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Ground-state densities of repulsive two-component Fermi gases

Martin-Isbjörn Trappe,1,2,* Piotr Grochowski,1,† Mirosław Brewczyk,1,3,‡ and Kazimierz Rzążewski1,§
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We investigate separations of trapped balanced two-component atomic Fermi gases with repulsive contact
interaction. Candidates for ground-state densities are obtained from the imaginary-time evolution of a nonlinear
pseudo-Schrödinger equation in three dimensions, rather than from the cumbersome variational equations of
the underlying energy density functional. With the employed hydrodynamical approach, gradient corrections
to the Thomas-Fermi approximation are conveniently included and are shown to be vital for reliable density
profiles. We provide critical repulsion strengths that mark the onset of phase transitions in a harmonic trap. We
present transitions from identical density profiles of the two fermion species towards isotropic and anisotropic
separations for various confinements, including harmonic and double-well-type traps. Our proposed method is
suited for arbitrary trap geometries and can be straightforwardly extended to study dynamics in the light of
ongoing experiments on degenerate Fermi gases.
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I. INTRODUCTION

In recent years ultracold Fermi gases have come into
focus for forming and studying novel phases of matter under
extensively controllable laboratory conditions, for example,
by means of Feshbach resonances that allow for largely
tunable interactions between fermions. These investigations
not only provide valuable insights into interacting Fermi gases
themselves, but also can serve to simulate properties of less
accessible strongly interacting many-body systems such as
solid states or stellar matter. For example, two-component
Fermi gases with repulsive short-range interactions may
exhibit magnetic properties like transitions from para- to
ferromagnetic phases. Considerable efforts in both experiment
and theory have been made to determine static and dynamic
properties of such systems [1–5]. For instance, itinerant
ferromagnetism in strongly repulsive Fermi gases has been
extensively investigated [3–10]. But both experimental and
theoretical results on separations of the two fermion species
are ambiguous and a number of fundamental questions, in
particular, away from unitarity, remain elusive to date.

The dynamics of two strongly interacting clouds of different
components and dynamical tunneling through barriers as in [4]
are, for example, addressed with a hydrodynamical approach
in the Thomas-Fermi (TF) approximation [11,12]. The TF ap-
proximation, first developed for multielectron atoms [13,14],
is frequently used to obtain a first approximate description
of a many-fermion system. However, this semiclassical local
density approximation may fail if an accurate description in
classically forbidden regions is required. Then, corrections in
terms of gradients of the particle density are usually taken
into account [15–22]. It can be expected that such gradient
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corrections also play a crucial role at interfaces of two repelling
fermionic clouds.

The regime of weak repulsion is even less explored.
In specific settings, gradient corrections are reported to be
negligible for the total density; see, for example, [23]. But little
is known about the ground-state densities of the individual
fermion components for large particle numbers beyond the
TF approximation, even for the simple case of a repulsive
contact interaction, which is addressed in the present work. Of
course, other interactions may have to be included, depending
on the specific physical setting. For example, dipole-dipole-
interacting Fermi gases are addressed in [24–26].

While few-fermion systems permit exact diagonalization,
restricted computing resources require approximate methods
for large particle numbers, in particular, in three spatial
dimensions. Separations and domain structures for up to 100
particles in one spatial dimension were found in [27] with
the aid of a mean-field Hartree-Fock method. The phase
diagram for short-range hard- or soft-sphere interactions in
a flat box and for small particle numbers is addressed in [28].
For large particle numbers the TF approximation with contact
interaction, employed in [29–33], yields (partial) separations
of the two fermion components. LeBlanc et al. compared
spin textures, included gradient corrections, and reported an
isotropic separation in the case of a fixed quantization axis in
a harmonic trap [34].

In this work we provide an extensive characterization of
ground-state density candidates for two-component Fermi
gases with repulsive contact interaction in three dimensions
for various trapping potentials. We want to answer the question
to what extent the TF approximation and its extensions predict
separations of the two Fermi components. In Sec. II we
discuss the approximate energy functional, including gradient
corrections, that underlies the variational equations which are
commonly employed to obtain ground-state densities in the
spirit of density functional theory. We argue in Sec. III that
the variational equations without gradient corrections, viz., the
TF equations, predict ground-state candidates ambiguously.
In Sec. IV we establish a pseudo-Schrödinger equation for
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three spatial dimensions, whose propagation in imaginary time
yields stationary states. This approach is based on Madelung’s
hydrodynamical equations and allows us to conveniently study
the qualitative and quantitative effect of the gradient correc-
tions in arbitrary trap geometries. In contrast, the variational
equations with gradient corrections included are, in general,
anisotropic coupled nonlinear partial differential equations in
three dimensions, and their direct solution is cumbersome. Our
results for particle densities in various potentials obtained from
the imaginary-time evolution (ITE) method are summarized
in Sec. V, where we discuss the observed types of separation.
For harmonic confinement we map out the phase diagram of
critical interaction strengths at which phase transitions towards
separation occur and present numerous density profiles, also
for trapping potentials with tunneling barriers. We explicitly
address the qualitative and quantitative importance of gradient
corrections beyond the TF approximation, which is briefly
discussed in the Appendix. Throughout this work we use
harmonic oscillator units and set � = ω = m = 1.

II. ENERGY DENSITY FUNCTIONAL

We base our investigation on the total energy E = Ekin +
Epot + Eint, composed of kinetic, potential, and interaction en-
ergy of the two-component Fermi gas. In the TF approximation
the kinetic energy is replaced by the TF kinetic energy density
functional for D spatial dimensions,

TTF[n+,n−] = cD

∫
(dr)

{
(n+)

D+2
D + (n−)

D+2
D

}
, (1)

depending on the one-particle densities n+(r) and n−(r) of
the two fermion species. To simplify the notation in the
following, we omit the r dependence. The coefficients cD for
spin-polarized fermions read c1 = �

2π2/(6m), c2 = �
2π/m,

and c3 = 65/3
�

2π4/3/(20m). Commonly, gradient corrections
in terms of a formal � expansion are added to the TF kinetic
energy functional to improve on the TF approximation. Given
slowly varying potentials, the first-order corrections in three
dimensions are

�T�2 [n+,n−] =
∫

(dr)
ξ�

2

8m

{
(∇n+)2

n+
+ (∇n−)2

n−

}
, (2)

i.e., Ekin is approximated by Tξ = TTF + �T�2 , with ξ = 1/9;
see, for example, [15] and [35].

