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We theoretically investigate the generation of atom-light entanglement via Raman superradiance in an optical
cavity, and show how this can be used to enhance the sensitivity of atom interferometry. We model a realistic
optical cavity, and show that by careful temporal shaping of the optical local oscillator used to measure the
light emitted from the cavity, information in the optical mode can be combined with the signal from the atom
interferometer to reduce the quantum noise, and thus increase the sensitivity. It was found in Phys. Rev. Lett.
110, 053002 (2013) that an atomic “seed” was required in order to reduce spontaneous emission and allow for
single mode behavior of the device. In this paper we find that the optical cavity reduces the need for an atomic
seed, which allows for stronger atom-light correlations and a greater level of quantum enhancement.
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I. INTRODUCTION

Inertial sensors based on atom interferometers have the po-
tential to provide state-of-the-art sensitivity for a range of sci-
entific applications [1–4]. Although most state-of-the-art atom
interferometers currently utilize laser cooled thermal atoms,
there are some benefits to using Bose-Einstein-condensed
atoms, as they provide improved visibility in configurations
which require complex manipulation of the motional state such
as high momentum transfer beam splitters [5–8]. Typically,
these devices utilize uncorrelated sources of atoms, so cannot
resolve phase shifts smaller than 1√

Nt
, where Nt is the total

number of particles [9]. This is known as the standard
quantum limit (SQL). There is recently considerable interest
in the development of quantum-enhanced atom interferometry,
which allows for sensitivities beyond the SQL. Such schemes
rely on the use of entangled many-body quantum states, which
can be generated via atomic interactions [10–16], or atom-light
interactions [17–25]. However, it was found in [26–29] that in
some circumstances the strong nonlinear atomic interactions
required for entanglement generation can adversely affect the
ability to mode match the two arms of the interferometer, and
therefore diminish the interferometer signal. It has recently
been shown that Raman superradiance [30–36] can be used
to enhance the sensitivity of atom interferometry [37]. This
approach may have some advantages over other approaches,
as the modes that this process generates are automatically
mode matched to the Raman transitions used as beam splitters
in atom-interferometer-based inertial sensors. In [37], it was
found that a small “seed” of atoms was required in each atomic
mode in order to suppress spontaneous emission and produce
two modes with well defined momentum. However, it was
found that this seed reduced the level of quantum correlations,
reducing the amount of possible quantum enhancement.
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In this paper we consider the use of an optical cavity to
enhance the coupling into one particular mode. As the optical
cavity allows for the light to interact with the atoms for longer,
this creates a greater level of Bose enhancement into one
particular atomic mode, allowing for a smaller atomic seed, and
thus stronger atom-light quantum correlations. We investigate
a realistic cavity and show how this process can be used to
generate atom-light entanglement, and how these correlations
can be used to enhance the sensitivity of atom interferometry.

II. SCHEME

Our scheme is described in Fig. 1, and can be separated into
two stages as follows.

(1) A state preparation stage, where the superradiance
drives atomic population dynamics and creates atom-light
correlations.

(2) A measurement stage, where this state is used as the
input to an atom interferometer which is used to estimate some
physical quantity.

Briefly, a condensate consisting of three-level atoms (two
nondegenerate hyperfine ground states |1〉 and |2〉, and an
excited state |3〉) with the entire population initially in state
|1〉 is placed in an optical cavity. The atoms are then optically
driven by a classical pump field detuned from the |1〉 → |3〉
transition by an amount �1. Emission of a photon into
the cavity mode (detuned from the |2〉 → |3〉 transition by
frequency �2) results in the creation of a state |2〉 atom. We
choose the frequency of the driving field and the cavity mode
such that they achieve two-photon resonance for the creation
of a state |2〉 atom. As the creation of a cavity mode photon
is associated with the creation of a state |2〉 atom, we expect
correlations between these two modes. After a small number
of state |2〉 atoms have been created, the driving is turned
off and the light is allowed to leak out of the cavity, and
measured via homodyne detection. The state |2〉 atoms are
then combined with the remaining state |1〉 atoms as the input
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FIG. 1. Scheme for quantum-enhanced atom interferometry.
(a),(b) State preparation. State |1〉 atoms (annihilation operator â1)
are driven by a classical pump field (Rabi frequency �13), leading
to the creation of a small number of state |2〉 atoms (annihilation
operator â2), and photons in the cavity mode (annihilation operator ĉ).
(c) Measurement. The classical pump is turned off, and the photons
leaking out of the cavity are measured via homodyne detection,
and the two atomic modes (â1 and â2) are used as the input to a
Mach-Zehnder interferometer.

to a Mach-Zehnder (MZ) interferometer, formed by coherently
coupling these two modes via optical Raman transitions. The
atomic population difference is then measured and combined
with information from the optical homodyne measurement in
order to extract the atomic phase shift. We will now discuss
the theoretical model for each stage in detail.

