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One-dimensional ultracold atomic gases: Impact of the effective range on integrability
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Three identical bosons or fermions are considered in the limit of zero-range interactions and finite effective
range. By using a two-channel model, we show that these systems are not integrable and that the wave function
verifies specific continuity conditions at the contact of three particles. This last feature permits us to solve
a contradiction brought by the contact model which can lead to an opposite result concerning the integrability
issue. For fermions, the vicinity of integrability is characterized by large deviations with respect to the predictions
of the Bethe ansatz.
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I. INTRODUCTION

The one-dimensional (1D) Bose and Fermi gases with
zero-range interactions are celebrated examples of exactly
solvable many-body problems [1–4]. Ultracold atoms offer
the stupendous possibility to achieve these systems in the
degenerate regime by using highly elongated cigar traps [5–7].
Moreover, using magnetic Feshbach resonances and/or tuning
the trap parameters make it possible to study 1D systems in
strongly correlated regimes. This way, the Tonks-Girardeau
and the super Tonks-Girardeau phases have been achieved
[8–12]. In addition, the existence of confinement induced
resonances and resonances shifts have been confirmed [13,14].
Analogously to the three-dimensional (3D) case [15–17], it
has been shown recently that considering a large 1D effective
range parameter permits one to enrich the phase diagram of
the Bose and Fermi 1D degenerate gases [18,19]. For bosons,
this regime is achieved for narrow resonances, i.e., in the
limit of small Feshbach coupling between atoms and diatomic
molecules [20]. For fermions, the p-wave scattering resonance
is intrinsically narrow and this regime can be easily reached
[21]. As in 3D systems, for small energy processes, the regime
of a large effective range can be studied in the limit where
the actual radius of the interacting potentials is formally zero
whereas the effective range and the scattering length of the
model are finite. Using a contact model (CM), it was shown for
one-component fermions in Ref. [18] and for identical bosons
in Ref. [19] that the eigenstates of these systems are given by
the Bethe ansatz (BA) and are thus integrable in the limit of
large effective range [22]. This result is in strong contradiction
with the McGuire-Yang-Baxter criterion which when applied
in this regime shows diffractive effects in multiple scattering
[2,24]. Hence integrability is inherently not possible.

In this paper, we consider the three-body problem, which
is intimately related to the integrability issue [4]. To this end
we use a Hamiltonian two-channel model (HTCM), which
encapsulates the Feshbach mechanism. Whereas the CM and
the HTCM are strictly equivalent at the two-body level, in
the three-body problem the HTCM gives large deviations with
respect to the predictions based on the BA. We show that
in the limit of the contact of three particles, all the solutions
of the HTCM have the same type of singularity not satisfied by
the BA. The behavior of the wave function in the limit where

the three particles fall one on top of the other appears then as
a key ingredient in the violation of the integrability. We show
that equivalence of the CM and of the HTCM can be achieved
at the three-body level by imposing continuity conditions on
the wave function.

II. TWO-BODY PROBLEM AND
MCGUIRE-YANG-BAXTER CRITERION

Our modeling of the system is based on a parameterization
of the two-body 1D asymptotic scattering states including the
effective range term. For an incoming wave of relative wave
number k0 and relative coordinate z, we write it as

〈z|ψk0〉 = eik0z + [f0(k0) + sgn(z)f1(k0)]eik0|z|. (1)

In Eq. (1), sgn(z) is the sign function and f0 (f1) is the
scattering amplitude in the even (odd) sector, parametrized
as

fη(k0) = −(ik0aη)η

1 + ik0aη + bη(ik0)3−η(−aη)η
. (2)

For ultracold atoms in a 1D waveguide, the scattering lengths
aη and the effective range parameters bη in Eq. (2) can be
expressed as a function of 3D scattering parameters in the
homogeneous space [25–32]. In what follows, we consider
only positive values of the effective range parameter bη > 0, an
assumption justified in the limit of narrow resonances [20,21].
From the analyticity of the scattering amplitude, one finds a
single bound state, i.e., a dimer |φη〉 of energy −�

2κ2
η/m, in

the even sector for all values of a0 and in the odd sector only
for positive values of a1

〈z|φη〉 = [1 − 2ηθ (z)]

√
κη

1 + 2bηκ
3−2η
η

e−κη |z|. (3)

In Eq. (3), θ (z) is the Heaviside function and in the odd sector
(η = 1), one recognizes the sign function sgn(z) = 2θ (z) − 1.
The dimer binding wave number κη in Eq. (3) is the positive
root of

1 − aηκη − bη(aη)ηκ3−η
η = 0. (4)

We now come to the integrability issue for a system of N one-
component bosons (fermions) where the two-body scattering
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occurs only in the even (odd) sector [33]. Integrability means
that the eigenstates are given by the BA and there is thus no
diffractive scattering, i.e., the wave numbers of the particles
are globally conserved after multiple collisions in the system
[4]. The expressions of the transmission tη and reflection rη

coefficients in the scattering of two identical particles are
thus particularly relevant. They are defined by an alternative
expression of the asymptotic scattering state in Eq. (1) where
the interaction occurs only in one of the sectors η = 0 or η = 1:

〈z|ψk0〉 =
{
eik0z + rη(k0)e−ik0z for z < 0,

tη(k0)eik0z for z > 0.
(5)

From Eq. (1), considering a pair of particles (i,j ) of wave
numbers (ki,kj ), the transmission and reflection coefficients
are related to the exchange of momentum between the
scattering particles with

t ijη =1 + fη

(
ki − kj

2

)
, (6)

rij
η =(−1)ηfη

(
ki − kj

2

)
. (7)

A necessary condition for integrability is given by the
McGuire-Yang-Baxter criterion, which follows from the ab-
sence of diffractive scattering in the three-body integrable
problem [2,24]

r12
η r13

η t23
η + t12

η r13
η r23

η = r23
η t13

η r12
η . (8)

For η = 0 this last equality is verified if and only if b0 = 0
(Lieb-Liniger model) and for η = 1 if and only if a1 = 0 or
|a1| = ∞, i.e., in the Fermi Tonks-Girardeau (FTG) regime
[36,37]. This is in strong contradiction with the results of
Refs. [18,19] where the BA was used as an eigenstate of contact
models in regimes where Eq. (8) is not satisfied. To understand
this discrepancy, in the rest of this paper we focus on the
three-body problem which has the advantage of the simplicity
while being a cornerstone of the integrability.

III. CONTACT MODEL

A. Contact conditions and pseudopotentials

We first use a CM which includes the effective range as
a straightforward generalization of the Lieb-Liniger model
and introduced in Refs. [20,21]. It is analogous to the one
used in the context of narrow Feshbach resonances for atoms
in three-dimensional space [15,38,39]. For convenience we
introduce the shorthand notations (z)N for the N coordinates
of the system and (zij ) for the relative coordinate of the pair
of particles (i,j ):

(z)N ≡ (z1,z2, . . . zN ), zij = zi − zj . (9)

The center of mass of the pair (i,j ) is denoted (Zij ), and the
relative distance between the pair and the particle (k) is denoted
(Zij,k):

Zij = zi + zj

2
, Zij,k = zi + zj

2
− zk. (10)

The CM is defined as follows: first, for all the configurations
where ∀ i �= j , zi �= zj , the wave function 〈(z)N |�〉 verifies
the Schrödinger equation without any interaction between

particles; second, for each pair of interacting particles (i,j )
the wave function verifies the contact conditions

lim
zij →0+

(
1 + aη∂zij

+ (−aη)ηbη∂
3−η
zij

)〈(z)N |	̂ij
η |�〉 = 0, (11)

where for η = 0 (η = 1) the operator 	̂
ij
η symmetrizes

(antisymmetrizes) the state |�〉 in the exchange of the particles
i and j :

〈(z)N |	̂ij
η |�〉 = 1

2 [〈z1, . . . zi, . . . zj , . . . zN |�〉
+ (−1)η〈z1, . . . zj , . . . zi, . . . zN |�〉]. (12)

In Eq. (11), the positions Zij and zk (where k �= i,j ) are kept
fixed [40]. One can verify that the exact expressions of the
scattering amplitudes in Eq. (2) are deduced from the contact
conditions of Eq. (11) by using the wave function of Eq. (1).