The orbital-free expressions of the gradient corrections
in one and two dimensions presented in the literature are
troublesome: The one-dimensional (1D) gradient corrections
are not bounded from below, and vanishing corrections (to
all orders of �) are reported for two dimensions [18–20,36];
that is, the employed methods are inappropriate for low-
dimensional systems. In contrast, the gradient corrections
in three dimensions are consistently derived with various
methods and exhibit no obvious shortcomings [15–20]. We
therefore limit our discussion of gradient corrections to the
three-dimensional (3D) case.

The potential energy of the two fermion species in their
respective external potentials V±(r) is

Epot =
∫

(dr) (V+ n+ + V− n−), (3)

and the repulsive contact interaction energy is

Eint = g

∫
(dr) n+ n− (4)

with interaction strength g � 0, related to the s-wave scattering
length as through g = 4π as�

2/m. Hence, we choose the total
energy functional

Eξ [n+,n−,μ+,μ−]

= Tξ + Epot + Eint +
∑
j=±

μj

(
Nj −

∫
(dr) nj

)
(5)

for unrestricted minimization over n±(r) and μ± in the
spirit of density functional theory. The conservation of the
particle numbers N+ and N− is enforced through the Lagrange
multipliers μ+ and μ−, i.e., the chemical potentials of the two
fermion species. If one set ξ = 0 in (5), one would obtain the
TF approximation of Ekin. In the limit g → 0 the energy, (5),
reduces to that of two independent Fermi gases.

The contact interaction term, (4), is obtained from second
quantization, where the part of the Hamiltonian responsible
for two-body interactions is written in the form

Vint = 1

2

∑
i,j=±

∫
(dr)(dr ′)

{
ψ̂

†
i (r)ψ̂†

j (r ′)V ij
int(r,r ′)ψ̂j (r ′)ψ̂i(r)

}
,

(6)

with the two-body interaction potential

V
ij

int(r,r ′) = g δ(r − r ′) (1 − δij ). (7)

The summation in (6) yields

Vint = 1

2
g

∫
(dr) ψ̂

†
+(r)ψ̂†

−(r)ψ̂−(r)ψ̂+(r)

+ 1

2
g

∫
(dr) ψ̂

†
−(r)ψ̂†

+(r)ψ̂+(r)ψ̂−(r). (8)

Introducing the density operators n̂±(r) = ψ̂
†
±(r)ψ̂±(r) and

assuming that both components are highly occupied (which
allows us to replace the density operators with real functions),
one eventually obtains

Vint = g

∫
(dr) n+n−, (9)

as displayed in (4). What is left out in (9) can be seen by
calculating the average of the product of the four field operators
that appear under the integrals in (8). For an ideal gas, based
on Wick’s theorem, we have

〈ψ̂†
+ψ̂

†
−ψ̂−ψ̂+〉 = 〈ψ̂†

+ψ̂+〉〈ψ̂†
−ψ̂−〉 − 〈ψ̂†

+ψ̂−〉〈ψ̂†
−ψ̂+〉

+ 〈ψ̂†
+ψ̂

†
−〉〈ψ̂−ψ̂+〉 (10)

for both integrands. The third term on the right-hand side
of (10) vanishes since the total number of atoms is preserved.
Now, it is clear that (9) differs from (8) by terms like the
second one on the right-hand side of (10): terms which describe
the intercomponent correlations. Obviously, they vanish in the
limit of an ideal gas. We neglect these terms throughout this
work and employ g as a free parameter.

The global minimum of the approximate energy func-
tional (5) is attained by approximate ground-state densities.
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A standard approach to finding n± is to solve the variational
equations obtained from the stationarity condition δEξ = 0. In
three dimensions, functional differentiation of (5) with respect
to the particle densities n± leads to

5

3
c3 n

2/3
± − ξ

�
2

2m

∇2√n±√
n±

+ V± − μ± + g n∓ = 0. (11)

Commonly, the gradient corrections are omitted and the
resulting TF energy functional is minimized to get a first
approximation of the fermionic clouds. To estimate the quality
of the TF approximation, one has to go beyond the TF
equations. But including the gradient corrections in (11), we
face coupled partial differential equations in three dimensions
that are tedious to solve in anisotropic situations. Differentiable
densities are included at the level of the energy functional via
gradient corrections, which turn out to be necessary to obtain
viable ground-state densities even qualitatively and for large
particle numbers.

III. THOMAS-FERMI EQUATIONS

Omitting gradient corrections (ξ = 0) and employing the
same external potential V± = V for both fermion species, we
obtain the algebraic TF equations

An
2/D
± + g n∓ = μ± − V (12)

from the variation of (5), where A = cD(D + 2)/D. The TF
equations have been addressed and used in several publi-
cations [29–34]. Discontinuous density profiles are reported
in [29], [30], and [32]. In the TF approximation the kinetic
energy does not include density gradients. Discontinuities
in the density profiles are permitted within this (local)
approximation and come with no cost in terms of kinetic
energy. Although this property is unphysical and significant
deviations from the true particle densities can be expected,
the TF approximation can, and indeed does, prove valuable
in selected parameter regimes. In the following we therefore
discuss the main properties of the solutions of (12) in the
context of this work and illustrate their shortcomings with
concrete examples. We also want to stress that the TF equations
imply a diagram of phase separations similar to Fig. 5. More
details are provided in the Appendix.

The TF density profiles are ambiguous in two ways. They do
not need to be continuous, since solutions of (12) at different
positions r are decoupled. Consequently, the decoupling of
directions makes the identification of anisotropic separations
of n+ and n− ambiguous. Furthermore, there can be several
pairs {n+(r),n−(r)} of solutions for a given r . This potentially
leaves us with a myriad of density profiles that can be very close
in energy. Since the TF energies are generally only accurate
at the percentage level, the identification of the ground-state
densities is not straightforward.

