
molecules will be similar.

Below we provide a mathematical framework to model the
optical Feshbach resonance and obtain an effective interaction
between the 6Li and 87Rb atoms. All the physics described in
this section is local, and we have dropped the index labeling
the position of the atoms from the second-quantized operators.

The energy density for the relevant electronic and nuclear
degrees of freedom in each atom and molecule is of the form,

ˆ̃H = Ĥ Li
HF + Ĥ Rb

HF + Ĥmol + ĤFesh. (5)

Ĥmol models the binding energy of the molecule:

Ĥmol =
∑
mm′

Ebγ̂
†
mm′ γ̂mm′ , (6)

where γ̂
†
mm′ creates a molecule with an electronic spin S = 0

and electronic orbital angular momentum J = 1. The indices
m and m′ label the nuclear spins of the 6Li and 87Rb
atoms. If the quantization axis of the electronic orbital angular
momentum is chosen along the direction of angular momentum
of the laser photon inducing the Feshbach resonance, then only
one of the molecular states in the J = 1 triplet is coupled via
the laser to the atomic singlet. We denote the binding energy
of this molecular state by Eb.

The hyperfine Hamiltonians for the atoms are

Ĥ Li
HF = hALi

∑
mS,m′

S

mI ,m
′
I

â†
mSmI

âm′
Sm′

I
�σ (1/2)
mSm′

S
· �σ (1)

mI m
′
I
,

Ĥ Rb
HF = hARb

∑
mS,m′

S

mI ,m
′
I

b̂†mSmI
b̂m′

Sm′
I
�σ (1/2)
mSm′

S
· �σ (3/2)

mI m
′
I
,

(7)

where h is Planck’s constant, ALi = 152 MHz and ARb =
3.4 GHz are the hyperfine coupling constants of 6Li and
87Rb [21], �σ (S) is the vector of spin-S matrices, and â

†
mSmI

and b̂
†
mSmI

create a 6Li and 87Rb atom in the state |mSmI 〉. In
terms of the hyperfine eigenstates,

|mS,mI 〉 =
∑
F,mF

CFmF

mSmI
|F,mF 〉, (8)

where CFmF
mSmI

are Clebsch-Gordan coefficients.
The terms in ĤFesh describe the interactions between

the photoassociation laser and the atoms. We model this
photoinduced molecular formation by

ĤFesh =
∑
mm′


ei(�k·�r−ωt)γ̂
†
mm′

â 1
2 mb̂− 1

2 m′ − â− 1
2 mb̂ 1

2 m′√
2

+ H.c., (9)

where �r is the position of the atoms, and ��k and ω are
the momentum and frequency of the laser photon-inducing
molecule formation. The detuning between the atomic and
molecular states is �ω − Eb, and 
 is the transition matrix
element from the atomic to the molecular state.

For large detuning, the occupation in the molecular state
will be small. Therefore we can adiabatically eliminate the

molecular state and obtain an effective interaction between the
6Li and 87Rb atoms using second-order perturbation theory:

ˆ̃Hint =
∑
mm′


2

Eb − �ω

(
â 1

2 mb̂− 1
2 m′ − â− 1

2 mb̂ 1
2 m′√

2

)†

×
(

â 1
2 mb̂− 1

2 m′ − â− 1
2 mb̂ 1

2 m′√
2

)
. (10)

Using Eq. (8), the operators â
†
mSmI

and b̂
†
mSmI

can be projected
into the hyperfine eigenstate basis. Assuming that the chemical
potential is set such that the F = 3/2 and F = 2 manifolds
are unoccupied, we project ˆ̃Hint into the F = 1/2 and F = 1
manifolds. We obtain an effective interaction,

ˆ̃̃
Hint = 
2

Eb − �ω

∑
αβμν

â†
αâβ b̂†μb̂ν

(
− 1

12
�σ (a)
αβ · �σ (b)

μν + 1

4
δαβδμν

)
.