Another equivalent way to implement the contact model is
to include directly the contact condition in the Schrödinger
equation by using the 
 potentials V̂

ij
η (
) for each pair of

interacting particles (i,j ). For a pair of particles of reduced
mass μ, in the even sector of the interaction:

〈(z)N |V ij

0 (
)|ψ〉 = −�
2

μ
f0(i
)δ(zij ) × lim

zij →0+

[



+ (1 − 
3b0)∂zij
+ 
b0∂

3
zij

]〈(z)N |	̂ij

0 |ψ〉, (13)

and in the odd sector of the interaction:

〈(z)N |V ij

1 (
)|ψ〉 = −�
2

μ

f1(i
)



δ′(zij ) lim

zij →0+

(

 + 
2b1

+ ∂zij
− b1∂

2
zij

)〈(z)N |	̂ij

1 |ψ〉. (14)

In Eqs. (13) and (14), 
 is an arbitrary parameter, i.e., the
action of the pseudopotential on exact eigenstates do not
depend on the value of 
 [21,41,42].

B. Puzzling result for the trimers

In the regime where a dimer exists and if the system is
integrable, then the ground state for three identical particles of
mass m is a trimer of energy −4�

2κ2/m given by the BA [2]

〈z1,z2,z3|ψp,BA
η 〉 = e−κ

∑
i<j |zij |

∏
i<j

[1 − 2ηθ (zij )]. (15)

Following the standard method in Refs. [1,43], one considers
the contact condition in Eq. (11) for each pair (i,j ) in
configurations where the third particle k is distinct from the
center of mass Zij (i.e., zk �= Zij ). For instance, in the case
where z2 < z1 < z3:

〈z1,z2,z3|ψp,BA
η 〉 = e−κ(z12−2Z12,3). (16)

Applying the contact condition for the pair (1,2) on Eq. (16)
gives κ = κη. The same reasoning for the other configurations
give the same result. Moreover, the wave function in Eq. (15)
is a solution of the free Schrödinger equation almost every
where except at the contact of two or three particles. Thus
surprisingly, the BA for the trimer appears as an eigenstate of
the CM with the binding wave number q t,BA

η = 2κη, in deep
contradiction with the McGuire-Yang-Baxter criterion.
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IV. CONSISTENCY OBTAINED FROM THE
TWO-CHANNEL MODEL

A. Two-channel Hamiltonian

The consistency of the CM is thus puzzling and to go further
we now use a HTCM which is a more conventional approach.
In this model, the scattering process between two particles is
only due to the coherent coupling between the pair of particles
and a molecular state of mass 2m. For a plane wave of wave
number k, we choose the convention 〈z|k〉 = exp(ikz) and we
denote the creation operator in the open channel â

†
η,k , where

η = 0 for bosons and η = 1 for fermions. The creation operator
for molecules in the closed channel is denoted by b̂

†
η,k , where

the index η permits one to distinguish the composite boson
(i.e., the molecule) made of two fermions from the molecule
made of two bosons. We consider only pure systems with
identical particles and for each system (η = 0 or η = 1), the
Hamiltonian is

Ĥη =
∫

dk

2π

[
εkâ

†
η,kâη,k +

(
εk

2
+ Em

η

)
b̂
†
η,kb̂η,k

]

+
[

�
2λη

m

∫
dK dk

(2π )2
〈k|δη

ε 〉â†
η, K

2 +k
â
†
η, K

2 −k
b̂η,K + H.c.

]
.