One option for dealing with these ambiguities is to restrict
the TF solutions to those that are continuous, although, strictly
speaking, this condition is not justified for the (spatially
decoupled) solutions of (12). Furthermore, for the first estimate
of the particle densities it can be sufficient to consider
μ+ = μ− like in [32]. Then there are analytical solutions
of (12) in all dimensions. In particular, we find symmetric
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FIG. 1. Illustration of the generic structure of radial densities
n±(r), depicted along the x axis (y = z = 0), for μ± = μ and
N± = 5000 particles in three dimensions. All quantities are given
in harmonic oscillator units (osc). We disregard continuity, use
the radial densities for x > 0, and swap the roles of n± for
x < 0. The displayed anisotropic separated density profile has
the same energy as the isotropic separated density profile. But
it has a marginally lower energy than the symmetric solution,
E0,sep = 287 915 < E0,symm = 288 487. The radius r0 at which both
densities n± vanish is given by V (r0) = μ. The radius r1 where the
separated solutions merge with the symmetric solutions is given in
the Appendix.

solutions n+(r) = n−(r) for all r . In Fig. 1 we depict the
generic radial density profiles obtained from (12) in the 3D
isotropic potential V (r) = 1

2 r2 for a repulsion strength g that
allows for (partial) separation of the two Fermi components.
The identical chemical potentials allow us to swap the roles of
n+(r) and n−(r) at any r if we do not impose continuity
of the densities. Continuity would imply N+ �= N− (cf.
Fig. 10 in the Appendix), where the TF solutions for the
employed parameters are shown to be consistent with the more
sophisticated approach that includes gradient corrections.

In general, the TF densities are obtained numerically for
any particle numbers and for μ+ �= μ− (see [29] for an
early account). The unequal chemical potentials amount to an
additional degree of freedom, thus making the determination of
ground-state density profiles even more difficult. In summary,
realistic densities are not readily obtainable from (12) since
we cannot get rid of the aforementioned ambiguities within
the realm of the TF equations. An approach that enforces
continuity is called for, and a natural way is to include density
gradients.

IV. QUANTUM HYDRODYNAMICS
WITH GRADIENT CORRECTIONS

One possibility for tackling interacting quantum many-
body problems is based on the hydrodynamical form of the
Schrödinger equation, first introduced by Madelung [37]. We
use the inverse Madelung transformation to derive a nonlinear
pseudo-Schrödinger equation for our many-fermion system,
whose ground-state candidates are then obtained by ITE. This
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approach quite naturally implies the variational equations (11)
with and without gradient corrections of the kinetic energy
functional but circumvents their technically tedious direct
solving. Most importantly, it offers the advantage of going
beyond the TF equations by enforcing differentiability of the
particle densities, while gradient corrections can be included
simply by specifying ξ in (2). This enables us to study
the impact and importance of the gradient corrections both
qualitatively and quantitatively.

Introducing the pseudo–wave function,

ψ =
(

ψ+
ψ−

)
=

(√
n+ ei m

�
χ+

√
n− ei m

�
χ−

)
, (13)

we derive the Euler-Lagrange equations for the four fields n±
and χ± from the Hamiltonian

H = Ttot +
∫

(dr){V+ n+ + V− n− + g n+n−}. (14)

Here, n+ + n− = ψ†ψ is the total one-particle density, and
∇χ± = v± are the velocity fields of the collective motion
of the flows n±. We want to stress that ψ is not a wave
function, but merely a mean field that combines the densities
and velocity fields of the two fermion species. The spin
dependence of the external potentials V± enables us to break
the spherical symmetry of isotropic potentials and study the
stability of our numerical solutions in the limit V+ = V−. The
total kinetic energy Ttot[n±,χ±] = T + Tc in (14) is composed
of the intrinsic kinetic energy T and the kinetic energy of the
collective motion of the fermions, Tc = ∑

j=±
∫

(dr)m
2 nj v2

j .

With the functional derivatives δTc
δn±

= m
2 v2

± the four Euler-
Lagrange equations read

∂tn± = −∇(n± v±),

m∂tv± = −∇
(

δT

δn±
+ m

2
v2

± + V± + g n∓

)
.

(15)

The hydrodynamical equations, (15), are formally identical
to Madelung’s equations and generally describe fermions in
motion. In the following we assume rotation-free velocity
fields v± = ∇χ±. This condition is in particular fulfilled for
stationary ground states, which obey v± = 0.

The inverse Madelung transformation amounts to explicitly
recasting the time evolution i�∂tψ± of the (pseudo-)wave
function, (13), in terms of the time derivatives of the densities
and phases from (15). For our many-body system we have to
employ an approximation for the density functional T if we
want to evaluate (15) numerically. Natural choices are the TF
approximation (1) with or without its corrections (2). For three
dimensions we get

δT

δn±
≈ An

2/3
± − ξ

�
2

2m

∇2√n±√
n±

(16)

and obtain the pseudo-Schrödinger equation

i�∂tψ± ≈
[
− �

2

2m
∇2 + �

2

2m
(1 − ξ )

∇2|ψ±|
|ψ±|

+ A |ψ±|4/3 + V± + g|ψ∓|2
]
ψ±. (17)

The gradient corrections that reach beyond the usual TF
approximation are naturally included in the hydrodynamical
approach via the dimensionless parameter ξ and leave (17)
structurally unchanged. In the following we argue that the
hydrodynamical approach goes beyond the TF equations even
when explicit gradient corrections are omitted.

The variational equations (11) for the stationary ground
state are recovered from the hydrodynamical equations (15)
by noting that ∂tn± = 0 and v± = 0: The two expressions
δT
δn±

+ V± + g n∓ in (15) then equal some constants which we
may identify with the chemical potentials μ±. This does not
mean, however, that Madelung’s differential equations, (15),
for ξ = 0 are equivalent to the TF equations, (12), where
gradient corrections are omitted as well. The crucial difference
between the TF solutions and the densities from (15) for ξ = 0
is differentiability—which is lost in going from (15) to (12).
Hence, even for ξ = 0 we cannot expect the same solutions
from (15) and (12). Retaining differentiability means, at the
level of the energy functional and the variational equations,
that gradient corrections have to be taken into account. In the
remainder of this work we present stationary solutions of (17),
i.e., candidates for the ground state of our many-body problem,
obtained from the well-known ITE method.