(11)

The first term in Eq. (11) is of the form of Kondo-
like interactions with gs = −1

12

2

Eb−�ω
, and the second term a

density-density interaction with gn = 1
4


2

Eb−�ω
, where gs and

gn were defined in Eq. (3). Generally, in addition there would
also be intrinsic interactions which modify the values of gs and
gn in the experiment. To explore Kondo physics, gs should be
positive.

If one wanted to exactly produce the Kondo model (where
gn = 0), one could add more photoassociation lasers, for
example, coupling the electronic spin-triplet atomic states.
However as we show in Sec. IV, the presence of a nonzero
gn does not change the physics.

A. Experimental and model parameters

In this section we estimate our model parameters gs and
gn for a typical experiment performing optical Feshbach
resonance. We also discuss the issue of atom losses in optical
Feshbach resonances.

Experiments implementing optical Feshbach resonances
typically suffer from high atom loss rates because lasers bring
the atomic states close to resonance with a bound molecular
state. The excited molecular states have a finite linewidth, and
either dissociate into free atoms with large kinetic energies or
spontaneously decay to ground molecular states. The effect of
a finite linewidth can be incorporated by making the ac Stark
shift obtained in Eq. (10) complex:

g = 
2

Eb − �ω + i�γ
. (12)

The real part of g, Re(g) = 
2 Eb−�ω

(Eb−�ω)2+(�γ )2 , is a measure of
the interaction strength, and determines the magnitude of the
model parameters gs and gn. The magnitude of the imaginary
part of g, KPA = 
2 �γ

(Eb−�ω)2+(�γ )2 , is the inelastic collision
rate coefficient.

In experiments in which 7Li and 85Rb atoms are resonantly
coupled to a molecular state, the inelastic collision rate coef-
ficient typically has a value |KPA| 	 
2

�γ
∼ 4 × 10−11

�cm3/s

for a moderate laser intensity of 100 W/cm2 [20]. Typical
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linewidths are γ ∼ 10MHz. We expect that γ and KPA would
have similar values for any other alkali-metal combination, and
in particular for 6Li and 87Rb as well. We note that 
2 is pro-
portional to the laser intensity. The inelastic collision rate can
be reduced by increasing the detuning of the laser. If the laser
detuning is 10 times the linewidth (|Eb − �ω| = 10�γ ), then
KPA ∼ 4 × 10−13

� cm3/s and Re(g) ∼ 4 × 10−12
� cm3/s for

a laser intensity of 100 W/cm2.
The relevant quantities for estimating the temperature scale

for observing Kondo physics are gsN

V εF
and gnN

V εF
where N

V
is the

density of fermions. We find in Sec. IV that for this minimum to
occur at a temperature of O(0.05TF ), |gs,n|N

V εF
should be O(0.1).

This can be achieved with a density of N
V

∼ 1013 cm−3 and an
interaction strength |gs,n| ∼ 2 × 10−9

� cm3/s, which requires
roughly 500 times larger intensity than that in [20]. A judicious
choice of the resonance may significantly reduce the intensity
required.

IV. KONDO-ENHANCED SCATTERING BETWEEN
87Rb AND 6Li

Here we calculate the momentum transfer in a collision
between a fermionic cloud and a bosonic cloud. We show that
spin-exchange collisions lead to a logarithmic temperature
dependence of the momentum transferred. This logarithm
is characteristic of the Kondo effect, and analogous to the
behavior of electrical resistance of magnetic alloys. As shown
in Fig. 1, it leads to a minimum in the momentum transferred.
The most naive way to measure this momentum exchanged
would be to launch the Bose gas into a stationary Fermi gas
and measure the final momentum of the Fermi gas. We briefly
consider an alternative method in Sec. IV A.

The duration of interaction between a boson and the Fermi
gas in the experiment described above is t = L/v where L

is the size of the Fermi cloud. We calculate the momentum
transferred from the Bose gas to the Fermi gas at time t to
zeroth order in 1/Mb, first order in �v, and third order in the
interaction parameters gs and gn. We perform this calculation
for general values of gs and gn that are independent of each
other. At the end of our calculation we specialize to the values
of gs and gn produced by our proposal in Sec. III. Since L

is a macroscopic quantity and we work in the small v limit,
we make a long time approximation wherever possible. We
assume that the Bose gas is dilute, and neglect events involving
scattering of a fermion with more than one boson. Equivalently
we calculate the momentum transferred by one boson with
momentum Mb�v, and sum over all bosons. The Fermi surface
will play an important role.

