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Spin-nematic order in antiferromagnetic spinor condensates
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Large spin systems can exhibit unconventional types of magnetic ordering, different from the ferromagnetic
or Néel-like antiferromagnetic order commonly found in spin 1/2 systems. Spin-nematic phases, for instance, do
not break time-reversal invariance, and their magnetic order parameter is characterized by a second-rank tensor
with the symmetry of an ellipsoid. Here we show direct experimental evidence of spin-nematic ordering in a spin
1 Bose-Einstein condensate of sodium atoms with antiferromagnetic interactions. In a mean field description this
order is enforced by locking the relative phase between spin components. We reveal this mechanism by studying
the spin noise after a spin rotation, which is shown to contain information hidden when looking only at averages.
The method should be applicable to high-spin systems in order to reveal complex magnetic phases.
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I. INTRODUCTION

Magnetic order in spin 1/2 systems is commonly associated
with either a ferromagnetic phase or a Néel antiferromagnet,
depending on the sign of the exchange interactions. The
situation is richer for spins greater than 1/2, and other types of
magnetic order can arise at low temperatures. Spin-1 systems,
for instance, can support spin nematic phases with vanishing
average spin 〈ŝ〉 [1]. The magnetic order is then characterized
by a nonzero spin quadrupole tensor, Qij ≡ 1

2 〈ŝi ŝj + ŝj ŝi〉,
which deviates from isotropy even without an applied field; i.e.,
it describes an object with the symmetries of an ellipsoid. In the
simplest case, with axial symmetry, the spin quadrupole tensor
has the same mathematical form as the orientational order
parameter of nematic liquid crystals [2]. There is a preferred
axis in space (the director) without a preferred direction along
that axis.

Spin nematic phases have been identified in lattice spin
1 models (see, e.g, [3–10]) or in spin 1 Bose-Einstein con-
densates (BECs) [11] with antiferromagnetic spin-exchange
interactions [12–21]. In solid state systems, most magnetic
probes couple only to the magnetization and are therefore
unsuitable to reveal spin nematic order. In spin 1 condensates,
equilibrium properties have been characterized by measuring
the populations of each Zeeman state. This is not always
sufficient to establish the nature of the magnetic order. For
instance, in the so-called broken axisymmetry phase [22],
where all three Zeeman sublevels are populated, ferromagnetic
or spin nematic behavior cannot be distinguished from the
average populations alone.

In this article, we propose a method to reveal spin-
nematic ordering (or possibly other types of unconventional
magnetic order), and apply it experimentally to spin 1 atomic
condensates. We show that the spin noise following a spin
rotation contains information about the initial state, which
can be retrieved with a suitable statistical analysis. In spinor
condensates, magnetic order follows from the emergence of
a well-defined phase relation between the components of the
spin wave function in the equilibrium state. This phase-locking
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mechanism is not caused by any external field, but emerges
from the interactions between the atomic spins. We show
evidence for such a mechanism in a condensate of spin 1
23Na atoms.

The article is organized as follows. In Sec. II we recall
results on the geometry of spin 1 wave functions, which are
used to give a quantitative definition of spin nematic order.
We connect it to the standard treatment of spinor condensates
at T = 0, and discuss the effect of finite temperatures. In
Sec. III, we describe the method used to extract information
about the magnetic order from a measurement of spin noise
after a known spin rotation. In Sec. IV, we describe our
experimental apparatus and methods. Section V describes a
first analysis of our experimental results, where the fluctuations
of magnetization after spin rotation are monitored. In Sec. VI,
another, more refined analysis is presented, where a maximum-
likelihood estimation of the equilibrium single-particle density
matrix is presented. Both methods reveal the underlying
spin nematic character of the equilibrium state. Section VII
summarizes our findings.

II. THEORETICAL DESCRIPTION OF
ANTIFERROMAGNETIC SPINOR CONDENSATES

The purposes of this section are, first, to give a precise
definition of spin nematic phases in terms of spin observables,
and second, to connect this definition to experiments with
spin 1 Bose-Einstein condensates at T = 0 and at finite
temperatures. We will assume here that the spin 1 bosons
are confined in a state-independent trap, tight enough to
prevent the formation of spin domains in the equilibrium
state (single-mode approximation) [23]. The condensate wave
function is then given by the product of a spatial mode function
φ(r), common to all Zeeman states, with a spin 1 wave function
|ζ 〉, which describes the internal degrees of freedom. An
important feature of ultracold spinor gases is that the reduced
(longitudinal) magnetization, mz = n+1 − n−1, is conserved
by binary collisions driving the system to its equilibrium state
[11,20]. Experimentally, we prepare a spin mixture well before
the BEC forms in our evaporation sequence, allowing us to
adjust the longitudinal magnetization mz between 0 and 1 (see
Sec. IV).
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A. Geometric description of spin 1 wave functions

We first give a more precise definition of spin nematic
order, and connect this definition with spin observables. To
that end, it is convenient to express a spin 1 state in terms of
its components in the so-called Cartesian basis {|x〉,|y〉,|z〉},1
formed by the eigenstates of Ŝa with eigenvalue 0, where a =
x,y,z. In this section, we restrict ourselves to the case of pure
states for simplicity.

A spin 1 state can be written in the Cartesian basis as
[9,16,24,25]

|�〉 = (u + iv) · |r〉, (1)

where the vectors u, v are real and obey u2 + v2 = 1. The
vectors u and v are not uniquely defined. Performing a gauge
transformation � → � ′ = eiγ � transforms u and v as u′ =
cos(γ )u − sin(γ )v and v′ = cos(γ )v + sin(γ )u. As a result,
we can choose γ such that u · v = 0 and ‖u‖ � ‖v‖.

The state of a spin 1 particle can be uniquely described
by the average spin vector, 〈ŝ〉 = 2u × v, and by the spin

quadrupole tensor Qij ≡ 1
2 〈ŝi ŝj + ŝj ŝi〉 (Tr Q = 2). In the

Cartesian basis, we have

Qij = δij − (uiuj + vivj ), (2)

or, in a more geometrical form,

Q = 1 − A
2

u ⊗ u + 1 + A
2

v ⊗ v + w ⊗ w. (3)

The orthogonal units vectors u = u/‖u‖, v = v/‖v‖, w =
〈ŝ〉/‖〈ŝ〉‖ define the eigenaxis of Q, with eigenvalues (1 −
A)/2, (1 + A)/2, and 1. The alignment parameter A � 0,
defined asA = 2‖u‖2 − 1, characterizes the anisotropy of spin
fluctuations in the plane perpendicular to the mean spin vector.