V. RESULTS OF IMAGINARY-TIME EVOLUTION

The replacement t → −iτ in the time evolution of the linear
Schrödinger equation enforces exponential decay of energy
eigenstates with increasing real τ . Then the relative contribu-
tion from a nondegenerate ground state decays the slowest,
such that an approximate ground state is obtained for a long
enough evolution time. Although the solutions of the nonlinear
equation, (17), do not represent actual wave functions, (17) is
reminiscent of a (generalized) Gross-Pitaevskii equation, for
which ITE has a very good track record (see [38–41] for some
examples). In particular, the energy-diminishing property of
ITE has been established rigorously, such that ITE converges to
local energy minima [42]. Also, multicomponent systems with
coupled nonlinearities have been studied successfully [41].

The evolution of the pseudo–wave function towards sta-
tionarity can require a long propagation in imaginary time.
Depending on the choice of the initial state, ITE can
yield various stationary states that differ in energy only by
small amounts, and deciding which is a better candidate
for the ground-state density is therefore not straightforward.
One possibility for such ambiguities is metastability, which
may then also be observed in the laboratory. To obtain
unambiguous stationary densities we employ initial Gaussian
states that are dressed with position-dependent noise in the
amplitude, mean, and width. Furthermore, we use slightly
different external potentials for the two fermion components,
V±(r) = V (r) ∓ F · r , with the constant vector F not pointing
along any symmetry axis of the numerical grid. From here
onwards we use |F| = 10−6, which should be well within the
experimental noise of a realistically applied potential V (r).
The density profiles are essentially unchanged for different
but small enough |F|, indicating a stable numerical solution
with respect to small changes of the potential.

Our main results are presented in the following. In Sec. V A
we encounter two types of separations and present the
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corresponding phase diagram of interaction strength versus
particle number. We address the quantitative and qualitative
importance of the gradient corrections in Sec. V B. In Sec. V C
we turn to more complex potentials by adding tunneling
barriers in the center of the harmonic trap.

A. Phase transitions

In this section we present our results for phase transi-
tions which occur as the repulsion between the two Fermi
components in a harmonic oscillator potential V (r) = r2/2
is increased. We find a sharp phase transition from symmetric
density profiles [n+(r) = n−(r) for all r] to a partial separation
of the two fermion species once a critical interaction strength
is exceeded. Increasing the repulsion further, we find a second
phase transition from the spherically symmetric separation
towards an anisotropic split, such that the two species almost
completely separate for large g. A phase transition from
symmetric to isotropically separated densities [n+(r) �= n−(r)
for some r] is observed at the critical interaction strength
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FIG. 2. Two phase transitions for the particle densities n± with
N± = 5000 in a harmonic trap are revealed as the repulsion strength
g increases. (a) The transition from nonseparated densities towards
isotropic separation occurs at gis, with 2.93 < gis < 2.94. (b) The
transition from isotropic towards anisotropic separation occurs at gas,
with 3.03 < gas < 3.04.

gis = gis(N+ = N−) [see Fig. 2(a)]. One component is par-
tially depleted in the center of the harmonic trap and pushed
outwards, while still retaining spherical symmetry. With in-
creasing g the isotropic separation becomes more pronounced
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FIG. 3. Densities for N± = 160 in a harmonic trap for various
values of g, illustrating the two phase transitions (cf. Fig. 2).
(a, b) A transition from isotropic to anisotropic separation into
two “semispheres” is encountered between g = 5.85 and g = 5.9,
indicating spontaneous symmetry breaking as soon as the depletion
of one component in the center is total. (c) With g well beyond the
second phase transition, we gain a quasicomplete separation of the
two Fermi gas clouds.
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FIG. 4. Contour plots of the normalized densities
n̂±(r) = n̂±(r)/maxrn±(r) (red/blue) in the (z = 0) plane for
N± = 160 and g = 5.9, with the color gradient from white
[n̂±(r) < 0.01] to the darkest color [n̂±(r) > 0.93]. The density
profiles along the x axis are displayed in Fig. 3(b).

and a transition towards an anisotropic splitting of the two
fermion species is observed for g > gas = gas(N+ = N−), as
illustrated in Figs. 2(b) and 3. For even greater repulsion,
the densities tend to repel each other more strongly, until no
appreciable overlap is found.

Figure 4 shows representative contour plots of n± in the
(z = 0) plane for an isotropic harmonic trap. The numerics
yields a state with spontaneously broken symmetry, a splitting
into two semispheres. Of course, the direction of the splitting
for isotropic harmonic confinement may occur in any spatial
direction. In contrast, anisotropies enforce a specific axis of
separation. For example, the interface between n+ and n− lies
in the (z = 0) plane if an elongated harmonic trap with the
lowest frequency in the z direction is employed. In general,
our numerical data suggest that a minimal interface between
the two Fermi components is energetically preferred.

The dependences of the critical interaction strengths gis

and gas on the particle numbers N± are illustrated by the phase
diagram in Fig. 5. For all particle numbers considered we find
a transition from the symmetric phase to isotropic separation
and from isotropic to anisotropic separation. While both gis

and gas decrease for increasing N±, the range of g that allows
for an isotropic separation shrinks [43]. We observe similar
phase transitions for various trap geometries. In the following
section we investigate the qualitative and quantitative impact
of the gradient corrections on the density profiles.

B. Importance of gradient corrections

One main result of this work is the necessity to go
beyond the TF approximation to obtain viable stationary states
even qualitatively. For ξ = 0 the magnitude of the gradient
corrections, (2), vanishes. However, differentiability is still
retained within the formalism of ITE—as opposed to the TF
equations, which correspond to ξ = 0 as well but do not lead
to differentiable densities. For interaction strengths near the
two phase transitions discussed in Sec. V A we calculate the
densities for ξ = 0 and compare them with the case of ξ = 1/9.
We find that gradient corrections can actually be relatively
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FIG. 5. Phase diagram of critical repulsion strengths gis and gas

as functions of the particle numbers N+ = N− for the harmonic
oscillator potential V = r2/2.

large and are therefore relevant for a quantitative analysis of the
particle densities. Although the TF density can be reasonably
accurate for selected parameters (cf. Fig. 10), we argue that a
systematic inclusion of differentiability is generally required.