We consider the collision of the Fermi gas with one boson
with spin projection m at time 0. The momentum of the Fermi
gas at time t is then �Pm = V

(2π)3

∫
d3�k ∑

α ��knkαm(t), where

nkαm(t) = 〈b̂Mbv,m(0)â†
kα(t)âkα(t)b̂†Mbv,m(0)〉 (13)

is the occupation of fermions with momentum �k and spin
projection α at time t . In Eq. (13) the expectation value is
taken over a thermal ensemble of fermions, with no bosons
present. The bosonic creation operator preceding the ket state
in Eq. (13) ensures that we calculate the occupation nk after the
collision of one boson with the Fermi gas. Since the bosons are

spin unpolarized, the average momentum imparted by a boson
is �Pav = V

3(2π)3

∫
d3�k ∑

αm ��knkαm(t). Multiplying by Nb, the
number of bosons, the net momentum of the Fermi gas is

�P (t) = NbV

3(2π )3

∫
d3�k

∑
αm

��knkαm(t). (14)

In Appendix A we describe our diagrammatic perturbation
theory approach for calculating nkαm(t). We find that

1

3

∑
m

nkαm(t) = fk − 4t �k · �vρ(εk)

V 2

∂fk

∂εk

×
(

S(S + 1)

4
g̃2

s + g̃2
n − g̃3

s S(S + 1)

4(2π )3

×
∫

d3 �p fp

εk − εp

)
, (15)

plus terms which scale as t0,v2 or 1/Mb. Due to our use of
point interactions, the interaction parameters gs and gn are
renormalized to g̃s and g̃n. These renormalized (physical)
coupling constants are the ones appearing in Eq. (15). This
renormalization of the interaction strength occurs at all orders
of perturbation theory.

To calculate �P (t), we sum the contributions due to all
momentum states, and include the temperature dependence

of the fermionic chemical potential, μ = εF (1 − π2

12 ( kBT
εF

)
2
) +

O( kBT
εF

)
4
. We find that at long times,

�P = 3S(S + 1)Nb

8

(
J

εF

)2

(kF L)�kF

×
((

1 + 4

S(S + 1)

(
g̃n

g̃s

)2
)(

1 + π2

6

(
kBT

εF

)2
)

− 3J

2εF

(
1.13 +

(
2.6 − π2

48

)(
kBT

εF

)2

+ 1

2
log

kBT

4εF

(
1 + 5π2

12

(
kBT

εF

)2
)))

, (16)

where J = g̃s
N
V

, and N
V

is the density of fermions. In Eq. (16)
we have neglected terms which scale as t0,v2, 1

Mb
or T 4.

According to our proposal in Sec. III, g̃n

g̃s
= −3 and S = 1.

The result of Eq. (16) is plotted in Fig. 1 using these
parameters and J = 0.1εF . For comparison, we also plot the
momentum transferred to the Fermi gas for spin-independent
interactions with the same value of g̃n = −3 × 0.1εF

N/V
and

g̃s = 0. The logarithmic temperature dependence of �P for
spin-dependent interactions is characteristic of Kondo physics.
Equation (16) breaks down when J

εF
log kBT

εF
	 O(1). Below

this temperature, the logarithmic increase saturates to a
constant. Calculation of this saturation is the subject of the
Kondo problem and can be addressed with renormalization
group or Bethe ansatz methods. Equation (16) also breaks
down when v 	 kBT

�kF
.