(17)

In Eq. (17) εk = �
2k2

2m
is the single-particle kinetic energy, λη is

the strength of the coherent coupling between the two channels,
and Em

η is the internal energy of the molecular state. The
function 〈k|δη

ε 〉 in the second line of Eq. (17) is a cutoff for the
interchannel coupling

〈k|δη
ε 〉 = (ik)ηe−k2ε2/4. (18)

Physically, the short-range parameter ε represents the length
scale below which the collisional properties have a 3D
character. For atoms moving in the monomode regime of a 1D
harmonic waveguide of atomic frequency ω⊥, it is typically
of the order of the transverse length a⊥ = √

�/(mω⊥). At
this scale the 1D effective model of Eq. (17) is no more
relevant. This explains the fundamental interest of consid-
ering the zero-range limit (ε → 0) which permits one to
capture the universal 1D properties for energies much smaller
than the level spacing in the waveguide, i.e., �

2/(ma2
⊥). In the

zero-range limit, the scattering lengths and the effective range
parameters of the HTCM are given by

a0 = mEm
0

�2|λ0|2 , a1 =
ε→0

1√
2
π

1
ε

− mEm
1

�2|λ1|2
, bη = 1

|λη|2 . (19)

The molecular energy in the odd sector (Em
1 ) is a bare

parameter which diverges in the zero-range limit in such a way
that a1 keeps a desired finite value, whereas the parameters Em

0
and λη stay finite in this limit.

B. Integral equation of the three-body problem

In the HTCM, a three-body state is the coherent superposi-
tion of a particle state (denoted by |ψp

η 〉) in the open channel
and of a mixed channel state (denoted by

√
3!|ψm

η 〉/λη). In the

center-of-mass frame, it can be written as

|�η〉 =
∫

dkdK

(2π )2

〈k,K|ψp
η 〉√

3!
â
†
η, K

2 +k
â
†
η, K

2 −k
â
†
η,−K |0〉

+
∫

dK

(2π )

〈K|ψm
η 〉√3!

λη

b̂
†
η,K â

†
η,−K |0〉. (20)

For a positive energy (E > 0), |�η〉 is a scattering state and we
denote the three-particle incoming state by |ψ0

η 〉. In Eq. (20)
〈k,K|ψp

η 〉 is symmetric (for η = 0) or antisymmetric (for
η = 1) in the exchange of two particles, i.e., in the transforma-
tion (k → −k) or in the transformations (k → k±; K → K±)
where

k+ = −3K

4
+ k

2
, k− = −3K

4
− k

2
,

(21)

K+ = −K

2
− k, K− = −K

2
+ k.

The projection of the Schrödinger equation at energy E onto
the open channel gives(

E − 3εK

2
− 2εk

)
〈k,K|ψp

η 〉 = 2�
2

m
[〈k|δη

ε 〉〈K|ψm
η 〉

+〈−k+|δη
ε 〉〈K+|ψm

η 〉 + 〈k−|δη
ε 〉〈K−|ψm

η 〉]. (22)

Combining Eq. (22) with the projection of the Schrödinger
equation onto the one atom plus one molecule space, one ob-
tains in the zero-range limit a 1D Skornyakov Ter-Martirosyan
equation [44](

ikrel
K

)2η−1〈K|ψm
η 〉

fη

(
krel
K

) +
∫

dk

2π
Mη(K,k,E)〈k|ψm

η 〉

=
∫

dk

2π
(−ik)η〈k,K|ψ0

η 〉. (23)

In Eq. (23) we have introduced the kernel

Mη(K,k,E) = 4(k + K/2)η(K + k/2)η

− m
�2 (E + i0+) + K2 + kK + k2

(24)

and the relative momentum krel
K =

√
mE
�2 − 3

4K2 , where for a
negative argument of the square root one uses the standard ana-
lytic continuation in scattering theory, i.e.,

√
−q2 = −i|q|. For

a state of negative energy (E < 0), there is no incoming three-
particle state (|ψ0

η 〉 = 0) and the prescription E → E + i0+
in Eq. (24) can be omitted. For bη �= 0, one can deduce from
Eq. (23) the large momentum behavior (|K| → ∞) of the
mixed-channel wave function solution of the problem as a
function of its value at the contact of the three particles:

〈K|ψm
η 〉 ∼ 8

3(−2)η
〈Z = 0+|ψ m

η 〉 + 〈Z = 0−|ψm
η 〉

bηK4−2η
. (25)

C. Mapping with the contact model

In the zero-range limit, the cutoff function in the configura-
tion space 〈z|δ0

ε 〉 [〈z|δ1
ε 〉] tends to the δ distribution denoted by

δ0(z) [to its first derivative δ′(z) denoted by δ1(z)]. Hence
Eq. (22) gives the singular behavior of the particle wave
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function at the contact of two particles. For a pair (i,j ) located
at the distance Zij,k = Zij − zk from the third particle k, one
has

∂2
zij

〈(z)3|ψp
η 〉 = 2δη(zij )〈Zij,k|ψm

η 〉 + “non δ terms”. (26)

To achieve the mapping with the contact model, one first
imposes that the three-body wave function coincide with
the particle wave function of the two-channel model. The
Schrödinger equation obtained with the 
 potential must
also coincide exactly with the zero range limit of Eq. (22).
Thus, the action of the 
 potential on a three-particle state
verifies

〈(z)3|V̂ ij
η (
)|ψp

η 〉 = 2�
2

m
δη(zij )〈Zij,k|ψm

η 〉 ∀
. (27)

By using the particular expressions of the 
 potentials of
Eqs. (13) and (14), in the limit 
 → 0 for η = 0 and in the
limit 
 → ∞ for η = 1, one also finds

〈(z)N |V̂ ij
η (
)|ψ〉 = 2�

2

m
δη(zij ) lim

zij →0+
∂1−η
zij

〈(z)N |	̂ij
η |ψ〉,

(28)
a result which does not depend on the value of 
 for states
which are solutions of the Schrödinger equation in the contact
model. In the three-body problem and for the contact model,
the mixed channel wave function is thus obtained from the
three-particle state with the following relation:

〈Zij,k|ψm
η 〉 = lim

zij →0+
∂1−η
zij

〈z1,z2,z3|	̂ij
η |ψ〉. (29)

From Eq. (29), in the case of the BA, we denote the mixed-
channel state |ψm,BA

η 〉 and using Eqs. (29) and (15), one obtains

〈Z|ψm,BA
η 〉 = −κ1−η

η [1 − 2ηθ (Z)]2e−2κη |Z|, (30)

a result which can be obtained also directly from Eq. (26)
[45]. Applying a Fourier transform on Eq. (30), one finds the
momentum representation of the mixed-channel state

〈K|ψm,BA
η 〉 = − 4κ2−η

η

4κ2
η + K2

. (31)

D. Trimers

We are now ready to compare the trimers obtained from
Eq. (23) with the BA. It is clear that for bη �= 0, the BA
in Eqs. (30) and (31) does not fulfill the correct asymptotic
behavior in Eq. (25) which confirms the nonintegrability.
For bosons, this result was found in a model including also
the direct particle-particle interaction [46]. The fact that for
fermions, the three-body problem is ill-defined when both
b1 = 0 and the numerator of Eq. (25) is not zero shows also
that the BA in Eq. (31) can never be an exact solution of
Eq. (23) [47]. This can be shown as follows: first, for η = 1
and b1 = 0 at large momentum, Eq. (23) is scale invariant and
the mixed-channel wave function can be searched as a power
law: 〈K|ψm

η 〉 ∝ Ks ; second, the integral in the first line of
Eq. (23) is definite at least if s < −1; third, implementing the
limit of large momentum in Eq. (23) one finds 〈K|ψm

η 〉 ∝ 1/K

unless the numerator of Eq. (25) equals zero, which completes

FIG. 1. Spectrum of the trimers as a function of the wave number
of the dimer. Continuous line: bosons (η = 0); dashed line: fermions

(η = 1). Inset: plot of δq t
η = 2

√
(q t

η
2 − κ2

η )/3 in the region where

q t
η ∼ κη.

the proof. Similar to the integrable case, we have found
numerically that whenever a dimer exists, there exists also
one and only one trimer characterized by an even symmetry
(i.e., 〈K|ψm

η 〉 = 〈−K|ψm
η 〉). We denote the trimer energy by

Et
η = −(�q t

η)2/m.
In Fig. 1 the wave number q t

η is plotted as a function
of the dimer wave number κη. In the limit of large scat-
tering length (aη � b

1/(3−2η)
η ), the binding wave number of

the trimer tends to the integrable limit q t
η ∼ 2κη ∼ 2/aη.