At the example of N± = 160 and for g close to gis,
we demonstrate in Fig. 6 that gradient corrections have to
be considered quantitatively important for the computation
of density profiles. For N± = 5000 the effects of gradient
corrections are even more pronounced. Figures 7 and 8 show
density profiles for g close to gis and gas, respectively. The
densities shown in Fig. 7 are obtained by employing the
analytical TF solutions discussed in the Appendix and by using
ITE with ξ = 0, respectively. Although the global features are
similar, the TF densities differ significantly in spatial regions
where separations of n+ and n− appear, as opposed to the
results of ITE(ξ = 0) shown in Fig. 10. Figure 8 demonstrates
that explicit gradient corrections have a qualitative impact
on the density profiles even within the ITE method since

0

0.5

1

1.5

−4 −2 0 2 4

n
(r

i)
[in

ha
rm

on
ic

os
c.

un
it

s]

ri [in harmonic osc. units]

ng=5.4,ξ=0
+

ng=5.4,ξ=0
−

ng=5.4
+

ng=5.4
−

FIG. 6. Densities for N± = 160 in the harmonic oscillator poten-
tial V = r2/2 for g = 5.4 near the phase transition from symmetric
profiles to isotropic separation.
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FIG. 7. Densities for N± = 5000 fermions in the harmonic
oscillator potential V = r2/2. Both the TF solutions (with μ+ = μ−)
and the densities obtained from ITE show an isotropic separation in
the trap center for g = 2.94 (top), whereas an anisotropic separation
for g = 3.04 is only obtained by ITE, unless we disregard continuity
for the TF solutions (bottom).

the result of ITE with ξ = 0 exhibits significant qualitative
differences from ITE(ξ = 1/9). This suggests that not only
the differentiability, that is, gradients of the densities, but
also the magnitudes of the gradient corrections are relevant
for the qualitative features of the density profiles. In the
next section we investigate barrier potentials, which may be
regarded as prototypes of external potentials that are used in
recent experiments like that in [4].

C. Density profiles for barrier potentials

For an isotropic Gaussian potential at the center of the
harmonic trap, i.e., V (r) = 0.5 r2 + ν × exp (−20 r2), where
ν = 300, we again find a phase transition from symmetric
to spherically separated densities. The densities arrange
spherically around the central Gaussian, which is about a
factor of 6 higher than the chemical potentials. For g between
3.05 and 3.1 we encounter the phase transition towards
anisotropic separation, similar to the separations illustrated in
Figs. 3(b) and 4.
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FIG. 8. Densities for N± = 5000 from ITE with (ξ = 1/9) and
without (ξ = 0) explicit gradient corrections. We observe isotropic
separation for g = 2.94 (top) and anisotropic separation for g = 3.04
(bottom).

We test the ability of the ITE method to deal with
tunneling processes that are, in principle, included in our
description through gradient corrections by adding a barrier
in the x direction instead of an isotropic Gaussian potential,
i.e., V (r) = 0.5 r2 + ν × exp (−20 x2). In this situation of
two classically separated wells we find that the symmetry-
breaking barrier at x = 0 drives the fermion clouds from a
symmetric state [n+(r) = n−(r)] directly into an anisotropic
separation [n+(x) �= n−(x),n+(y) = n−(y),n+(z) = n−(z)] as
g increases (e.g., from g = 2.91 to g = 2.92 for N± = 5000
and ν = 300). Virtually the same profiles are obtained for
N± = 5000 ± 0.01 and N± = 5000 ± 1. Of course, in the
latter two cases the densities of the differently occupied
components do not coincide entirely even for g = 2.91. The
excess of N+ shows up symmetrically on both half axes in the
x direction.

Our results for a lowered barrier are displayed in Fig. 9,
where we choose ν = 60 and find a transition from symmetric
profiles to anisotropic separation in the x direction if g is
increased from g1 = 2.92 to g2 = 2.93. As in the case of
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FIG. 9. Employing a barrier at x = 0 that marginally exceeds the
chemical potentials, we observe a direct transition from a symmetric
state to an anisotropic separation—very similar to the case of a higher
barrier—between g1 = 2.92 and g1 = 2.93.

ν = 300 the profiles in the y and z directions are virtually
the same for g1 and g2.

VI. CONCLUSIONS AND PERSPECTIVES

In this article we have discussed the importance of gradient
corrections for an adequate description of two-component
Fermi gases with repulsive contact interaction and focused
on possible separations of the two fermion species. We
have demonstrated that gradient corrections beyond the TF
approximation are crucial even for the qualitative features
of the ground-state particle densities. We have obtained
candidates for ground-state densities in three dimensions via
ITE of a pseudo-Schrödinger equation that we derived with the
aid of an inverse Madelung transformation. Since the gradient
corrections enter this hydrodynamical formulation naturally in
terms of a single parameter, we were able to study the impact
of the gradient corrections both qualitatively and quantitatively
within the same approach.

Our numerical results for particle numbers up to 10 000
revealed two phase transitions. While the densities of the
two fermion species are the same and constitute a symmetric
phase for a small repulsion g, they start to separate once a
critical interaction strength is exceeded. For isotropic harmonic
confinement one of the Fermi components is isotropically
repelled from the trap center. For even larger g we found
a second phase transition towards an anisotropic separation
into two semispheres, such that no appreciable overlap of the
two components remains for very large g. We established our
method in view of experiments on ultracold Fermi gases, for
which more complex trapping potentials have to be considered.
For example, adding a symmetry-breaking tunneling barrier
in the trap center, we found the anisotropic phase to emerge
directly from the symmetric phase as g is increased beyond
a critical value. The results shown in this work suggest that
ITE of the pseudo-Schrödinger equation, (17), is a viable tool
for obtaining gradient-corrected candidates of ground-state

densities for contact-interacting two-component Fermi gases
in any realistic (bounded) external potential.