023635-4



PROPOSAL TO DIRECTLY OBSERVE THE KONDO EFFECT . . . PHYSICAL REVIEW A 93, 023635 (2016)

The momentum transferred | �P | has a minimum at a tem-

perature Tmin ∼ 3
2πkB

√
JεF

1+ 4g̃2
n

g̃2
s S(S+1)

. For the parameters g̃n

g̃s
= −3,

S = 1, and J = 0.1εF , this minimum occurs at a temperature
T
TF

	 O(0.05). At this temperature and interaction strength,
the momentum imparted by one boson to the Fermi gas is
| �P |
Nb

	 3
4 �kF ( J

εF
)
2
(kF L). For a 20-μm-long Fermi cloud at a

density of 1013cm−3, the momentum imparted per boson is
nearly 1.2�kF . We estimated in Sec. III that achieving J =
0.1εF would require high intensity lasers and tight trapping of
the fermions. The observation of this minimum will be a direct
experimental confirmation of Kondo physics.

A. Alternative methods to measure enhanced Kondo scattering

Here we briefly explain an alternative method to measure
the enhanced Kondo scattering between a Fermi cloud and
a Bose cloud. We consider inducing dipole oscillations of a
Bose cloud and a Fermi cloud in a harmonic trap of frequency
ω. The clouds will collide every half-cycle and exchange
momentum �P . As a result the amplitude of oscillations of
the Fermi cloud will reduce each half cycle. Conservation of
momentum implies that the maximum fermion displacement

X will reduce each half cycle by δX 	 | �P |
Namaω

where Na is
the number of fermions; the Bose cloud’s amplitude will
not change very much because of the bosons’ heavy mass.
The Bose-Fermi interaction interval is longer for a smaller
relative momentum, and vice versa. Thus the momentum
exchanged | �P | is independent of the relative velocities of
the cloud, leading to a linear decay of the amplitude rather

than exponential; dδX
dt

∼ | �P |
Namaπ

. If the Bose-Fermi interactions
are Kondo-like, the damping rate of amplitude of oscillations
will have a minimum at the same temperature as | �P | does,

Tmin ∼ 3
2πkB

√
JεF

1+ 4g̃2
n

g̃2
s S(S+1)

. For a typical amplitude of oscillation

X 	 100 μm in a trap of frequency ω = 2π × 10 Hz, and
if Na

Nb
= 200, the amplitude will decay to zero in about 12

oscillations at T = Tmin. The observation of a minimum in
the damping rate will also be an experimental confirmation of
Kondo physics.

V. SUMMARY

We considered scattering between a spin-1/2 Fermi gas
and a dilute spin-unpolarized Bose gas. As an example we
considered 6Li and 87Rb as our itinerant fermions and bosonic
magnetic impurities. We proposed using an optical Feshbach
resonance to produce rotationally symmetric interactions
between the 6Li and 87Rb atoms, which included both spin-
dependent Kondo-like and spin-independent density-density
interactions. We argued that these interactions would give
rise to enhanced Fermi-Bose scattering. We perturbatively
calculated the temperature dependence of the momentum
transferred to the Fermi gas in a scattering experiment, up
to third order in the Bose-Fermi interaction strength. We
showed that the temperature dependence of the momentum
transferred has a minimum at a characteristic temperature and
is logarithmic at low temperatures, characteristic of the Kondo

effect and analogous to the behavior of electrical resistance in
magnetic alloys.

Our proposal to implement spin-dependent interactions
requires overcoming significant experimental challenges such
as using high intensity lasers to achieve large interaction
strengths. However, overcoming these challenges enable the
possibility of exploring exotic phenomena due to Kondo
physics. The ground state of a Bose-Fermi mixture with
Kondo-type spin-dependent interactions should display inter-
esting correlations, with each boson surrounded by a screening
cloud of fermions with opposite spin [4]. These clouds may
be observable through various imaging techniques [22–24].
Similar experiments with bosons confined to a lattice would
probe an analog of the Kondo lattice problem.