There are two simple limiting cases. The first one is the
case of an aligned state (also called spin nematic or polar
state in the context of spinor condensates [11]), where the spin
wave function, |�〉 = u · |r〉, is the eigenstate of ŝ · u with
eigenvalue zero. In such a state, the average spin vanishes,

‖〈ŝ〉‖ = 0, and the spin quadrupole tensor is Q = 1 − u ⊗ u
with eigenvalues 0,1,1. In the literature, it is common to call u

the director field. The tensor Q, or equivalently the director u,
plays the role of the order parameter for spin nematic states.

The second limiting case is the one of an oriented or fully
magnetized state, for which the average spin is maximal,
‖〈ŝ〉‖ = 1. This is achieved when ‖u‖ = ‖v‖ = 1/

√
2, and

also corresponds to a non-zero spin quadrupole tensor Q =
1
2 (1 − w ⊗ w) with eigenvalues 1/2,1/2,1.

For a generic, partially magnetized state, one can quantify
the proximity to one or the other limiting cases by the quantity
A, which characterizes the amount of alignment present in a
given state. For purely aligned states A = 1 while for purely
oriented states A = 0. For a generic state, the alignment A and

1The Cartesian basis is defined as |x〉 = 1√
2
(|−1〉 − |+1〉), |y〉 =

i√
2
(|−1〉 + |+1〉), and |z〉 = |0〉. From the relation Ŝa|b〉 = iεabc|c〉

(εabc is the fully antisymmetric tensor), we deduce that the Cartesian
state |a〉 is the eigenstate of Ŝa with eigenvalue 0.

spin length ‖〈ŝ〉‖ are related by

〈ŝ〉2 + A2 = 1. (4)

This shows that measuring the length of the mean spin vector
〈ŝ〉2 is fully equivalent to measuring the alignment A.

B. Ground state of spinor condensates

In the single-mode approximation where atoms in different
spin states share the same spatial mode [23], we parametrize
the spin state of the condensate as

|ζ 〉 =

⎛
⎜⎜⎜⎝

√
1−n0+mz

2 ei(�+α)/2

√
n0√

1−n0−mz

2 ei(�−α)/2

⎞
⎟⎟⎟⎠, (5)

where � and α are relative phases.2 The quantum state
|ζ 〉 corresponds to a mean spin vector 〈ŝ〉 = mzez + 〈ŝ⊥〉
(quantities in small letters are normalized by the total atom
number N ). The mean transverse spin 〈ŝ⊥〉 = 〈ŝx〉ex + 〈ŝy〉ey

points in a direction determined by α and its length is
determined by �,

〈ŝ⊥〉2 = 2n0
(
1 − n0 +

√
(1 − n0)2 − m2

z cos �
)
. (6)

Equation (4) shows that the relative phase � also determines
the alignment of the state |ζ 〉.

For a given magnetization mz set by the preparation
sequence, the equilibrium state |ζ 〉 minimizes the spin mean
field energy EMF, the sum of the spin-exchange interaction
energy and of the quadratic Zeeman energy (QZE) energy in
an applied magnetic field B [11],

EMF

N
= Us

2
〈ŝ⊥〉2 − qn0, (7)

up to terms that depend only on mz. For the experiments
reported in this article, the interaction strength is Us/h ≈
38 Hz (see Sec. IV D) and q/h ≈ 4 to 34 Hz.

Antiferromagnetic interactions (Us > 0, the case of sodium
atoms) favor minimizing the transverse spin length. According
to Eq. (6), this is achieved by locking the relative phase � to π

independently of the value taken by n0,mz,α (ferromagnetic
interactions would lock � to 0 instead). This is equivalent to
maximizing the alignment A introduced above.

For a partially magnetized system with given magnetization
mz, the competition between the two terms in Eq. (7)
drives a phase transition at a critical qc = Us(1 − √

1 − m2
z)

[12,17,18,20,26]. At zero temperature, the equilibrium pop-
ulation n∗

0 is zero below qc (“antiferromagnetic phase”) and
assumes a finite value above (“broken axisymmetry phase”)
[12,22,26], as illustrated in Fig. 1. Figure 2 shows the
equilibrium population n∗

0, together with the length ‖〈ŝ⊥〉‖ of
the transverse spin and the alignment A. Although the mean
transverse spin is not zero above qc [see Eq. (6)], its value
remains small because � stays locked to π . As a result, the

2The full Hilbert space can be parametrized by α ∈ [0,4π [, � ∈
[0,2π [, n0 ∈ [0,1], and |mz| � 1 − n0.
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alignment

A = n0 +
√

(1 − n0)2 − m2
z, (8)

which would reach 1 in the absence of other constraints
(thus realizing pure spin nematic states), stays very close to
the maximum value given the conservation of mz, Amax =√

1 − m2
z . This justifies using the transverse spin length to

determine the amount of alignment present in the state |ζ 〉,
even when 〈ŝ〉 �= 0.

C. Finite temperatures

At finite temperatures, the T = 0 description of a spinor
condensate should be modified in two ways. First, the spin
state of the condensate is subject to thermal fluctuations, and
second, the population of the condensate is thermally depleted.
In this section, we examine these two effects in order.

We first discuss the thermal fluctuations of the spin state of
the condensate, which is described by a finite-temperature spin
ensemble as studied in detail in Ref. [27]. Close to the phase
transition at qc, the population n∗

0 > 0 which minimizes the
free energy is small. The spin state of the condensate is then
well described by a statistical mixture of |N : ζ 〉 states, with
an approximately Gaussian distribution of n0,mz,� [27].

