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Collision-induced frequency shifts in bright matter-wave solitons and soliton molecules
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A recent experiment has detected collision-induced frequency shifts in bright matter-wave solitons [J. H. V.
Nguyen et al., Nat. Phys. 10, 918 (2014)]. Using a particle model, we derive the frequency shift for two solitons
in a harmonic trap, and compare it to the recent experimental results and reported theoretical approximation. We
find regimes where the frequency shift is much smaller than previously predicted, and propose experiments to
test these findings. We also predict that reducing the experimental trap frequency will reveal soliton molecules
or soliton bound states in a cold-atom system. The bound-state dynamics are found to be both highly phase
dependent and sensitive to the residual 3D nature of the experiment.
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I. INTRODUCTION

Since the first bright solitons in Bose-Einstein conden-
sates (BECs) [1–3], their suggested uses have included
surface-probes [4,5], Bell-state generation [6], and interfer-
ometry [7–9]. The longstanding interest in bright solitons
has recently been revived by an experiment on soliton
collisions [10].

Solitons are solitary waves which pass thorough one
another retaining their identity. Since their discovery [11],
solitons were found generally to interact during collisions,
emerging with a position (and phase) shift [12]. The shift
has not been observed in BECs until demonstrated experi-
mentally [10]. In harmonically trapped BECs the system’s
integrability is broken by the trapping potential, so these
are not solitons in the strictest sense. Recent studies have
shown that introducing time dependence in the potential
and interactions can recover integrability and allows exact
(nonautonomous) solitons [13,14]. However, the objects in
the experiment behave as solitons despite the broken inte-
grability. The position shifts were manifested in the solitons’
increased oscillation frequency. Reference [10] compared the
experimental results with an approximate theoretical curve,
which agreed reasonably with the experiment in the tested
regime.

This paper provides an improved frequency shift prediction
based on a particle model that reproduces the exact position
shifts for untrapped solitons [15–17]. We identify regimes
in which there is a measurable difference between our
predictions and the theory of Ref. [10] and propose simple
modifications to the experiment to explore these regimes.
We also suggest modifications to produce exotic soliton
molecules (bound states) [7]. Optical soliton molecules have
been produced experimentally [18], using a different scheme
with modulation of the system parameters, but until now such
states have not been controllably produced to order in cold
atoms. We predict that a reduction in the experiment’s trap
frequency [10] and modifications to control the relative phase
will produce soliton molecules in BECs. We investigate the
3-dimensional (3D) corrections to the dynamics, which affect
both the stability and the mean-field BEC dynamics, partic-
ularly for soliton molecules. Note that the frequency shifts
for few-particle systems were investigated numerically in
Refs. [19,20].

II. THEORETICAL RESULTS

Bose-Einstein condensates with tight radial trapping are
usually well described by the 1-dimensional (1D) Gross-
Pitaevskii equation (GPE) [21]:
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ψ + g1DN |ψ |2ψ, (1)

where g1D = 2�ωras , N is the total atom number, ω and ωr are
the axial and radial trapping angular frequencies, and m and
as are the atomic species’ mass and s-wave scattering length.
In experiments, as may be tuned to vary the interactions’
sign and magnitude; negative as permits bright soliton solu-
tions [22]. The 1D GPE breaks down when quantum or thermal
fluctuations [23] and/or 3D effects become significant [24].
Quantum and thermal effects are not expected to play a
role in the situations considered in this paper. However, the
system’s slightly 3D nature imposes a limit on the interaction
strength, beyond which the condensate will collapse [10,25],
characterized by critical atom number |Nc|. The parameter
Nc = 0.67ar/as , where ar = √

�/(mωr ), is also used here
and in Ref. [10] to characterize the interaction strength, since
Ns/Nc is proportional to g1DN (Ns ≈ N/2 is the particle
number per soliton). Adding the quintic nonlinearity g2|ψ |4ψ
to Eq. (1), where g2 = 24 ln (4/3)N2

�ωra
2
s , yields a 1D

equation which approximates the integrability-broken nature
of the 3D GPE [26]. We use the GPE equation modified with
this quintic term to verify the regimes of validity of our results
based on Eq. (1).

Previously [15–17], a soliton-soliton interaction potential
was employed to model solitons as individual particles:

V = −2η1η2(η1 + η2)sech2

[
2η1η2

η1 + η2
q̃

]
, (2)

where q̃ = m|g1D|Nq/�
2 is the dimensionless form of the

solitons’ relative position, q, and ηi are effective soliton
mass parameters, where η = 1/8 for two equally sized
solitons [16,17]. This potential produces the exact position
shifts for solitons emerging from collisions within Eq. (1)
when ω = 0. The interaction potential was shown numerically
to provide a good description when combined with an external
trapping potential when the solitons were well separated
between collisions, particularly when the solitons collided
in-phase [17].
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Within the particle model, we calculate the solitons’ osci-
llation frequency from dynamics within the potential [Eq. (2)]:
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Here, ±q̃0 are the turning points of q̃. For solitons initially
at rest (as in Ref. [10] and throughout this paper), q0 is
the initial soliton separation. The frequency shift may be
written �ω = � − ω. We have found analytical solutions to
Eq. (3), when the solitons are initially close or far apart. In the
limit q0m|g1D|N/� � 1, i.e., where the solitons are extremely
close, we find
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ω
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For large initial separation, where q0m|g1D|N/� � 1
and �

2 ln(1 + 16η2|g1D|2N2/�
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0 )/2πq0ηm|g1D|N � 1,
the position shifts generated by Eq. (2) will occur on a time
scale much faster than the trap period; hence,
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The frequency shift between these limits can be explained
qualitatively by considering the effective potential (Fig. 1),
which comprises an interaction mode within the harmonic
potential. In the limit q0m|g1D|N/� � 1, the solitons are close
compared to the interaction potential’s width (which becomes
large with decreasing interaction strength). The dynamics are
small harmonic oscillations, which increase in frequency as
the interaction strength increases. Increasing the interactions
or solitons’ initial separations further, the solitons may still
be strongly bound within the interaction potential, but this
potential is no longer effectively harmonic, and the frequency
increase with interaction strength is slower. For even stronger
interactions or wider separations, the intersoliton potential
becomes narrow compared with the initial soliton separation,
and the solitons effectively “escape” the intersoliton potential
each collision. The frequency shift levels off, and starts to
decrease as the intersoliton potential’s width vanishes in
comparison with q0.

We provide for comparison the approximation derived in
Ref. [10] based on the interaction Hamiltonian for Gaussian
wave packets:

�ω

ω
= −g1DNa2

x

2πq3
0 �ω

, (7)

where ax = √
�/(mω). As opposed to the dynamics in

the particle model, within Eq. (7), the shift is linear in
the interaction strength. The biggest difference between
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FIG. 1. Effective potential for two solitons in a harmonic trap,
with as = −0.57a0, N = 56 000, and mass parameter for lithium-7.
The dashed curved shows the harmonic trapping potential alone. The
trap frequencies are (a) ω = 2π×31 Hz and (b) ω = 2π×3 Hz. The
solid (red) vertical lines are at q0 = 26 μm, and the dashed (red)
vertical lines q0 = 106 μm.

the particle model’s prediction and that of Eq. (7) is that
the frequency shift in Eq. (7) diverges to infinity, rather than
to zero, as the interaction strength goes to infinity. In the
opposite limit the particle model goes to zero quadratically,
not linearly. However, the important comparison is for exper-
imentally accessible regions (Ns/Nc > −1), particularly in
regimes where the difference between the predictions is large
enough to resolve in experiment. In Ref. [10], the parameters
q0 = 26 μm, Ns = N/2 = 28 000, ωr = 2π×254 Hz, and
ω = 2π×31 Hz. The scattering length as varied between runs
such that Ns/Nc varied between −0.53 and +0.55. Note that
in the regimes of positive Ns/Nc, the wave packets are not
solitons and are not considered in this paper.

Figure 2 shows the frequency shift from numerically eval-
uating Eq. (3), with the curves for the limits [Eqs. (4) and (5)]
and theoretical approximation [Eq. (7)]. The relevant region
of the experimental parameters lies within Fig. 2(a), while
Figs. 2(b)–2(d) show other regimes—with different initial
soliton separations or trap frequencies. The main deviation
between the particle model and Eq. (7) is obvious in the
large negative Ns/Nc limit, where the frequency in the particle
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FIG. 2. Relative frequency shifts versus Ns/Nc for (a), (c) ω = 2π×31 Hz and (b), (d) ω = 2π×3 Hz. Plots (a), (b) are for q0 = 26 μm
and (c), (d) are for q0 = 106 μm. Solid lines were determined by numerical evaluations of Eq. (3). Dot-dashed lines are the small-separation
and weak-interaction limit, given by Eq. (4), and the dotted lines are the large-separation and strong-interaction limit, given by Eq. (5). Dashed
(red) lines give Eq. (7) and bars give the experimental results [10].

model levels off and then starts to decrease. This is particularly
apparent in Figs. 2(b) and 2(d), where the axial trapping
frequency is a factor of approximately 10 less than in the
recent experiment. However, for the experimental parameters
[Fig. 2(a)] the difference between the curves is probably within
experimental error; for large initial soliton separation and
tight trapping [Fig. 2(c)], the agreement between the curves is
extremely close.

III. MODEL VALIDATION AND PREDICTIONS

Before issuing experimental predictions from the particle
model results, we must verify the model’s performance.
The particle model and the theoretical approximation of
Ref. [10] assume the solitons separate between collisions,
and approach at a sufficient speed such that the relative
phase between the solitons plays no effect. It is clear from
Ref. [17] that for solitons slow enough that the collision time
approaches the order of the trap period, out-of-phase collisions
will have smaller frequency shifts than those predicted by
the particle model, whereas in-phase collisions are still

well described. In the regimes where q0 = 26 μm [10], the
ansatz used to derive the particle model comprises initially
slightly overlapping solitons, even for the narrowest solitons
considered. This obviously contradicts the assumption that
the solitons always separate completely between collisions.
Also, in some regimes, 3D effects lead to condensate collapse
during collisions, especially for Ns/Nc < −0.5 and in-phase
solitons [10,24].