One can explore other techniques to experimentally pro-
duce Kondo-type interactions. For example, optically coupling
the electronic triplet states of 6Li - 87Rb with excited molecular
states will lead to a rotationally asymmetric interaction which
also displays Kondo physics. Alternatively, one can realize
the Anderson model and Kondo-like situations by trapping
impurities in deep potentials [25–28].
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APPENDIX: CALCULATION OF THE MOMENTUM
TRANSFERRED

Here we calculate nkαm(t) in Eq. (13) and �P (t) in Eq. (14).
The standard way to calculate quantities like nkαm(t) is using
the S matrix [29]:

nkαm(t) = 〈T Ŝb̂Mbv,m(0)â†
kα(t)âkα(t)b̂†Mbv,m(0)〉0,

Ŝ = e−i
∫

dτĤint(τ ),
(A1)

where T orders the operators along a path shown in Fig. 2
which starts at time 0, passes through time t , and returns to
time 0. All our integrals over time follow this path. The notation
〈〉0 implies that all operators inside 〈〉0 evolve according to

âkα(t) = eiĤ0t/�âkαe−iĤ0t/�,

b̂kμ(t) = eiĤ0t/�b̂kμe−iĤ0t/�,
(A2)

and states are weighted by e−βĤ0 . Since Ĥ0 is quadratic in
âkα and b̂kμ, the right-hand side of nkαm(t) in Eq. (A1) can be

t

0

0
Time

FIG. 2. In our integrals, time begins at 0, passes through t , then
returns to 0. Our perturbation theory requires ordering operators along
this path.
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(a)

kαt2 t1

(b)

kμt2 t1 (c)

k2, α

k4, μ

k1, β

k3, ν
t

FIG. 3. Diagrammatic representation of vertex and propagators.
(a) Solid line denotes a fermion propagator which propagates a
fermion with momentum k and spin projection α from time t2 to
t1. (b) Dashed line denotes a boson propagator which propagates a
boson with momentum k and spin projection μ from time t2 to t1.
(c) A vertex denotes the matrix element for a Bose-Fermi scattering
event. Mathematical expressions are given in Eqs. (A3) and (A4).

contracted using Wick’s theorem. As a result, nkαm(t) can be
expressed diagrammatically as a sum of Feynman’s diagrams.
We calculate these Feynman’s diagrams up to O(g3

s ) and O(g3
n)

in the long time limit.

1. Feynman rules

We denote the propagator for fermions, 〈T âkα(t1)â†
kα(t2)〉0,

by a solid line, and the propagator for bosons,
〈T b̂kμ(t1)b̂†kμ(t2)〉0, by a dotted line, depicted in Figs. 3(a)
and 3(b). Their values are

〈T âkα(t1)â†
kα(t2)〉0 = e−iεk (t1−t2)(�(t1 − t2) − fk),

(A3)
〈T b̂kμ(t1)b̂†kμ(t2)〉0 = e−iEk (t1−t2)�(t1 − t2).

In Eq. (A3), �(t1 − t2) = 1 if t1 is after t2 along the path in
Fig. 2, and 0 otherwise.

We perturbatively expand nkαm(t) in the vertex depicted in
Fig. 3(c), whose value is

k2, α
k4, μ

k1, β
k3, ν

= (2π )3

V 2
δ(k1 + k3 − k2 − k4)

× (
gs �σ (1/2)

αβ · �σ (S)
μν + gnδαβδμν

)
. (A4)

The vertex denotes a scattering event between a fermion
and a boson. The time at which this scattering event occurs
is integrated over the path in Fig. 2. All momenta and spin
projections are summed/integrated over, with the constraint
that momenta and spin are conserved at each vertex. The
diagrams which contribute to Eq. (A1) have four external
propagators. There is an incoming and outgoing fermion
propagator evaluated at time t , and carrying momentum
��k and spin projection α. There is also an incoming and
outgoing boson propagator evaluated at time 0, and carry-
ing momentum Mb�v and spin projection m. All lines and
vertices in a Feynman diagram can be labeled using the
rules described above. Therefore we omit labels. Finally,
each diagram carries a multiplicity, which is the number of

FIG. 4. Zeroth order diagram in the expansion for nkαm(t).

times it appears in the expansion of Eq. (A1) in powers of gs

and gn.