The formalism developed here allows us to use the ground-
state pseudo–wave functions as approximate ground states and
to study the dynamics simply by switching from imaginary-
to real-time evolution of the pseudo-Schrödinger equation.
Further directions of investigation are certainly experimen-
tally valuable extensions like the inclusion of dipole-dipole
interactions. It would also be interesting to use the formalism
developed in this work for low-dimensional systems, which
are numerically more tractable than the 3D case, as soon as
the corresponding gradient corrections of the kinetic energy
functional are available.
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APPENDIX: THOMAS-FERMI DENSITIES

In this Appendix we discuss some properties of the TF
equations, (12), whose solutions represent local extrema
of E0[n+,n−,μ+,μ−]; see (5). In the noninteracting case
(g = 0) the two TF equations decouple, and their physi-
cally valid solutions are the nonnegative particle densities
n± = [(μ± − V )/A]D/2

�(μ± − V ). The solutions of (12)
are restricted to the classically allowed regions given by
μ± − V > 0. The Heaviside step function �(·) enforces ni =
0 wherever the solution of the TF equation δE0

δni (r) = 0 does not
yield a nonnegative value ni . We may call this density for all
space the TF density nTF(r).

In contrast to the TF energy functional E0, whose support in
the function space may include vanishing densities, the support
of the TF equations is restricted to n± > 0 (for any g) because
variations ni(r) − |δni(r)| [being negative if ni(r) = 0] of
E0 are not permissible, such that the TF equation for the
component ni is not valid at r in the first place [44]. Whether
or not either of the TF equations is valid at a given position
has to be decided for each r independently. If both Eqs. (12)
are valid at some r , they may be solved self-consistently for
n±(r). If, however, one component ni(r) becomes 0 at some
r (i.e., at the quantum classical boundary for component i) or
complex, a variation of E0 with respect to ni(r) would require
leaving the support of E0. In this case, only δE0

δnj (r) = 0 (j �= i)
may be used to determine nj (r), which then corresponds to
the value nj (r) of the noninteracting solution since ni(r) = 0.

In general, Eqs. (12) yield a myriad of possible density
profiles since the TF equations at different positions r are
decoupled and can be combined in many different ways.
Since we cannot get rid of this ambiguity, we have introduced
gradient corrections to find ground-state candidates in Sec. IV.
However, it turns out in retrospect that the TF equations, when
restricted to continuous densities, actually predict reasonable
density profiles for selected parameters, similarly to the more
sophisticated approach of ITE (see Fig. 10). For smooth
isotropic potentials V = V (r) that are strictly monotonously
increasing in the radial variable r = |r|, μ+ = μ−, and
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FIG. 10. Isotropic densities for N+ + N− = 320 in the harmonic
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corrections) is employed with N± = 160 for g = 5.4. Disregarding
the deviating particle numbers NTF

± = 160 ± 7, we find that the TF
approximation works reasonably well at the qualitative level.

g > 0 we obtain analytical solutions in all dimensions by
investigating the sum and difference of the TF equations.
However, we show that it is, in general, impossible to obtain the
global minimum of E0[n+,n−,μ+,μ−] from these restricted
TF equations.

Unless g is unrealistically fine-tuned to A, we obtain the
solutions of (12) in two dimensions,

n+ = n− = μ − V

A + g
�(μ − V ), (A1)

which enforces N+ = N− and provides no separations.
With ρ3

± = n± we find for three dimensions

ρ2
+ + ρ2

− = [2(μ − V ) − g(ρ3
+ + ρ3

−)]/A (A2)

and

(ρ+ − ρ−)[ρ+ + ρ− − g(ρ2
+ + ρ2

− + ρ+ρ−)/A] = 0, (A3)

where (A3) implies either a symmetric (ρ± = ρ) or a separated
(ρ+ �= ρ−) solution. The symmetric solution is disjunct from
the separated solution in the sense that they cannot hold simul-
taneously in any finite spatial interval since this would require
a constant ρ3, i.e., a constant V . Since g, A, and μ − V are
positive, there is always exactly one physically valid symmet-
ric solution, obtained from (A2), namely, the (only) nonneg-
ative real root of ρ3 + A/g ρ2 − (μ − V )/g = 0. With (A2)
and (A3), we find the separated solutions from y = x(x − a)
and P (x) = 0, where x = ρ+ + ρ−, y = ρ+ρ−, a = A/g,
and P (x) = x3 − a x2 − a2x + a2 g(μ − V )/A2. From y > 0
we immediately see that x /∈ (0,a); i.e., the symmetric solution
is always part of the entire density profile near r0, where x = 0.
There is always exactly one positive root xP of P (x) with
xP � a. Thus,

n± =
[
xP

2

(
1 ±

√
4a

xP

− 3

)]3

�(μ − V ). (A4)

The generic structure of the TF solutions in one dimension
is similar to the 3D case (cf. Fig. 1):

n = −g

2A

(
1 −

√
4A

g2
(μ − V ) + 1

)
�(μ − V ), (A5)

n± = g

2A

(
1 ±

√
4A

g2
(μ − V ) − 3

)
�(μ − V ). (A6)

Separated solutions are obtained in one dimension if and
only if

√
Aμ < g <

√
4Aμ/3. The according interval in

three dimensions,
√

20A3/(27μ) < g <
√

A3/μ, shrinks with
increasing μ, that is, with increasing N . This observation
is reminiscent of the phase of isotropic separation depicted
in Fig. 5. Furthermore, there is only a single point where
the separated solution merges with the symmetric solution,
determined by V (r1) = μ − 3g2/(4A) in one dimension and
V (r1) = μ − 20A3/(27g2) in three dimensions. We therefore
conclude that N+ = N− ⇔ n+ = n− from the TF equations
in any dimension for a monotonously increasing isotropic
potential if μ+ = μ−, provided that we demand continuous
densities. Moreover, there are restrictions on the ratio N+/N−
and the range of interaction strengths g for which separated
solutions exist.

