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Enforcing the Pauli principle in many-body systems of fermions to ensure an antisymmetric wave function is
typically a numerically expensive task. Numerical methods, such as coupled-cluster, correlated basis function,
Monte Carlo, and traditional configuration interaction, scale with powers of N that make the determination of
the energy spectrum of these systems a challenge. In a recent paper, we successfully obtained energies for large
systems of fermions in the unitary regime in which we applied the Pauli principle “on paper” without obtaining an
explicit wave function. This approach, an extension of the symmetry invariant perturbation method to fermions,
applies the Pauli principle by imposing restrictions on the quantum numbers used to obtain the energy. As a
followup to this study, we perform an explicit test of the validity of this application of the Pauli principle by
comparing our energy results against the energies corresponding to explicitly antisymmetrized wave functions
for an exactly solvable system of harmonically confined, harmonically interacting fermions. Our results show
that our simple method of applying the Pauli principle selects from a spectrum of possible many-body energies
only those energies that correspond to explicitly antisymmetrized wave functions. Our results were tested for
values of N through ≈10 000 and for weak and strong interactions both repulsive and attractive.

DOI: 10.1103/PhysRevA.93.023622

I. INTRODUCTION

The Pauli principle, a postulate of quantum mechanics
introduced in 1925, and the corresponding symmetrization
postulate, which restricts the permutation symmetry of in-
distinguishable particles, are responsible for controlling the
stability of our hadronic universe, intervening in a wide
range of phenomena from neutron stars to chemical bonds.
Providing an effective repulsion that is dependent on particle
statistics as opposed to interparticle interactions, the Pauli
principle can dominate the physical interaction and control
the dynamics. When this effect is dominant, systems exhibit
universal behavior as found in certain nuclear interactions and
in trapped Fermi superfluids at unitarity.

Enforcement of the Pauli principle, i.e., the enforcement
of an antisymmetric wave function, for fermionic systems is
generally responsible for much of the expense of numerical
calculations. Conventional full configuration interaction can
cope with at most some ten particles for an exact solu-
tion [1], and methods such as coupled cluster [2] with a
computational time polynomial in N , O(N7), where N is the
number of particles, are expensive. Quantum Monte Carlo
(QMC) methods for fermions suffer from the so-called sign
problem [3–7] resulting in an exponential growth in simulation
times unless additional approximations are made. In a previous
paper, we obtained accurate energies for large systems of
fermions using a method that enforces the Pauli principle
“on paper.” [8] The current approach is an extension of the
symmetry invariant perturbation method (SPT) to fermions
which uses group theory coupled with the inverse dimension
of space as the perturbation parameter to rearrange the
numerical work required for a many-body calculation into
analytic building blocks. The blocks needed through first
order, most of which do not involve the two-body interaction,
have been calculated and stored previously thus reducing
numerical requirements to a minimum. Applicable to both
weakly and strongly interacting systems, this approach allows
the use of a general two-body interaction and does not

scale in complexity with N resulting in minimal numerical
cost for high N calculations. This method was successfully
applied to the unitary regime, a testing ground for new
methods for which a number of very accurate calculations
are available. Our L = 0 energies, where L is the total angular
momentum, for N < 30 [8] were competitive with accurate
Monte Carlo energies [9,10] including some recent benchmark
calculations using the auxiliary field Monte Carlo method [11].
No explicitly antisymmetrized wave functions were required
to obtain these energies since the Pauli principle was enforced
on paper, resulting in restrictions on the quantum numbers
used in the analytic formula for the energy.