We now discuss the thermal depletion of the condensate
population. The single-mode approximation only describes the
lowest energy “spatial mode” into which the atoms condense.
Higher energy modes can be thermally populated, leading
to a condensed fraction fc = Nc/N lower than 1. Here N

and Nc denote respectively the total number of atoms and
of condensed atoms, irrespective of their internal state. To
describe the thermal component of the noncondensed cloud,
we have adapted the Hartree-Fock (HF) description proposed
in Ref. [28] in the uniform case to our experimental situation
(see Appendix B for details).
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FIG. 1. The phase diagram in the mz − q plane, where the three
sets of experiments we have performed are located, denoted as
a,b,c (a: mz = 0.33, q/h = 6.00 Hz; b: mz = 0.73, q/h = 33.7 Hz;
c: mz = 0.71, q/h = 3.84 Hz). In the gray area above the phase
transition line both n0 and |〈ŝ⊥〉| are nonzero, whereas both vanish
below the phase transition in the zero-temperature case.
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FIG. 2. Equilibrium population n∗
0 (solid line), transverse spin

length ‖〈ŝ⊥〉‖ (dotted line), and alignment A (dashed line) of an
antiferromagnetic spin 1 condensate versus longitudinal magne-
tization mz, for a fixed value of q/US = 0.2 (solid lines). The
critical magnetization separating the broken axisymmetry from the
antiferromagnetic phase is mz,c = 0.6, marked by the vertical dashed
line.

The results of this calculation are shown in Fig. 3 for param-
eters relevant to our experimental situation, where we plot the
partial condensed fractions for each Zeeman component f (mF )

c ,
defined as the ratio of condensed atom number in state mF to
the total atom number. The condensed fraction in mF = 0
decreases first. Above kBT � 7.8�ω, the mF = 0 component
is purely normal and the condensate is formed by mF = ±1
only. As found in Ref. [28], the contribution of the thermal
component to the average spin vector is oriented opposite to the
average spin of the condensate. The total transverse spin is thus
naturally reduced with increasing temperature.3 In the regime
we have investigated, the temperatures fulfill kBT � q,Us . As
a result, the noncondensate spin vector is always much smaller
in magnitude than its condensed counterpart, and we find that
the main effect that reduces the length of the transverse spin
vector is the reduction of the condensed fraction. The results of
Sec. II B can be directly used, provided one replaces the total
atom number N by the condensed atom number Nc < N and
the reduced populations nmF

by their condensed counterparts.
For a total condensed fraction fc = 0.8, 〈ŝ⊥〉2 is reduced to
about 57% of its zero temperature value.

III. SPIN NOISE REVEALS SPIN-NEMATIC ORDER

In contrast to the phase �, which is locked to π in
equilibrium by the spin-exchange interactions, the phase α

is expected to take random values from one realization to
the next. When dealing with many realizations of the same
experiment, the initial many-body state is thus characterized
by a statistical mixture

ρ̂ =
∫ 4π

0

dα

4π
|ζN 〉〈ζN | (9)

3Note that Eq. (4) applies only for pure states and cannot be used
directly at finite temperatures.
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FIG. 3. (a) Partial condensed fractions f (mF )
c for each Zeeman

component mF = +1 (dashed red), mF = 0 (dash doted green) and
mF = −1 (dotted blue line) and total condensed fraction (black solid).
Here f (mF )

c = N (mF )
c /N is normalized to the total number of atoms. (b)

Transverse spin length 〈ŝ⊥〉2 versus temperature. The calculation was
done for a spherical trap of frequency ω̄/(2π ) = 405 Hz, N = 7500
atoms, mz = 0.33, and q/h = 6 Hz. In physical units, kBT = 8�ω̄

corresponds to T ≈ 150 nK.

rather than a pure state |ζN 〉 with N bosons in the spin state
|ζ 〉. Only three parameters (e.g., n0,mz,〈ŝ⊥〉2) are needed
to characterize the ensemble, down from four to specify
completely each member |ζ 〉. In spite of the randomness of the
spin orientation, these three parameters can still be measured
using spin rotation, provided one goes beyond single-particle
observables and measures spin noise (recent experiments used
similar techniques to reveal squeezing [29–32]).

Figures 4(c)–4(e) illustrate the method geometrically in
terms of the mean spin vector 〈ŝ〉. The mean spin vector for
a general spin 1 pure state |ζ 〉 lies on or inside a sphere of
radius 1, with the phase α describing the azimuthal angle
of the transverse component of the mean spin vector [panel
(c)]. The ensemble of possible initial states with a uniform
distribution for α lie on a circle of radius |〈ŝ⊥〉| around the
z axis [panel (d)]. In order to measure this radius, we rotate
the state by a known angle �t around the y axis and measure
the magnetization m′

z after rotation [panel (e)]. As seen from
the figure, the initial fluctuations of the transverse orientation
map to fluctuations of m′

z, which are readily measured.
For a more quantitative description, we use the standard

angular momentum algebra to obtain the rotated operator

Ŝ ′
z = R̂†

y(�t)ŜzR̂y(�t) = cos(�t)Ŝz − sin(�t)Ŝx . (10)

Here and in the following, primed variables denote quantities
evaluated after the spin rotation is complete. We now introduce
a key assumption: the initial density matrix is invariant under
rotation around the z axis. This is satisfied in particular
by the density matrix in Eq. (9), with a random phase α

uniformly distributed in [0,4π ]. The value of an observable

(b)(a)

(c) (d) (e)

100µm

FIG. 4. (a) Sketch of the experimental setup. 7500 Bose-
condensed 23Na atoms are confined in a crossed optical dipole
trap with a homogeneous static magnetic field along z. A resonant
oscillating magnetic field along y drives a spin rotation of the
initial equilibrium state. (b) Absorption image of the atomic cloud
after Stern-Gerlach expansion in a magnetic field gradient. (c)–(e)
Classical picture explaining the principle of our measurement.
(c) The average spin 〈ŝ〉 of the condensate created in a single
realization can be decomposed into a longitudinal component mz =
〈ŝz〉 and a transverse component 〈ŝ⊥〉 = 〈ŝx〉ex + 〈ŝy〉ey , the direction
of which is given by the angle α. (d) From realization to realization,
the angle α varies randomly while mz and |〈ŝ⊥〉| stay constant. The
mean spin vector 〈ŝ〉 thus samples a horizontal circle of radius |〈ŝ⊥〉|.
(e) A spin rotation of the initial state rotates this circle by an angle �t

along the y axis. The fluctuations s ′
z after rotation are proportional

to the squared radius of the circle through a simple geometrical
relation.

measured after averaging over many realizations of the
experiment is

〈Ô〉α = 1

4π

∫ 4π

0
dα〈R†ÔR〉, (11)

where R = e−i�tŜy e−i α
2 Ŝz . The 〈·〉α symbol stands for a double

average: the first one, denoted by 〈·〉, is the usual average over
the quantum state before rotation for each realization, and the
second one is done over random values of α arising from one
experimental realization to the next. Defining an average in
this way allows us to obtain formula expressing measurement
results without specifying the initial state.