These findings are certainly counter-intuitive, and results
from these continuous densities should be considered with
caution. Indeed, with these restrictions the TF equations
generally cannot yield the ground-state densities. For a large
enough repulsion g, completely separated densities of the
two fermion species in general give lower energies than
the symmetric solutions from (12). This can be proven

1

1.1

1.2

1.3

1.4

0 1 2 3 4 5 6 7
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0
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FIG. 11. Normalized total TF energies Ê0[n±] = E0[n±; g]/
E0[n±; g = 0] of symmetric solutions n+ = n− in three dimensions
as a function of the interaction strength g for several N± (colored solid
lines). The intersection with the constant value Ê0[ñ±] (horizontal
dash-dotted black line), obtained from the completely separated
densities ñ± = n±(2N±)�(±x), serves as an estimate of the critical
strengths gTF(N±) above which symmetric solutions of the TF
equations cannot represent the ground state.
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straightforwardly for the 2D harmonic oscillator. An analogous
numerical calculation for three dimensions is illustrated in
Fig. 11. We find gTF ≈ 6.5 (3.6) for N± = 160 (5 × 103).

In Sec. V A we observed the onset of separations of the
gradient-corrected fermion clouds at similar values of g (cf.
Figs. 2 and 3).
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043603 (2004).
[28] S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer, Phys. Rev.

Lett. 105, 030405 (2010).
[29] L. Salasnich, B. Pozzi, A. Parola, and L. Reatto, J. Phys. B: At.

Mol. Opt. Phys. 33, 3943 (2000).
[30] M. Amoruso, I. Meccoli, A. Minguzzi, and M. Tosi, Eur. Phys.

J. D 8, 361 (2000).
[31] T. Sogo and H. Yabu, Phys. Rev. A 66, 043611 (2002).
[32] J. Xu and Q. Gu, Europhys. Lett. 94, 60001 (2011).
[33] Z. Sun, Eur. Phys. J. D 68, 157 (2014).
[34] L. J. LeBlanc, J. H. Thywissen, A. A. Burkov, and A.

Paramekanti, Phys. Rev. A 80, 013607 (2009).
[35] G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979).
[36] A. Putaja, E. Räsänen, R. van Leeuwen, J. G. Vilhena, and M.

A. L. Marques, Phys. Rev. B 85, 165101 (2012).
[37] E. Madelung, Z. Phys. 40, 322 (1927).
[38] P. Amara, D. Hsu, and J. E. Straub, J. Phys. Chem. 97, 6715

(1993).
[39] M. L. Chiofalo, S. Succi, and M. P. Tosi, Phys. Rev. E 62, 7438

(2000).
[40] D. Baye and J.-M. Sparenberg, Phys. Rev. E 82, 056701 (2010).
[41] X. Antoine and R. Duboscq, Comput. Phys. Commun. 185, 2969

(2014).
[42] W. Bao and Q. Du, SIAM J. Sci. Comput. 25, 1674 (2004).
[43] Although the ITE method is generally not restricted by the

number of particles N±, the available computing resources limit
an efficient investigation for such large N±. Our numerical
data for N± = 500 000 indicate that the trend of the critical
interaction strengths as functions of N± displayed in Fig. 5
continues beyond the particle numbers shown.

[44] Following the same argumentation, we exclude complex varia-
tions since all test densities have to integrate to a real particle
number.