2. Calculation of nkαm(t)

Terms of O(gn
s,n) in the perturbative expansion of nkαm(t)

contain 2n + 2 pairs of operators leading to (n + 1)!2 contrac-
tions. The resulting number of diagrams increases exponen-
tially with n. We explicitly consider each order and evaluate
the nonzero diagrams.

a. Zeroth order

The expression for the zeroth order term in the expansion
of nkαm(t) is

n
(0)
kαm(t) = 〈T b̂Mbv,m(0)â†

kα(t)âkα(t)b̂†Mbv,m(0)〉0. (A5)

Using Wick’s theorem,

n
(0)
kαm(t) = 〈b̂Mbv,m(0)b̂†Mbv,m(0)〉0〈â†

kα(t)âkα(t)〉0

= fk.
(A6)

The corresponding Feynman diagram is shown in Fig. 4. Since
the bosons and fermions do not interact at this order, n(0)

kαm does
not contribute to any momentum transfer.

b. First order

The first-order term in the expansion for nkαm(t) is

n
(1)
kαm(t) = −i

∫
dτ1

〈T Ĥint(τ1)b̂Mbv,m(0)â†
kα(t)âkα(t)b̂†Mbv,m(0)〉0.

(A7)

By Wick contracting the above expression, we find that
n

(1)
kαm(t) is the sum of the four diagrams shown in Fig. 5, all of

(a) (b)

(c) (d)

FIG. 5. First-order diagrams in the expansion of nkαm(t).
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(a) (b)

FIG. 6. Two of the diagrams that are zero at second order.

which evaluate to zero. For example,

=
∫

dτ

(
1

2
gsm + gn

)
= 0. (A8)

Due to the same reason, Figs. 5(b), 5(c), and 5(d) are also zero.
Therefore,

1

3

∑
m

n
(1)
kαm(t) = 0. (A9)

Moreover, the same reasoning implies that all higher order
diagrams in which a fermion or boson loop begins and ends at
the same vertex are also zero.

(a) (b)

FIG. 7. Nonzero diagrams at O(g2) in the expansion for nkαm(t).

c. Second order

The second-order term,

n
(2)
kαm(t) = −1

2

∫
dτ1dτ2〈T Ĥint(τ1)Ĥint(τ2)b̂Mbv,m(0)

× â
†
kα(t)âkα(t)b̂†Mbv,m(0)〉0, (A10)

can be contracted into Wick pairs in 36 ways, which give
rise to 20 different diagrams. Most of these diagrams are zero
because of reasons explained in Sec. A 2 b. In addition, the
diagrams shown in Fig. 6 also evaluate to zero. For example,
since we work in the dilute boson limit, there can only be one
boson line in any time slice, implying that Fig. 6(a) is zero.
The only two nonzero diagrams are shown in Fig. 7.

Using our Feynman rules,

1
3

m
= 2

V (2π )3

∫
d3 �p (1 − fk)fp

sin2 δεt/�

δε2

(
g2

s

S(S + 1)

2
+ 2g2

n

)
, (A11)

and

1
3

m
= − 2

V (2π )3

∫
d3 �p fk(1 − fp)

sin2 δε′t/�

δε′2

(
g2

s

S(S + 1)

2
+ 2g2

n

)
, (A12)

where δε = 1
2 (εk − εp − 1

2Mbv
2 + (��k−� �p−Mb �v)2

2Mb
) and δε′ = 1

2 (εk − εp + 1
2Mbv

2 − (��k−� �p+Mb �v)2

2Mb
). Neglecting terms of order

1/Mb, δε = δε′ = 1
2 (εk−mav/� − εp−mav/�). The resulting second-order contribution is

1

3

∑
m

n
(2)
kαm(t) = −g2

s
S(S+1)

2 + 2g2
n

V (2π )3

∫
d3 �p (fk − fp)

sin2 tδε/�

δε2
. (A13)

Since the bosons are much heavier than the fermions, they have nearly the same velocity �v before and after scattering. Therefore,
it is easier to work in the bosons’ rest frame. For small �v,

1

3

∑
m

n
(2)
k+ mav

�
,αm

(t) = −g2
s

S(S+1)
2 + 2g2

n

V (2π )3

∫
d3 �p

(
fk − fp + ��k · �v ∂fk

∂εk

− � �p · �v ∂fp

∂εp

)
sin2(t(εk − εp)/2�)