For bosons, the convergence is fast and one can verify
straightforwardly that for b0 = 0, Eq. (31) is the trimer
solution of Eq. (23). For fermions, the convergence toward
the integrable limit is very slow: one finds the approximate
law q t

1 ∼ 2κ1[1 + 1.86/ ln(0.466b1/a1)]. The shape of the
mixed-channel wave function converges also slowly toward
the BA of Eq. (31) even for very large values of the ratio
a1/b1.

In Fig. 2, the wave function in configuration space is
plotted for the ratio a1/b1 = 103 and a1/b1 = 1012. Even
for this last value, there is a clear distinction between the
solution of the HTCM and the BA (dotted line) in the vicinity
of the three-body contact. In this last region, the deviation
with respect to the integrable solution is large due to the
discontinuity of the BA at Z = 0 for η = 1 in Eq. (30)
[sgn(0) = 0 and thus 〈Z = 0|ψm,BA

1 〉 = 0]. Nevertheless, our
numerical solutions of the HTCM show that the discontinuity
is asymptotically recovered in the integrable limit. In the
opposite limit of a large dimer wave number, q t

η ∼ κη and
the mixed-channel wave function tends to the expected
results for a shallow two-body (i.e., atom-dimer) bound state

〈Z|ψm,BA
η 〉 ∼ exp(−δq t

η|Z|) and δq t
η = 2

√
(q t

η
2 − κ2

η )/3. We

find numerically δq t
0 ∼ −2.66/a0 for a0 → −∞ (where

κ0 ∼ √−a0/b0) and δq t
1 ∼ 0.835

√
a1/b

3
1 for a1 → 0+ (where

κ1 ∼ 1/
√

a1b1).
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FIG. 2. Mixed-channel wave function for the fermionic trimer
(η = 1). Solution of Eq. (23) plotted in the configuration space
for (a1 = 103b1) (dashed line) and (a1 = 1012b1) (continuous line).
Dotted line: BA mixed-channel state in Eq. (30) with a normalization
chosen for convenience. Inset: same plot where Z/a1 is in logarithmic
scale. The cross indicates that the solutions of the HTCM do not
vanish at the three-body contact.

E. Atom-dimer scattering lengths

We have also solved the dimer-particle scattering problem
for an incoming wave of momentum k0 and a negative energy:

E = 3�
2

4m
k2

0 − �
2κ2

η

m
< 0. (32)

The mixed-channel state |ψm,scat
η 〉 can be written for an

arbitrary overall normalization as

〈K|ψm,scat
η 〉 = 2πδ(K − k0) + 2ik0gη(K,k0)

k2
0 + i0+ − K2

, (33)

and in the configuration space one has for Z �= 0

〈Z|ψm,scat
η 〉 = eik0Z + gη(sgn(Z)k0,k0)eik0|Z|. (34)

The comparison of Eq. (34) with the generic definition of
the 1D scattering amplitudes in Eqs. (1) and (2) gives the
relation between the function gη and the even (adp

η,0) or odd

(adp
η,1) dimer-particle scattering lengths in the bosonic (η = 0)

and fermionic (η = 1) cases:

a
dp
η,η′ = lim

k→0

1 − η′

ik
+ gη(k,k) + (1 − 2η′)gη(−k,k)

2ik
. (35)

Using Eq. (23), the function gη(k,k0) is obtained from the
integral equation(

qrel
K

)2η−1
gη(K,k0)(

k2
0 − K2

)
fη

(
iqrel

K

) − P
∫ ∞

−∞

dk

2π

Mη(K,k,E)

k2
0 − k2

gη(k,k0)