Before tackling the important, but difficult challenge of
constructing the correct antisymmetrized SPT N -body analytic
wave function, we have devised a simple study to test the
validity of the method used to enforce the Pauli principle in
our earlier work in the unitary regime [8]. The present study
connects our fermion energies directly to antisymmetrized
wave functions by comparing against harmonium, an exactly
solvable system of harmonically confined, harmonically in-
teracting fermions. Earlier independent studies of harmonium
have constructed explicitly antisymmetrized wave functions
that yield specific fermion energies for the lowest L = 0,
closed shell states [12–14]. Our method picks the correct
fermion energies (and no spurious energies) from a full
spectrum of SPT energies possible for this general N -body
system. The correct energies are a very small percentage of the
energies possible, and are accurate for all values of N and all
interaction strengths both repulsive and attractive. Although
this does not constitute a general proof, it is evidence that
the procedure works in this model situation which is a fully
interacting many-body problem.

The SPT formalism and applications to bosonic systems
with spherical confinement can be found in a series of
papers which determined lowest order energies, normal mode
frequencies [15,16], and the lowest order wave function [17]
and density profile [18]. In a later series of papers, we extended
this work for bosons to first-order wave functions and density
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profiles [19,20]. We demonstrated that this method rearranges
the numerical work for this many-body problem into analytic
building blocks at each order giving the exact result order by
order in the perturbation series [20,21]. The complexity of the
rearranged problem scales with the order of the perturbation
series, not with the number of particles [21]. In the following
section we give a brief review of the formalism.

II. FORMALISM

We define dimensionally scaled quantities Ē = κ(D)E and
H̄ = κ(D)H , where κ(D) is a scale factor which regularizes
the large-dimension limit [17]. The scaled version of the
Schrödinger equation is

H̄� =
(

1

κ(D)
T̄ + V̄eff

)
� = Ē�, (1)

where barred quantities indicate variables in scaled units
[κ(D) = D2/(�ω̄ho) for this work; see Ref. [17]]. The term
T̄ contains the derivative terms of the kinetic energy and
V̄eff includes centrifugal, two-particle, and confinement po-
tentials [17].

We assume a totally symmetric, large-dimension configu-
ration at which the effective potential is a minimum. The N

particles are arranged on a hypersphere, each particle with a
radius r̄∞, from the center of the confining potential. Further-
more, the angle cosines between each pair of particles take
on the same value, γ ∞, i.e., limD→∞ r̄i = r̄∞ (1 � i � N ),
limD→∞ γij = γ ∞ (1 � i < j � N ). In scaled units, the
δ = 1/D → 0 (D → ∞) approximation for the energy
is simply the effective potential minimum, i.e., Ē∞ =
V̄eff(r̄∞,γ ∞; δ = 0).

This highly symmetric, δ → 0 structure imparts a point
group structure to the system which is isomorphic to the
symmetric group of N identical objects [22], SN , allowing
a largely analytic solution. The δ → 0 approximation may
be systematically improved by using it as the starting point
for a perturbation expansion [23]. The SN symmetry greatly
simplifies this task since the interaction terms individually
have to transform as a scalar under the SN point group.

The perturbation series for the energy has the form

Ē = Ē∞ + δ

∞∑
j=0

(
δ

1
2
)j

Ēj . (2)

In practice Ēj = 0 ∀ j odd. The j = 0 term is obtained from
a harmonic equation and referred to as the energy at harmonic
order. To obtain this harmonic correction for small values of δ,
we expand about the minimum of the δ → 0 effective potential.

The harmonic-order Hamiltonian is solved using the FG
matrix method [24] to obtain the normal-mode frequencies
ω̄μ. The number of roots λμ (λμ = ω̄2

μ) of the secular equation
N (N + 1)/2 is potentially huge; however, due to the SN

symmetry, many roots are degenerate resulting in a reduction
to five distinct roots.

Since the FG matrix is invariant under SN , it does not
connect subspaces belonging to different irreducible repre-
sentations of SN [25]. Thus the normal coordinates must
transform under irreducible representations of SN . The normal
coordinates are linear combinations of the internal displace-

ment vectors r̄i and γij , which transform under reducible
representations of SN . These reduce to two 1-dimensional [N ]
irreducible representations denoted by 0+,0−, two (N − 1)-
dimensional [N − 1,1] irreducible representations denoted by
1+,1−, and one angular N (N − 3)/2-dimensional [N − 2,2]
irreducible representation denoted by 2 [15].