Using this result, we find the average magnetization after
the pulse,

〈m′
z〉α = 1

N
〈Ŝ ′

z〉α = cos(�t)mz, (12)

which is independent of 〈s⊥〉. However, the variance of the
same quantity is given by

m′2
z = cos2(�t)m2

z + 1

2N2
sin2(�t)

〈
Ŝ2

x + Ŝ2
y

〉
, (13)

where

Ŝ2
x + Ŝ2

y = N + N̂0 + 2N̂0(N̂+1 + N̂−1)

+ (
â
†
+1â

†
+1â

2
0 + H.c.

)
. (14)

In other words, relying only on the randomness of α, we find
that the variance of the magnetization m′2

z after the pulse
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measures the initial transverse spin fluctuations. This result
holds for a short enough pulse, such that one can neglect any
other terms than the oscillating field in the Hamiltonian during
the evolution time.

It is convenient to rewrite the variance as

m′2
z = 1

2 sin2(�t)〈ŝ⊥〉2

+ cos2(�t)m2
z + 1

2 sin2(�t)s2
⊥, (15)

with 〈ŝ⊥〉2 the squared length of the mean transverse spin, and
with s2

⊥ = 〈Ŝ2
x + Ŝ2

y〉/N2 − 〈ŝ⊥〉2 its variance. For a spinor
cond ensate with 〈ŝ⊥〉 �= 0, the term on the first line dominates
over the smaller noise terms, and m′2

z ≈ 1
2 sin2(�t)〈ŝ⊥〉2. We

thus expect that the variance m′2
z oscillates with the rotation

angle �t and reaches its maximum for �t = π/2 where the
slope of m′

z versus �t is maximum. In our experiment, the
last two noise terms in Eq. (15) are typically dominated by
the preparation noise on mz (which also introduces noise on
n0 in the equilibrium state, and thus on 〈ŝ⊥〉).

IV. EXPERIMENTAL TECHNIQUES

A. Condensate preparation

We prepare spinor condensates in a well-controlled ho-
mogeneous static magnetic field B oriented along the z axis
[see Fig. 4(a)]. We start from a precooled thermal cloud
of 23Na atoms in a crossed optical dipole trap [33]. The
atomic cloud is partially magnetized, with a magnetization
mz ≈ 0.5 on average resulting from previous cooling steps.
We adjust the magnetization by either demagnetizing the atoms
further with near-resonant radio-frequency (RF) magnetic field
sweeps, or by magnetizing it by evaporation in a magnetic field
gradient (“spin distillation”) [20]. We are able to produce final
magnetizations ranging from mz = 0 to mz = 1, with a typical
error of 2–3%.

After preparing a spin mixture well above the critical
temperature for Bose-Einstein condensation, the depth of the
optical trap is lowered in a few seconds to perform evaporative
cooling. A hold time of 3 s is added after the end of the ramp to
ensure that the cloud reaches equilibrium [20]. At the end of the
evaporation ramp, the atoms are confined in the crossings of
the two beams of the dipole trap, where the trapping potential
is well approximated by a harmonic trap with average trap
frequency ω/2π ∼ 405 Hz (the trap frequencies are in the
ratio 1 : 0.85 : 0.5).

Experiments reported in this article are performed with
“almost pure” Bose-Einstein condensates (BECs) containing
typically 7500 atoms at a trap depth VT /kB ≈ 400 nK. By
“almost pure” we mean that no discernible thermal compo-
nent can be observed in absorption images. The measured
condensed fraction fc = Nc/N is usually obtained by fitting a
bimodal profile to absorption images [34]. In our experiment,
the contribution of the thermal component becomes difficult
to detect for condensed fractions larger than fc ≈ 0.8, and the
bimodal fitting procedure becomes unreliable. This sets a lower
bound fc � 0.8 on the condensed fraction for the experiments
presented in this article.

We probe the sample using absorption imaging after
free expansion in a magnetic field gradient, as shown in
Fig. 4(b), and measure the normalized populations nmF

of

each Zeeman component mF = 0,±1 [11]. The three Zeeman
components are imaged after releasing the cloud from the trap
in the presence of a magnetic force separating the Zeeman
components [Stern-Gerlach -SG- imaging]. Specifically, we
apply a quadrupole field Bq = b′(2xex − yey − zez) together
with a uniform “separation” field Bxex , with b′ ≈ 7 G/cm
and Bx ≈ 3 G. The resulting adiabatic magnetic potential
is given by Umag = gF mF μB |Bxex + Bq| ≈ gF mF μB |Bx | +
gF mF μBb′x + · · · , with gF = −1/2 the Landé factor and
with μB the Bohr magneton. The quadrupole and separation
field are ramped up in a few milliseconds, while the bias field
Bez applied during the experiment is simultaneously ramped
down.

B. Experimental implementation of Rabi oscillations

We apply a spin rotation using a radio-frequency (RF)
magnetic field along y oscillating at the Larmor frequency.
This RF field induces Rabi oscillations with Rabi frequency �.
After a certain evolution time t which determines the rotation
angle �t , we measure the final populations n′

mF
after spin

rotation. The bias field is small enough to neglect the quadratic
Zeeman shift (q < 100 Hz) compared to the Rabi frequency
(�/2π ∼ 5 kHz). At the end of the pulse, the separation field
Bxex is increased first, followed by the magnetic gradient used
for SG imaging and by the decrease of the bias field Bzez.
The timing of the sequence is shown in Fig. 5(a). Ramping
up the separation field Bx is done with a linear ramp of
T = 3 ms duration, sufficiently slowly to remain adiabatic
with respect to spin flips (ωLT � 1). The optical trap is
switched off 10 ms after the end of the RF pulse (see Sec. IV C
below).