023612-10

http://dx.doi.org/10.1103/PhysRevLett.88.040405
http://dx.doi.org/10.1103/PhysRevLett.88.040405
http://dx.doi.org/10.1103/PhysRevLett.88.040405
http://dx.doi.org/10.1103/PhysRevLett.88.040405
http://dx.doi.org/10.1103/PhysRevLett.101.150401
http://dx.doi.org/10.1103/PhysRevLett.101.150401
http://dx.doi.org/10.1103/PhysRevLett.101.150401
http://dx.doi.org/10.1103/PhysRevLett.101.150401
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1126/science.1177112
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1103/PhysRevLett.108.240404
http://dx.doi.org/10.1103/PhysRevLett.108.240404
http://dx.doi.org/10.1103/PhysRevLett.108.240404
http://dx.doi.org/10.1103/PhysRevLett.108.240404
http://dx.doi.org/10.1103/PhysRevA.70.033612
http://dx.doi.org/10.1103/PhysRevA.70.033612
http://dx.doi.org/10.1103/PhysRevA.70.033612
http://dx.doi.org/10.1103/PhysRevA.70.033612
http://dx.doi.org/10.1103/PhysRevA.72.011603
http://dx.doi.org/10.1103/PhysRevA.72.011603
http://dx.doi.org/10.1103/PhysRevA.72.011603
http://dx.doi.org/10.1103/PhysRevA.72.011603
http://dx.doi.org/10.1103/PhysRevLett.95.230403
http://dx.doi.org/10.1103/PhysRevLett.95.230403
http://dx.doi.org/10.1103/PhysRevLett.95.230403
http://dx.doi.org/10.1103/PhysRevLett.95.230403
http://dx.doi.org/10.1103/PhysRevLett.103.200403
http://dx.doi.org/10.1103/PhysRevLett.103.200403
http://dx.doi.org/10.1103/PhysRevLett.103.200403
http://dx.doi.org/10.1103/PhysRevLett.103.200403
http://arxiv.org/abs/arXiv:1308.1961v1
http://dx.doi.org/10.1103/PhysRevA.84.063622
http://dx.doi.org/10.1103/PhysRevA.84.063622
http://dx.doi.org/10.1103/PhysRevA.84.063622
http://dx.doi.org/10.1103/PhysRevA.84.063622
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1017/S0305004100011683
http://dx.doi.org/10.1139/p73-189
http://dx.doi.org/10.1139/p73-189
http://dx.doi.org/10.1139/p73-189
http://dx.doi.org/10.1139/p73-189
http://dx.doi.org/10.1103/PhysRevA.24.1682
http://dx.doi.org/10.1103/PhysRevA.24.1682
http://dx.doi.org/10.1103/PhysRevA.24.1682
http://dx.doi.org/10.1103/PhysRevA.24.1682
http://dx.doi.org/10.1088/0305-4470/24/18/013
http://dx.doi.org/10.1088/0305-4470/24/18/013
http://dx.doi.org/10.1088/0305-4470/24/18/013
http://dx.doi.org/10.1088/0305-4470/24/18/013
http://dx.doi.org/10.1088/1751-8113/40/33/004
http://dx.doi.org/10.1088/1751-8113/40/33/004
http://dx.doi.org/10.1088/1751-8113/40/33/004
http://dx.doi.org/10.1088/1751-8113/40/33/004
http://dx.doi.org/10.1103/PhysRevB.76.195103
http://dx.doi.org/10.1103/PhysRevB.76.195103
http://dx.doi.org/10.1103/PhysRevB.76.195103
http://dx.doi.org/10.1103/PhysRevB.76.195103
http://dx.doi.org/10.1103/PhysRevA.78.053626
http://dx.doi.org/10.1103/PhysRevA.78.053626
http://dx.doi.org/10.1103/PhysRevA.78.053626
http://dx.doi.org/10.1103/PhysRevA.78.053626
http://dx.doi.org/10.1103/PhysRevA.82.063609
http://dx.doi.org/10.1103/PhysRevA.82.063609
http://dx.doi.org/10.1103/PhysRevA.82.063609
http://dx.doi.org/10.1103/PhysRevA.82.063609
http://dx.doi.org/10.1103/PhysRevA.87.043603
http://dx.doi.org/10.1103/PhysRevA.87.043603
http://dx.doi.org/10.1103/PhysRevA.87.043603
http://dx.doi.org/10.1103/PhysRevA.87.043603
http://dx.doi.org/10.1103/PhysRevA.67.025601
http://dx.doi.org/10.1103/PhysRevA.67.025601
http://dx.doi.org/10.1103/PhysRevA.67.025601
http://dx.doi.org/10.1103/PhysRevA.67.025601
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.83.052517
http://dx.doi.org/10.1103/PhysRevA.88.043604
http://dx.doi.org/10.1103/PhysRevA.88.043604
http://dx.doi.org/10.1103/PhysRevA.88.043604
http://dx.doi.org/10.1103/PhysRevA.88.043604
http://dx.doi.org/10.1103/PhysRevA.69.043603
http://dx.doi.org/10.1103/PhysRevA.69.043603
http://dx.doi.org/10.1103/PhysRevA.69.043603
http://dx.doi.org/10.1103/PhysRevA.69.043603
http://dx.doi.org/10.1103/PhysRevLett.105.030405
http://dx.doi.org/10.1103/PhysRevLett.105.030405
http://dx.doi.org/10.1103/PhysRevLett.105.030405
http://dx.doi.org/10.1103/PhysRevLett.105.030405
http://dx.doi.org/10.1088/0953-4075/33/19/309
http://dx.doi.org/10.1088/0953-4075/33/19/309
http://dx.doi.org/10.1088/0953-4075/33/19/309
http://dx.doi.org/10.1088/0953-4075/33/19/309
http://dx.doi.org/10.1007/s10050-000-4510-1
http://dx.doi.org/10.1007/s10050-000-4510-1
http://dx.doi.org/10.1007/s10050-000-4510-1
http://dx.doi.org/10.1007/s10050-000-4510-1
http://dx.doi.org/10.1103/PhysRevA.66.043611
http://dx.doi.org/10.1103/PhysRevA.66.043611
http://dx.doi.org/10.1103/PhysRevA.66.043611
http://dx.doi.org/10.1103/PhysRevA.66.043611
http://dx.doi.org/10.1209/0295-5075/94/60001
http://dx.doi.org/10.1209/0295-5075/94/60001
http://dx.doi.org/10.1209/0295-5075/94/60001
http://dx.doi.org/10.1209/0295-5075/94/60001
http://dx.doi.org/10.1140/epjd/e2014-40840-1
http://dx.doi.org/10.1140/epjd/e2014-40840-1
http://dx.doi.org/10.1140/epjd/e2014-40840-1
http://dx.doi.org/10.1140/epjd/e2014-40840-1
http://dx.doi.org/10.1103/PhysRevA.80.013607
http://dx.doi.org/10.1103/PhysRevA.80.013607
http://dx.doi.org/10.1103/PhysRevA.80.013607
http://dx.doi.org/10.1103/PhysRevA.80.013607
http://dx.doi.org/10.1103/PhysRevA.20.397
http://dx.doi.org/10.1103/PhysRevA.20.397
http://dx.doi.org/10.1103/PhysRevA.20.397
http://dx.doi.org/10.1103/PhysRevA.20.397
http://dx.doi.org/10.1103/PhysRevB.85.165101
http://dx.doi.org/10.1103/PhysRevB.85.165101
http://dx.doi.org/10.1103/PhysRevB.85.165101
http://dx.doi.org/10.1103/PhysRevB.85.165101
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1021/j100127a023
http://dx.doi.org/10.1021/j100127a023
http://dx.doi.org/10.1021/j100127a023
http://dx.doi.org/10.1021/j100127a023
http://dx.doi.org/10.1103/PhysRevE.62.7438
http://dx.doi.org/10.1103/PhysRevE.62.7438
http://dx.doi.org/10.1103/PhysRevE.62.7438
http://dx.doi.org/10.1103/PhysRevE.62.7438
http://dx.doi.org/10.1103/PhysRevE.82.056701
http://dx.doi.org/10.1103/PhysRevE.82.056701
http://dx.doi.org/10.1103/PhysRevE.82.056701
http://dx.doi.org/10.1103/PhysRevE.82.056701
http://dx.doi.org/10.1016/j.cpc.2014.06.026
http://dx.doi.org/10.1016/j.cpc.2014.06.026
http://dx.doi.org/10.1016/j.cpc.2014.06.026
http://dx.doi.org/10.1016/j.cpc.2014.06.026
http://dx.doi.org/10.1137/S1064827503422956
http://dx.doi.org/10.1137/S1064827503422956
http://dx.doi.org/10.1137/S1064827503422956
http://dx.doi.org/10.1137/S1064827503422956