The energy through harmonic order in δ is [15,26]

E = E∞ + δ

⎡
⎣ ∑

μ={0±,1±,2}

(
nμ + 1

2
dμ

)
ω̄μ + vo

⎤
⎦, (3)

where nμ is the total number of quanta in the normal modes
with the same frequency ω̄μ; μ is a label which runs over 0+,
0−, 1+, 1−, and 2, regardless of the number of particles in the
system (see Ref. [15]), and vo is a constant. The multiplicities
of the five roots are d0+ = 1, d0− = 1, d1+ = N − 1, d1− =
N − 1, and d2 = N (N − 3)/2. An analysis of the character of
the normal modes reveals that the 2 normal modes are phonon,
i.e., compressional modes; the 1± modes show single-particle
character, 1+ has single-particle angular behavior while 1−
shows single-particle radial behavior. The 0+ mode describes
center-of-mass motion and 0− mode is a symmetric breathing
motion.

III. ENFORCING THE PAULI PRINCIPLE

To study quantum systems of fermions, we must enforce
the Pauli principle, thus requiring the N -body wave function
to be antisymmetric. This is enforced by placing certain
restrictions on the occupancies of the normal modes, i.e.,
on the values of the normal mode quantum numbers nμ,
μ = 0±,1±,2 in Eq. (3) [26]. The possible assignments are
found by relating the normal mode states |n0+ ,n0− ,n1+ ,n1− ,n2〉
to the states of the confining potential, a spherically symmetric
three-dimensional harmonic oscillator, Vconf(ri) = 1

2mω2
hori

2,
for which the restrictions imposed by antisymmetry are known.
These two series of states can be related in the double limit
D → ∞, ωho → ∞ where both representations are valid.

For large D, the normal mode description given by Eq. (3)
is exact. Applying the large ωho limit results in

E = N
D

2
�ωho + (2n0+ + 2n0− + 2n1+ + 2n1− + 2n2)�ωho.

(4)

Now consider ωho → ∞ first and then D → ∞. The harmonic
oscillator levels are exact:

E =
N∑

i=1

[
ni + D

2

]
�ωho =

N∑
i=1

[
(2νi + li) + D

2

]
�ωho

= N
D

2
�ωho +

N∑
i=1

(2νi + li)�ωho, (5)

where ni = 2νi + li , νi is a radial, and li is an orbital angular
momentum quantum number. Equating these two expressions
which are equal in the double limit, the quantum numbers in the
two representations can now be related to show the restrictions
on normal mode states imposed by antisymmetry. Because of
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the separation of radial and angular motions, two conditions
result:

2n0− + 2n1− =
N∑

i=1

2νi,

2n0+ + 2n1+ + 2n2 =
N∑

i=1

li . (6)

These equations determine a set of possible normal mode states
|n0+ ,n0− ,n1+ ,n1− ,n2〉 that are consistent with an antisymmetric
wave function from the known set of permissible L = 0
harmonic oscillator configurations. As particles are added
to the system at the ωho → ∞ limit, additional harmonic
oscillator quanta, νi and li , are, of course, needed to satisfy the
Pauli principle. Equivalently, this corresponds to additional
vibrational, i.e., normal mode quanta, that must accompany
each new particle to maintain antisymmetry.

IV. APPLICATION: HARMONIUM

The Schrödinger equation for harmonium is

H = 1

2

⎛
⎝ N∑

i=1

[
− ∂2

∂ r2
i

+ ω2
t r2

i

]
+

N−1∑
i=1

N∑
j>i

ω2
pr2

ij

⎞
⎠. (7)

The exact lowest L = 0 antisymmetric eigenstate and cor-
responding energy have been determined in earlier studies
[12–14]. We list some of these energies for several values of
N up to ≈10 000 in Table I for two attractive potentials with
λp = 10−6 and λp = 100 where λp = ωp