We have tested this sequence in two special cases, where
all the atoms are initially in the mF = +1 state and or in
the mF = 0 state. We are able to prepare these two states with
little preparation noise, mz � 1%. The measured oscillations
are presented in Fig. 6. The contrast is close to 100%, and
we do not observe any sizable dephasing of the oscillations
after several Rabi periods. This shows that the assumption of
adiabatic following when ramping up the different magnetic
fields is valid.

C. Influence of spin mixing after the spin rotation

The sudden change of the spin state due to the spin rotation
should in principle trigger a spin oscillation dynamics [17,35–
38] driven by spin-exchange interactions during the 10 ms
hold time following the spin rotation. As seen before, the
applied magnetic field is also changed after the spin rotation,
from B = Bzez to B = Bzez + Bxex . The quadratic Zeeman
energy q increases during this ramp, according to the curve
shown in Fig. 5(b). This increase is fast compared to the time
scale set by spin-exchange interactions, h/Us ∼ 25 ms, and it
reduces spin-mixing dynamics due to exchange collisions that
would otherwise develop during the 10 ms hold time after the
RF pulse.

Nevertheless, a residual dynamics still takes place and
modifies slightly the population n0 measured in SG imaging.
Note that the effect of the spin interaction during the RF pulse
is negligible (Us/�� ∼ 0.008). We model the spin-mixing
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FIG. 5. (a) Schematic diagram (not to scale) showing the experi-
mental sequence. “RF” indicates the radio-frequency pulse inducing
spin rotations, Bz is the bias field applied before and during the
spin rotation, Bx and “SG” denote respectively the “separation field”
and magnetic field gradient required for SG imaging. (b) The ramp
of Bx after the spin rotation results in a time-dependent quadratic
Zeeman energy (QZE) q increasing within 3 ms after the end of the
RF pulse (top panel). The evolution after the spin rotation of the
normalized population n0 due to spin-mixing interactions calculated
from Eq. (A1) is shown in the lower panel for an initial phase �i = π ,
and an initial population chosen such that the final population is
n0 ≈ 0.43 (as measured for data set a), and Us/h = 38 Hz.

oscillations using the theoretical framework given in Ref. [38]
(see Appendix A). An example for �i = π is shown in
Fig. 5(b). The main changes in n0 occur early in the ramp.
Once q has settled at its final value qf ∼ h × 2.5 kHz, the
dynamics continue as a small-amplitude oscillation of the
population n0 around an offset value (the so-called quadratic
Zeeman regime [37]). The oscillation amplitude is small
(∼Us/qf ∼ 0.015) and comparable to our detection noise.
Changing the magnetic field to higher values would further
reduce the amplitude without significantly changing the offset
of n0. Taking the long-time offset as the measured value of
n0, we find that the effect of the ramp amounts to increasing
the relative population in n0 from its initial value by up to
0.05 for an initial angle �i = π ; a small but measurable
change.

We emphasize that the spin-mixing dynamics does not
change the magnetization mz of the system, but only the
individual populations nmF

. Therefore, the occurrence of spin
mixing does not influence the analysis of the variance of

mz after spin rotation in Sec. V. On the other hand, it does
affect the maximum-likelihood analysis, as detailed further in
Sec. VI.

D. Determination of Us from spin-mixing dynamics

We have measured directly the exchange interaction pa-
rameter Us by deliberately inducing spin-mixing dynamics
and recording the oscillations of the normalized population
n0 after a sudden change [see Fig. 7(a)]. Starting from a
condensate with all atoms in the mF = 0 state, prepared as
explained above at a bias field B ≈ 282 mG (q/h ≈ 22 Hz),
we first apply a spin rotation to produce a mixture with roughly
balanced populations in all Zeeman states. This results in an
initial state as given by Eq. (5), with n0 ≈ 0.38 and mz ≈ 0.
Spin-changing collisions produce high-contrast oscillations
in the Zeeman populations, as observed in previous work
for mz �= 0 [17,18,36,37]. The oscillation period has been
predicted analytically in Ref. [38], and is a function of
n0,mz,q, which are known, and of Us , which is not. We extract
Us/h ≈ 38 Hz from the measured period Tosc ≈ 16 ms ([see
Fig. 7(b)].

V. SPIN NOISE MEASUREMENT
OF SPIN-NEMATIC ORDER

We now describe our experimental results on the measure-
ment of the transverse spin using spin noise, as described in
Sec. III. In total we have taken three different data sets for
different initial magnetizations and magnetic fields which we
label a,b,c (see Fig. 1). The first two cases are above the T = 0
phase transition, while the third one is below. In each case, we
drive Rabi oscillations with Rabi frequency � for an evolution
time t , as described for quasipure spin states in Sec. IV B, and
record the evolution of the relative populations n′

mF
after spin

rotation.

A. Magnetization variance above the phase transition

We first focus on data set a. Figure 8 shows typical raw data
for the relative magnetization m′

z (a) and the relative population
n′

0 (b) for different rotation times t . As a result of the random
orientation of the transverse spin (due to the random nature of
α), large shot-to-shot fluctuations of the individual populations
are observed. The mean magnetization behaves as predicted in
Eq. (12). We extract the Rabi frequency � from a cosine fit to
the mean population m′

z [see Fig. 8(a)].
Figure 8(c) shows the variance of m′

z, displaying the ex-
pected oscillations at twice the Larmor frequency. We compare
the experimental results to the prediction of Eqs. (6) and (15)
(blue solid line). The transverse spin length 〈ŝ⊥〉2 is computed
with � = π , with the measured mz and with the population
n∗

0 found by minimizing EMF.4 For comparison, we also show
the transverse spin length for the same mz,n

∗
0 but � = 0 (red

dotted line) and for random � with uniform distribution (green
dash-dotted line), that would correspond to a ferromagnetic

4For this comparison we use Eq. (15). Noise in mz was deduced
from the measured distribution in the initial state. Noise in 〈ŝ⊥〉 was
deduced from this measurement and Eq. (6) for � = π .
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FIG. 6. Rabi oscillation starting either from a state with all atoms in mF = +1 (a) or mF = 0 (b). The residual fluctuations are dominated
by preparation noise, imperfections in the Rabi rotation parameters, and the detection noise, all with roughly comparable contributions.

system and to a noninteracting system (no phase locking),
respectively. Our measurements are best described by � = π ,
as expected for antiferromagnetic systems in equilibrium. This
shows that the system attempts to minimize its transverse spin,
or equivalently maximize its alignment, thereby revealing spin
nematic ordering.
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FIG. 7. Spin-mixing oscillations (a) and calculated oscillation
period (b). A fit to a damped sinusoid is shown in (a) as solid line
and yields an oscillation period Tosc ≈ 16 ms indicated by dashed
lines in (b).