We first evaluate the position shifts’ phase dependence by
integrating the GPE without the quintic term. Figures 3(a)
and 3(b) show GPE simulations of two solitons for the
experimental parameters with Ns/Nc = −0.53 for in- and out-
of-phase collisions. The in-phase collisions are well described
by the particle model, and, as expected, the predicted frequency
shift is too large for the out-of-phase collisions.

Interestingly, when the axial trap is weakened to ω =
2π×3 Hz [Figs. 3(c) and 3(d)], the in-phase solitons form
a bound state (soliton molecule) which is surprisingly well
described by the particle model (until it dephases at longer
time scales). A bound state is also formed when the potential
is reduced to zero, showing that the binding is due to the
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FIG. 3. Atomic density within the GPE for initial separation:
(a)–(d) q0 = 26 μm, (e)–(f) q0 = 106 μm; axial trap angular fre-
quency: (a)–(b) ω = 2π×31 Hz, (c)–(f) ω = 2π×3 Hz. The relative
phase is (a), (c), (e) φ = 0, (b), (d), (f) φ = π . The scattering length
as = −0.57a0, the mass is for lithium-7, and N = 56 000 such that
Ns/Nc = −0.53. Trajectories within the particle model are given by
full (red) lines, and those of noninteracting particles by dashed (red)
lines for comparison.

intersoliton force [27], and not a bifurcation of the linear
harmonic oscillator modes [28]. The (mutually repulsive)
out-of-phase solitons are badly described. Similar solitons with
relative phases, φ other than 0 and π , will have intermediate
behavior. We expect the theoretical models in Refs. [7,29]
to describe better the GPE dynamics of soliton molecules—
replacing the universally attractive interaction with a short-
range interaction force varying as cos φ. In particular, Ref. [29]
predicts a stationary state for φ = π/2 (i.e., �ω/ω = −1). We
expect a phase-dependent potential similar to that described in
Ref. [7] would provide a better model for bound states.

For larger initial soliton separations than in the recent
experiment, the particle model agrees with the GPE for any
value of φ. We illustrate this by simulating the system for
an initial separation four times that of the recent experiment:
q0 = 106 μm. For the experimental trap frequency, the fre-
quency shift is too small to detect. We instead consider a
weaker trap frequency of ω = 2π×3 Hz, resulting in slower
solitons with easily observable shifts. The agreement between
the model and the GPE is illustrated in Figs. 3(e) and 3(f). It
is this regime in which there is greatest improvement of the
particle model over Eq. (7).

We investigate 3D effects by integrating the 1D GPE
with the quintic nonlinearity. We find that for interaction
strength Ns/Nc = −0.53, the in-phase collisions are un-
stable to collapse, but not the out-of-phase collisions [see
Figs. 4(c) and 4(d)], suggesting that the in-phase collisions
[Figs. 3(a), 3(c), and 3(e)] would not be realizable. However,
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FIG. 4. (a)–(b) Atomic density within the GPE for a bound-state
without (a) and with (b) quintic nonlinearity simulating the BEC’s
3D nature. Here, Ns/Nc = −0.41, ω = 2π×3 Hz, q0 = 26 μm, and
φ = 0. (c)–(d) Atomic density for an unbound state with quintic
nonlinearity for in-phase (c) and out-of-phase (d) collisions. Here
q0 = 106 μm. Full (red) lines show trajectories within the particle
model, and dashed (red) lines show the trajectories of noninteracting
particles.

slightly reducing the interaction strength to Ns/Nc = −0.41
produces qualitatively similar states which do not collapse. We
find that the quintic term increases the bound-state oscillation
frequency by a factor of ∼1.5 [see Figs. 4(a) and 4(b)]. The
increased effective intersoliton binding force caused by the
3D trapping provides a difference with previously studied
systems [27,30]. The unbound states’ frequency shifts remain
unaffected [see Fig. 4(d)], and it is here that the particle model
is most useful. Furthermore, we expect these states to be stable
to small noise away from the collapse instability, due to the
field equations’ near integrability, and the two-soliton particle
model’s exact integrability [16].

IV. CONCLUSIONS

In conclusion, we demonstrated regimes described better by
the particle model than the theoretical approximation [10], i.e.,
those of weak axial trap frequency and stronger interactions.
We propose the extension of the recent experiment [10] to
verify the particle model predictions. We also suggest that
soliton molecules can be created with greater control of the
soliton phase, e.g., by applying a light-sheet potential to half
the condensate [31–33]. Such states are highly dependent on
relative-phase and 3D effects. In future work we propose
extending an alternative formalism [7] to include harmonic
trapping and 3D effects.
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