ωt
is a measure of the

interaction strength versus the confinement.
We obtain the SPT energies using the full formalism,

defining symmetry coordinates from the internal displacement
coordinates and using the FG method to solve for the five
normal coordinates and their frequencies. The SPT energies
are then obtained using Eq. (3) with the normal mode quanta nμ

determined from Eq. (6) to ensure antisymmetry. We choose
quanta that correspond to the lowest values of the normal mode
frequencies to yield the lowest L = 0 closed shell energy for
each N . This results in occupation in n1− and n2 which have

TABLE I. Energies for closed shells in units of �ωt for a weakly
attractive interaction (λ2

p = 10−6) and a strongly attractive interaction
(λ2

p = 100), from the exact solution [12] Eex and using SPT, ESPT,
with Eq. (3) after the correct quanta are determined from Eq. (6).
Noninteracting energies are shown in column two.

N Enonint Eex = ESPT(λ2
p = 10−6) Eex = ESPT(λ2

p = 100)

8 18.0 18.00006 4.684820×102

42 161.0 161.0033 1.033951×104

112 588.0 588.0328 6.207359×104

572 5148.0 5149.471 1.230876×106

1632 20808.0 20824.97 8.405441×106

3542 58443.9 58546.40 3.478133×107

10912 261888.0 263312.9 2.735681×108

the lowest radial and angular frequencies, respectively:

2n1− =
N∑

i=1

2νi, 2n2 =
N∑

i=1

li . (8)

Note that the center-of-mass quanta n0+ will always be zero for
the ground state since there exists a lower angular frequency
to occupy, ω2. This result has also been derived independently
for harmonium [13].

SPT actually yields the exact energies for this problem
since at this order the Hamiltonian has been transformed into
normal coordinates and yields the normal mode energies for
the system. This normal mode spectrum includes energies that
do not correspond to systems which obey the Pauli principle.
Our method of enforcing the Pauli principle chooses only those
energies that correspond to explicitly antisymmetrized wave
functions, which are a small percentage of the full spectrum.
The accuracy achieved is greater than or equal to the number of
digits shown in Table I and is excellent for all energies, particle
numbers, and interaction strengths, and for both attractive and
repulsive cases. The fact that this method obtains the exact
harmonium energies at harmonic order, although useful for
making definitive identifications in regimes where energies
are close together, is of course completely irrelevant to the
actual enforcement of the Pauli principle which is simply a
restriction placed on the normal mode quantum numbers at
the double limit where one has access to knowledge about the
Pauli principle.

V. CONCLUSIONS

The Pauli principle and symmetrization postulate have long
been known to play critical roles in the stability of our universe.
Particle statistics can also be powerful driving forces in the
emergence of collective states of matter such as Bose-Einstein
condensates. More recently particle statistics have been pro-
posed as a mechanism for performing quantum information
tasks [27]. In this paper we have performed an explicit test
of our simple method of enforcing the Pauli principle using
the SPT method that avoids the heavy numerical demands of
constructing an explicitly antisymmetrized wave function. The
correct selection from the many-body spectrum of harmonium
of the fermion energies that are known to correspond to
antisymmetric states and the absence of any spurious energies
is strong evidence that this method of enforcing the Pauli
principle on paper is valid. To date, the challenging task of
obtaining the wave function using the SPT method has been
achieved only for boson systems. Constructing the correct
antisymmetrized SPT analytic wave function for large N

systems of fermions remains an important goal for the full
development of this formalism. However, the ability to obtain
fermion energies, frequencies, and multiplicities for large
N systems without the considerable numerical expense of
explicitly antisymmetrizing the many-body wave function, and
the success of this approach in obtaining energies competitive
with Monte Carlo [8] in the unitary regime and other successful
applications within conventional dimensional perturbation the-
ory to fermion systems, including atoms, molecules, and quan-
tum dots [26,28–30], suggest that this approach will offer inter-
esting opportunities for the study of other systems of fermions.
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