As seen from Figs. 9(b) and 9(c), data sets b,c show the
same behavior as the case a discussed above, an oscillation of
the variance with fixed amplitude. Data set b is qualitatively
comparable to a. Case c, taken below the T = 0 phase
transition, deserves a separate discussion which we defer to
Sec. V C.

B. Spin thermometry

We attribute the slight difference between the measured
amplitudes of the variance oscillations and the prediction of
Eq. (15) for � = π in Fig. 8(c) to a nonzero temperature.
We addressed this point in details for data set a using the
Hartree-Fock treatment of Sec. II C. Generally, we have found
that increasing the temperature reduces the transverse spin
per atom. Experimentally, the condensed fraction can only be
estimated as fc � 0.8 (see Sec. IV). We show in Fig. 9(a) a
shaded area where the lower limit corresponds to fc = 0.8
and the upper one to fc = 1, indicating that even a small
noncondensed fraction leads to a measurable decrease of the
oscillation amplitude. In fact, the oscillation variance can be
seen as a low-temperature thermometer. A temperature T ≈
80 nK (condensed fraction fc ≈ 0.9) is found to reproduce the
observed oscillation level [dashed line in Fig. 9(a)].

C. Magnetization variance below the phase transition

For data set c, one would expect n0 = 0 and 〈ŝ⊥〉2 = 0
according to the T = 0 mean field picture. In contrast, we find
a small initial population n0 ≈ 0.04, and an oscillation of the
magnetization variance with a small, but nonzero amplitude.
The dotted lines in the figure correspond to the theoretical
predictions which take the initial measured n0 into account
(corrected for the small shift in n0 due to the spin changing
collisions discussed in Sec. IV C) and � = π .

A first explanation for this behavior could be the presence
of the thermal (uncondensed) component. In a spinor BEC
[39], spin excitations are phase locked to the condensed
components, and a finite transverse spin originating from
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FIG. 8. (a) Magnetization m′
z and (b) relative population n′

0 in the mF = 0 state versus duration of the Rabi pulse (or equivalently,
rotation angle). The small blue dots correspond to single-shot measurements, while the larger red circles correspond to the average (m′

z,n
′
0)

over all measurements for each pulse duration. The solid line shows a cosine fit to the average m′
z, from which we extract the Rabi

frequency �. (c) Variance of m′
z (blue circles) versus duration of the Rabi pulse oscillating at twice the Rabi frequency. The blue solid

line corresponds to the theoretical prediction at zero temperature obtained from Eqs. (6) and (15) and an initial phase � = π . The red
dashed line (� = 0) and green dash-dotted line (random �) are shown for illustrative purposes. The data are from set a, with mz = 0.33 and
q/h = 6.0 Hz (B = 147 mG).

the uncondensed component could contribute to our signal.
However, from the Hartree-Fock calculations described in
Sec. II C, we found that the transverse spin of the uncondensed
component remains very small for our typical parameters, and
cannot explain the measured signal.

A second explanation comes from a finite temperature of
the initial spin state of the condensate, which is then described
by a statistical ensemble rather than a pure state as described
in Ref. [27] and Sec. II C. This leads to a finite population
in mF = 0 even below the phase transition. By numerically
integrating the thermal distribution described by the free
energy given in Ref. [27] for a typical temperature T = 80 nK,
we find a finite population n0 = 0.016. This leads to a maximal
variance after rotation of m′2

z = 0.005, comparable to the
oscillation amplitude of the variance in Fig. 9(c).

VI. MAXIMUM-LIKELIHOOD ESTIMATION
OF THE DISTRIBUTION OF �

A. Principle of the method

We now turn to a more general statistical analysis based on
maximum-likelihood estimation (MLE), which allows us to
estimate the distribution of the angle � in a more quantitative
way. It takes all available data into account, including the
population n′

0 which was not used in the previous analysis.
Given a set of measurements, the MLE method finds the most
likely distribution among a set of parameter-dependent model
distributions, thereby providing a statistical estimator for said
parameters.

We model the initial state by a density matrix

ρ̂ =
∫

dζ
G(n0,mz)P (�)

4π
|ζN 〉〈ζN |, (16)

with an integration measure dζ = dn0dmzd�dα. We assume
for simplicity that the probability density functions G(n0,mz)
and P (�) are Gaussians. We note that the equilibrium density

matrix of a finite-temperature spin ensemble is well approx-
imated by Eq. (16) with a Gaussian weight function [27].
The joint probability density G(n0,mz) is peaked around the
average value (n∗

0,mz) with n∗
0 the population minimizing EMF,

with a finite width mostly due to experimental imperfections
in the preparation sequence. The covariance matrix charac-
terizing G(n0,mz) is extracted from the experimental data. At
T = 0, P (�) is given by a Dirac delta, P (�) ∝ δ(� − π ),
but acquires a finite width at finite T (see Sec. VI D below).
The mean value �̄ and standard deviation σ� of P (�) are
the unknown parameters to be estimated. Due to the periodic
nature of �, our choice is sensible only when P (�) is peaked
around the mean, i.e., σ� � 2π .

We use a Monte Carlo method to sample the initial
distribution in Eq. (16). For a given � and a measurement
time ti (rotation angle �ti), the initial state (n0,mz,α,�) is
propagated in time using the rotation operator. Here we assume
that the spin rotation is perfectly known, with rotation axis y

and a rotation angle extracted from the fit to 〈m′
z〉α as before.

Spin-mixing dynamics just after the spin rotation slightly
change the relative population n′

0, and is taken into account in
the propagation. After convolution of the final results with our
known measurement noise, we get a conditional probability
density pti (m

′
z,n

′
0|�̄,σ�) for the measured (n′

0,m
′
z). Given a

set of independent observations {m′
z,i ,n

′
0,i}, we can construct

a (log) likelihood function

log L(�̄,σ�) =
∑

i

log pti (m
′
z,i ,n

′
0,i |�̄,σ�). (17)

The distribution that accounts best for the observed results is
found by maximizing this function.