− Mη(K,k0,E)
gη(k0,k0)

4ik0
−Mη(K,−k0,E)

gη(−k0,k0)

4ik0

= Mη(K,k0,E)

2ik0
, (36)

FIG. 3. Dimer-particle scattering lengths defined in Eq. (35)
plotted as a function of the dimer binding wave number. Continuous
line: bosonic system (η = 0); dashed line: fermionic system (η = 1).
(a) Odd sector (η′ = 1); (b) even sector for bosons; (c) even sector
for fermions.

where P denotes the Cauchy principal value and

qrel
K =

√
κ2

η + 3

4

(
K2 − k2

0

)
. (37)

The four types of particle-dimer scattering lengths are plotted
in Fig. 3. In the integrable limit (small values of κη), the even
scattering lengths (η′ = 0) diverge, whereas the odd scattering
lengths (η′ = 1) tend toward −2/κη: a result expected from
Ref. [34]. In the opposite limit (large values of κη), the trimer
is shallow and the even scattering length is thus given by 1/δq t

η

(see Fig. 1).

V. DOMAIN OF THE CONTACT MODEL

After this study of the three-body problem with the
HTCM, we point out that making the assumption that for bη

�= 0,

∂
1−η

Z

〈
Z

∣∣ψm
η

〉
is continuous at Z = 0, (38)

filters out unphysical solutions of the CM. For bosons, the
continuity of the derivative ∂Z〈Z|ψm

η=0〉 at the three-body
contact is a necessary condition to avoid the spurious K−2

behavior at large momentum of 〈K|ψm
η=0〉. For fermions and

in the even sector, the condition in Eq. (38) is necessary
to recover 〈Z|ψm

η=1〉 from 〈K|ψm
η=1〉 by the inverse Fourier

transform for all values of Z, including at the three-body
contact Z = 0. In the odd sector, a first-order discontinuity
at Z = 0 is incompatible with the K−2 behavior at large
momentum of 〈K|ψm

η=1〉 in Eq. (25).
The continuity condition in Eq. (38) excludes the BA from

the set of eigenstates of the CM, because it does not belong
to the correct domain, whereas it makes it possible to derive
Eq. (23) from the CM as follows. Using the standard method,
one uses in the Schrödinger equation the δ source terms which
are related to the two-body singularities of the wave function
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[44] and correspond to the expressions of the 
 potential in
Eqs. (28) and (29). In our case, one obtains Eq. (22) in the
exact zero-range limit (ε = 0). The particle wave function can
be then expressed in terms of the mixed-channel wave function
with

〈(z)3|ψη〉 = 〈(z)3|ψ0
η 〉 + 2�

2

m

∫
dkdK

(2π )2
eikz12eiKZ12,3

× (ik)η〈K|ψm
η 〉+(−ik+)η〈K+|ψm

η 〉+(ik−)η〈K−|ψm
η 〉

E+i0+ − 3εK

2 −2εk

,

(39)

where k±,K± are defined in Eq. (21). The Skornyakov Ter-
Martirosyan equation (23) follows from the application of the
contact condition in Eq. (11) on this last expression.

VI. CONCLUSIONS

To conclude, we have used the HTCM to study the trimers
and the particle-dimer scattering lengths for three identical
particles in one dimension when one takes into account the
effective range term. Considering the zero-range limit of the
HTCM has been fruitful to define the correct domain of the
corresponding 1D CM including the effective range parameter.
This way, we conciliate these two different approaches in
accordance with the McGuire-Yang-Baxter criterion about the
integrability issue. Exploring the phase diagram of the 1D
atomic gas from small to large effective ranges is an open issue
both experimentally and theoretically. Current experimental
techniques make it possible to explore few- and many-body
properties in regimes of large effective ranges [12–14,48,49].
One expects large deviations from the integrable dynamical
properties, observable in the thermalization or in the response
functions [50–52].
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