((εk − εp)/2)2
+ O(v2,1/Mb),

(A14)

where O(v2,1/Mb) refers to terms which scale as v2 or 1/Mb. The first two terms in Eq. (A14) have negligible contribution

near εk = εp. At long times, any significant contribution comes from the tail of sin2(t(εk−εp)/2�)
((εk−εp)/2)2 , where sin2(t(εk − εp)/2�) can

be approximated by its average, 1/2. Hence their contribution saturates to a constant at long times. For the last two terms in

Eq. (A14), which are significant near εk = εp, we approximate sin2(t(εk−εp)/2�)
((εk−εp)/2)2 	 2tδ(εk−εp)

�
. Hence at long times,

1

3

∑
m

n
(2)
k+ mav

�
,αm

(t) = −2
(
g2

s
S(S+1)

2 + 2g2
n

)
t

V (2π )3

∫
d3 �p

(
�k · �v ∂fk

∂εk

− �p · �v ∂fp

∂εp

)
δ(εk − εp) + O

(
t0,v2,

1

Mb

)

= −4
g2

s
S(S+1)

4 + g2
n

V 2
t �k · �v ∂fk

∂εk

ρ(εk) + O

(
t0,v2,

1

Mb

)
, (A15)
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where ρ(εk) is the three-dimensional density of states for a single spin projection. In the laboratory frame,

1

3

∑
m

n
(2)
kαm(t) = −4

g2
s

S(S+1)
4 + g2

n

V 2
t �k · �v ∂fk

∂εk

ρ(εk) + O

(
t0,v2,

1

Mb

)
. (A16)

d. Third order

The third-order term,

n
(3)
kαm(t) = i

6

∫
dτ1dτ2dτ3〈T Ĥint(τ1)

(A17)
Ĥint(τ2)Ĥint(τ3)b̂Mbv,m(0)â†

kα(t)âkα(t)b̂†Mbv,m(0)〉0,

can be contracted into Wick pairs in 576 ways. However, due
to reasons explained in Secs. A 2 b and A 2 c all diagrams
except the ones shown in Fig. 8 are zero. After a treatment
similar to the one at second order, we calculate the third-order
contribution to be

1

3

∑
m

n
(3)
kαm(t) = 1

V 2(2π )3

∫
d3 �p t �v · �kρ(εk)

∂fk

∂εk

1

εk − εp

×
(

fpg3
s S(S + 1) − g3

s

S(S + 1)

2

− 3g2
s gnS(S + 1) − 4g3

n

)
+ O

(
t0,v2,

1

Mb

)
.

(A18)

The right-hand side of Eq. (A18) consists of an ultraviolet
divergent term arising from

∫
d3 �p 1

εk−εp
, and a finite term∫

d3 �p fp

εk−εp
which will ultimately give rise to a logarithmic

temperature dependence. The ultraviolet divergence is an
artefact of choosing a contact potential between the fermions
and bosons which is nonzero only when they are at the
same location in space. In reality, the interaction between
the fermions and bosons has a finite range, which removes
the ultraviolet divergence by introducing an upper cutoff on
the limits on the integral over momenta. The exact details
are unimportant if we express our results in terms of physical
quantities. To this effect, we define effective coupling constants

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Nonzero diagrams at O(g3) in the expansion for nkαm(t).

g̃s and g̃n where

g̃2
s = g2

s

(
1 + gs + 6gn

2(2π )3

∫
d3 �p 1

εk − εp

)
,

(A19)

g̃2
n = g2

n

(
1 + gn

(2π )3

∫
d3 �p 1

εk − εp

)
.

The result for nkαm(t) has no ultraviolet divergences when
expressed in terms of g̃s and g̃n.