Since the estimator strongly depends on the chosen proba-
bilistic model, it is important for this model to be close to the
physical reality. In the following we motivate the model used
in the MLE before discussing the results.
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FIG. 9. Close-up view of the magnetization variance for data
sets a, b, and c. In (a) and (b), the solid blue line is the zero
temperature theory for an initial angle of � = π (antiferromagnetic
interactions). In (a), the shaded area corresponds to the prediction of
our Hartree-Fock model at finite temperature assuming a condensed
fraction of fc � 80%. The dashed line gives the best agreement
corresponding to a temperature T ≈ 80 nK. In (c), the data are shown
for parameters below the T = 0 phase transition line. The dotted
curve is the theoretical expectation from Eq. (15), taking the initial
population n0 into account.

B. Model for the initial distribution

The distribution of initial states is probabilistic due to three
different effects. The first effect is intrinsic to our theoretical
model where the initial angle α takes random values from
one realization to the next. The second probabilistic effect is
due to experimental imperfections, mainly fluctuations of mz

(from the preparation process and the subsequent evaporation)
or fluctuations in the spin-spin interaction energy Us (due to
fluctuations of the total atom number or of the confinement
strength). Such fluctuations result in correlated fluctuations
in n0 due to the system exploring different minima of the
mean field energy. We stress that the marginal distribution
P (�) is a priori not affected by these fluctuations. A third
random element originates from the finite spin temperature
as described in Sec. II C which allows the system to explore
states situated away from the minimum. The second and third
effects are more pronounced close to the phase transition [27].

We find empirically that the initial joint distribution of n0

and mz in Eq. (16) is well described by a two-dimensional
Gaussian G(n0,mz). The mean and covariance matrix char-
acterizing G are calculated from the measured data without
spin rotation. We account for the spin changing collisions
discussed in Sec. IV C, which affect the measured “initial
distribution,” i.e., the distribution observed without any spin
rotation. Specifically, for each values of �, mz, and n0, the
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FIG. 10. Initial distribution G(n0,mz) for data set a. (a) Measured
initial populations are indicated by black circles. The color shows
the two-dimensional histogram of the simulated 106 initial points
used in the Monte Carlo method. These points are drawn from
a two-dimensional Gaussian distribution estimated from the initial
measurements and sampled on a square grid with a step size
2.5 × 10−3. The dashed lines limit the allowed area (|mz| � 1 − n0).
(b) Marginal histograms of measured initial populations for mz and
(c) n0. The red line indicates the marginal distributions used for the
Monte Carlo analysis.

mean field equations (A1) are used to find the initial value n0,i

that leads to the measured one, n0(t = 0). The known values
of q and the measured value of Us are used as fixed inputs for
this calculation. The initial distribution G(n0,i ,mz) deduced in
this way is shown in Fig. 10. We estimate that experimental
imperfections dominate the initial distribution G(n0,mz).

C. Monte Carlo approach

To compute the evolution of a given initial state under spin
rotation, we use a Monte Carlo approach. The initial density
operator is sampled by drawing random numbers (n0,mz,α)
according to our assumed probability distributions (see Fig. 10)
and assuming a certain value for �. This determines an initial
mean field state |ζN 〉. Using the known evolution under spin
rotations, we propagate this state in time for a given ti to
arrive at the final mean outcome populations (n′

0,m
′
z) as the

expectation values of the corresponding operators in the time-
evolved mean field state. In our numerical implementation
we use a typical number of ∼106 Monte Carlo samples to
reconstruct the final statistical distribution of the measurement
outcomes. Spin mixing collisions as discussed in Sec. IV C
are also taken into account to obtain the final simulated
distributions. In the Monte Carlo simulation, the spin state
found after rotation is used as initial condition to solve the
mean field equations (A1) describing the spin dynamics. We
arrive in this way at a distribution of n′

0 corrected for the effect
of spin changing collisions, typically by a few percent.

We evaluate the final populations for each realization using
expectation values. Doing so, we neglect the effect of quantum
fluctuations on the final results. Typical fluctuations are of
order 1/

√
NmF

(with NmF
∼ a few thousand atoms) and are

023614-9



T. ZIBOLD et al. PHYSICAL REVIEW A 93, 023614 (2016)

 

 

−1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500

600

700

800

900

 

 

−1 0 1
0

50

100

150

200

250

 

 

−1 0 1
0

50

100

150

200

250

300
(a) (b) (c)

FIG. 11. Comparison for data set a of the Monte Carlo simulated populations with measured data (black circles) after Rabi rotation for
different assumed initial angles �. The three panels show the color-coded two-dimensional histograms of the Monte Carlo simulations for
� = 0 (a), π/2 (b), and π (c). Best agreement, i.e., the maximum likelihood, is found for � = π . The example is taken for �t ≈ π/2 where
the sensitivity is the highest.

small compared to the noise level of our population mea-
surement. The measurement noise, caused by a combination
of photon shot noise and small spatial intensity fluctuations
of the laser pulse used for absorption imaging, is typically
nmF

≈ 1% for the normalized population in Zeeman state
mF . We include this noise in our model by convolving the
simulated measurement outcome by a Gaussian distribution.
This leads to a conditional probability density pti (n

′
0,m

′
z|�)

for the measurement outcome which depends on the initial
phase �, which is then multiplied by the distribution P (�) to
obtain pti (n

′
0,m

′
z|�̄,σ�). An illustrative comparison for given

values of �t is shown in Fig. 11.

D. Results of the MLE

We model the distribution P (�) by a truncated Gaussian
with a mean value �̄ and a standard deviation σ�. For the
three data sets a, b, and c, the log likelihood is shown in
Fig. 12 versus (�̄,σ�). The maxima, shown in Fig. 13, are

found for (�̄,σ�) = (1.01π,0.085π ), (0.86π,0.347π ), and
(1.05π,0.210π ) for data sets a, b, and c, respectively. These
results are in full agreement with the conclusion drawn from
the variance analysis, confirming the locking to π of the
relative phase �.