The resulting nkαm(t) at long times is

1

3

∑
m

nkαm(t) = fk − 4t �k · �vρ(εk)

V 2

∂fk

∂εk

×
(

S(S + 1)

4
g̃2

s + g̃2
n − g̃3

s S(S + 1)

4(2π )3

×
∫

d3 �p fp

εk − εp

)
. (A20)

3. Final momentum of the Fermi gas

The total momentum �P of the Fermi gas [defined in
Eq. (14)] will be along the direction of �v. Its magnitude is

| �P | = �v · �P
v

= − 8t�Nb

vV (2π )3

∫
d3�k(�k · �v)2 ∂fk

∂εk

ρ(εk)

×
(

S(S + 1)

4
g̃2

s + g̃2
n − g̃3

s S(S + 1)

4(2π )3

×
∫

d3 �p fp

εk − εp

)
. (A21)

After integrating out the angular co-ordinates of �k and �p and
performing a change of variables,

| �P | = −16maLNb

3�V 2

∫
dε ε

∂f (ε)

∂ε
ρ2(ε)

×
(

S(S + 1)

4
g̃2

s + g̃2
n − g̃3

s S(S + 1)

4V

×
∫

dεp

ρ(εp)f (εp)

ε − εp

)
. (A22)

We evaluate the second-order terms using a Sommerfield
expansion,

| �P2| 	 3maLNb

4�εF

J 2S(S + 1)(1 + α2)

(
1 + π2

6

(
kBT

εF

)2
)

+O

(
kBT

εF

)4

, (A23)

where J = g̃s
N
V

and α = g̃n

g̃s

2√
S(S+1)

.
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The third-order terms are

| �P3| = 4S(S + 1)maLNb

3�

(
g̃s

V

)3 ∫
dε ε

∂f (ε)

∂ε
ρ2(ε) ×

∫
dεp

ρ(εp)f (εp)

ε − εp

= −9S(S + 1)maLNb

16�ε
9/2
F

J 3
∫ ∞

0
dε ε2 ∂f (ε)

∂ε

∫ ∞

0
dεp

√
εp

f (εp)

ε − εp

. (A24)

We simplify the above expression by performing integration by parts,

| �P3| = 9S(S + 1)maLNb

8�ε
9/2
F

J 3
∫ ∞

0
dε ε2 ∂f (ε)

∂ε
×

∫ ∞

0
dεpf (εp)

∂

∂εp

(
√

εp +
√

ε

2
log

∣∣∣∣∣
√

ε − √
εp√

ε + √
εp

∣∣∣∣∣
)

= −9S(S + 1)maLNb

8�ε
9/2
F

J 3
∫ ∞

0
dε ε2 ∂f (ε)

∂ε
×

∫ ∞

0
dεp

∂f (εp)

∂εp

(
√

εp +
√

ε

2
log

∣∣∣∣∣ β(ε − εp)

β(
√

ε + √
εp)2

∣∣∣∣∣
)

. (A25)

We split Eq. (A25) into two terms. We evaluate one of these terms numerically,∫ ∞

0
dε ε5/2 ∂f (ε)

∂ε

∫ ∞

0
dεp

∂f (εp)

∂εp

log(β(ε − εp)) 	 ε
5/2
F

(
0.26 + 5.2

(
kBT

εF

)2
)

+ O

(
kBT

εF

)4

. (A26)

We use a Sommerfield expansion for the remaining term. The result is

| �P3| 	 −9S(S + 1)maLNb

8�ε2
F

J 3

(
1.13 +

(
2.6 − π2

48

)(
kBT

εF

)2

+ 1

2
log

kBT

4εF

(
1 + 5π2

12

(
kBT

εF

)2
))

+ O

(
kBT

εF

)4

. (A27)

The final momentum of the Fermi gas is

�P =P0v̂

(
1 + π2

6

(
kBT

εF

)2

− 3J

2(1 + α2)εF

(
1.13 +

(
2.6 − π2

48

)(
kBT

εF

)2

+ 1

2
log

kBT

4εF

(
1 + 5π2

12

(
kBT

εF

)2
)))

, (A28)

where P0 = 3S(S+1)Nb

8 (1 + α)2( J
εF

)
2
(kF L)�kF , and as before, we neglect terms of O(t0,v2, 1

Mb
,T 4).
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