In all instances, the MLE is maximum for a finite width
P (�) which is not expected in the standard T = 0 description.
We conclude this section by discussing possible explanations.
First, it may be caused by an underestimation of the noise
sources in the system. As seen before, the probability distri-
bution pti (n

′
0,m

′
z|�) is almost symmetric in � with respect to

0 and π . The presence of fluctuations (induced for example
by experimental imperfections) not included in our model
always bias the estimator away from � = π . We thus infer
that underestimated or unconsidered noise in our probabilistic
model will result in a broadening of the estimated distribution
P (�). A second, more fundamental effect comes from the
finite temperature of the initial spin ensemble (see Sec. II C).
The marginal distribution of � obtained numerically [27] is a
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FIG. 12. Results of the maximum-likelihood determination of P (�), expressed in terms of the mean value �̄ and standard deviation σ�

for the datasets a, b, and c. In all cases the maximum, i.e., the estimated phase �, is found close to the theoretical predicted value of π (black
cross). The contour lines delineate the 67%, 95%, and 99% confidence areas.
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FIG. 13. Most likely values of �̄ found by the MLE algorithm
for data sets a, b, c. Error bars indicate the 67% confidence bounds.

bell-shape curve centered at π , reasonably approximated by a
Gaussian with root-mean-square (rms) width ≈√

kBT /NUs .
Using T ≈ 80 nK and the experimental parameters of data
set a, we find a width ≈0.1, comparable to the results of the
MLE.

VII. CONCLUSION

In conclusion, we have shown the existence of spin-nematic
ordering in antiferromagnetic spin 1 BECs, or equivalently
of a phase locking between the Zeeman components caused
by spin-exchange interactions in the equilibrium state. Our
experimental method combines spin rotations with a statistical
analysis, either based on the spin moments or on a maximum-
likelihood estimation of the probability density function
characterizing the initial spin state of the condensate. Our
method is not restricted to single-mode condensates or to spin 1
atoms, and could be used to reveal other types of spin ordering.
We remark in particular that measuring the spin variance gives
access to a quantity (the squared transverse spin length) which
can be used to characterize other phases than a fully condensed
state. The expression of the transverse spin operator in Eq. (14)
shows that measuring the spin variance gives access to the
“spin singlet amplitude” 〈â†

+1â
†
+1â

2
0〉 [40,41], which appears in

studies of fluctuating systems beyond mean field (spin liquid
in one dimension [42] or spin-singlet Mott states in optical
lattices, for instance [14]).
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APPENDIX A: CALCULATION OF SPIN-MIXING
DYNAMICS

To quantify the impact of spin-mixing oscillations on the
measured n0, we use the theoretical framework given in

Ref. [38]. The evolution of an initial state of the form given in
Eq. (5) is described by the two Josephson-like equations [38],

�
dn0

dt
= 2Usn0

√
(1 − n0)2 − m2

z sin(�), (A1)

�
d�

dt
= −2q(t) + 2Us(1 − 2n0)

= +2Us

(1 − n0)(1 − 2n0) − m2
z√

(1 − n0)2 − m2
z

cos(�), (A2)

with n0(0) = n0,i and �(0) = �i . We solve Eqs. (A1) numer-
ically with q(t) as shown in Fig. 5(b) to compute the evolution
of n0.

APPENDIX B: HARTREE-FOCK MODEL OF A SPIN 1 GAS
AT FINITE TEMPERATURES

The model of [28] treats the noncondensed cloud as a gas of
noninteracting free particles evolving in a self-consistent mean
field potential accounting for spin-exchange interactions [28].
Importantly, this mean field potential is not diagonal in the
Zeeman basis due to spin-mixing interactions. The thermal
component can in principle develop nonzero coherences due
to interactions with the condensate and therefore a non-zero
average spin. The quantity of interest is the single-particle
density matrix,

ρ(1)
m,n(r) = φ∗

m(r)φn(r) + ρ ′(1)
m,n(r), (B1)

with φ the condensate wave function, with ρ ′(1)
m,n the contribu-

tion of the thermal component, and where m,n = 0,±1. The
density in each Zeeman component m is determined by the
diagonal terms ρ(1)

m,m and the transverse spin by the off-diagonal

coherences ρ
(1)
0,±1.

With respect to the full HF model laid out in Ref. [28],
we make two additional simplifying assumptions. First, we
assume that the single-mode approximation holds for the
condensate wavefunction.5 This amounts to setting φm(r) =√

Nc φ(r)ζm, as done in the main text. The single-mode wave
function φ determining the condensate spatial distribution is
computed numerically by solving the GP equation

μφ = − �
2

2MNa
φ + V (r)φ + gNc|φ|2φ, (B2)

with MNa the mass of sodium atoms. The spinor part
ζm is found from the single-mode theory using Us =
Ncgs

∫
d (3)r|φ|4. The coupling constants g,gs are proportional

to the scattering lengths a ≈ 2.79 nm and as ≈ 0.1 nm [43]
with a proportionality factor 4π�

2/MNa. Second, we neglect
the contribution of the thermal cloud to the mean-field potential
(“semiideal” model [44]). Far from Tc, this is expected
to be an accurate approximation [45]. Finally, we perform
the calculations for a spherical trap. Although the trapping
potential used in the experiment is not exactly isotropic,
we do not expect that this affects strongly the results (in
the Thomas-Fermi regime, for instance, only the average
trap frequency matters to compute thermodynamic quantities
[45]).

5This was verified in an independent calculation by solving the
three-component, three-dimensional Gross-Pitaevskii (GP) equation.
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The excitations modes u(ν) and energies Eν are solutions of
the eigenproblem

Eνu(ν) =
(

− �
2

2MNa
 + V (r) + A(r)

)
u(ν), (B3)

where the matrix A, explicitly given in Ref. [28], depends on
the condensate wave function φ(r) and on g,gs . Diagonalizing

this equation, we obtain the single-particle density matrix ρ ′(1)

of the thermal component as

ρ ′(1)
m,n(r) =

∑
ν

(
u(ν)

m (r)
)∗

u(ν)
n (r)NBE(Eν) (B4)

with NBE(E) = 1/(eE/kBT − 1) the occupation number for
each mode ν.
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