A. State preparation

Our model has previously been described in [37], and is
summarized in Fig. 2. We begin with a BEC of three-level
atoms: two nondegenerate hyperfine ground states |1〉 and |2〉,

FIG. 2. Energy-level scheme for a three-level Raman transition
comprising two nondegenerate hyperfine ground states (|1〉 and
|2〉). The BEC is initially formed in state |1〉, and populations are
transferred to |2〉 via the absorption of a photon from the classical
pump beam (Rabi frequency �13, detuned from the excited state by
�1) and the emission of a photon into the cavity mode ĉ (detuned
from the excited state by �2).

and an excited state |3〉. All the atoms are initially in state |1〉.
The optical cavity mode (annihilation operator ĉ) is detuned
from the |2〉 → |3〉 transition by �2. The |1〉 → |3〉 transition
is driven by a strong pump laser of Rabi frequency �13 and
detuning �1. After adiabatically eliminating the excited state
as in [38–40], the Hamiltonian describing the system is

H =
∑
j=1,2

∫
ψ̂

†
j (r)Ĥj ψ̂j (r) d3r + �(ω3 − �2)ĉ†ĉ

+ gc

�13

�1

∫
(�(r,t)ĉ†ψ̂1(r)ψ̂†

2(r) + H.c.)d3r, (1)

where

�(r,t) = ei((k1−k2)·r−(ω3−�1)t), (2)

and ψ̂j (r) annihilates a state |j 〉 atom at point r; Ĥ1 = −�
2

2m
∇2

and Ĥ2 = Ĥ1 + �ω2 are the single particle Hamiltonians for
state |1〉 and |2〉 atoms, respectively, gc is the vacuum Rabi
frequency for the optical cavity, and k1 and k2 are the
wave vectors of the classical driving field and cavity mode,
respectively. Assuming that the state |1〉 atoms only occupy one
motional state �g(r), the Hamiltonian describing the system
is well approximated by

H = �(ω3 − ω2 − �2)ĉ†ĉ +
(

�
2(k1 − k2)2

2m
+ �ω2

)
â
†
2â2

+ �(χâ1â
†
2ĉ

†e−i(ω3−�1)t + H.c.). (3)

Here, χ = gc�13

�1
, and

â1 =
∫

�∗
g (r)ψ̂1(r) d3r, (4a)

â2 =
∫

�∗
g (r)ψ̂2(r)ei(k1−k2)·r d3r, (4b)

where �g(r) is the ground-state single-particle wave function
of the BEC.

To include the effects of coupling of the cavity mode to
the environment, we use the standard input-output theory
for optical cavities [41]. Furthermore, we also account for
emission of photons into noncavity modes. As each emission
event corresponds to an atom receiving a momentum kick,
which will transfer the atoms into a distinguishable momentum
state, it is effectively a form of loss for condensate atoms.
We account for this process phenomenlogically by adding a
standard loss term to the condensate mode, proportional to the
spontaneous emission rate [42]. Including these effects, the
equations of motion are

i ˙̂a1 = χâ2ĉ − i
γ

2
â1 + i

√
γ âin, (5a)

i ˙̂a2 = χâ1ĉ
†, (5b)

i ˙̂c = χâ1â
†
2 − i

κ

2
ĉ + i

√
κb̂in, (5c)

where we have made the transformation

â2 �→ â2 exp(iωat), (6a)

ĉ �→ ĉ exp(iωct), (6b)
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where

ωa = �(k1 − k2)2

2m
+ ω2, (7a)

ωc = ω3 − ω2 − �2 (7b)

and assumed that the frequency of the classical driving field
and the cavity mode were adjusted such that the system was
on two-photon resonance:

�(�2 − �1) = �
2

2m
(k1 − k2)2. (8)

The operators âin and b̂in satisfy

[âin(t),â†
in(t ′)] = [b̂in(t),b̂†in(t ′)] = δ(t − t ′). (9)

Another quantity of interest is the output field b̂out(t), defined
by

b̂out(t) = √
κĉ(t) − b̂in(t). (10)

Here, γ = �13(�13/�1)2, where �13 is the natural linewidth
of the |1〉 → |3〉 transition, and κ is the cavity linewidth. We
begin with all of the atoms in mode â1, and then coherently
transfer a small seed of atoms to mode â2 via a coherent Raman
transition. It is assumed that âin always operates on a vacuum
state, as there is no physical process that will add atoms to our
system, but b̂in can operate on any general state, to allow for
the possibility of coherently driving the cavity field with an
input laser.

B. Measurement stage

After some time t1, the pump laser is turned off such
that the population dynamics terminates. We then use the
atomic modes [â1(t1) and â2(t1)] generated by this process
as the input to a standard Mach-Zehnder (MZ) interferometer
(π

2 − π − π
2 sequence), where the pulses are implemented via

coherent two-photon Raman transitions with lasers of the same
frequencies and wave vectors as used in the state preparation
stage. Both optical modes are assumed to be sufficiently bright
and coherent that it is sufficient to treat them classically. At
t = tf (i.e., after the MZ pulse sequence), we measure the
number of particles in each mode, which is used to construct
the signal Ŝ.

The behavior of an MZ interferometer is best understood
by introducing the pseudospin operators

Ĵx = 1

2
(â†

1â2 + â1â
†
2), (11a)

Ĵy = i

2
(â1â

†
2 − â

†
1â2), (11b)

Ĵz = 1

2
(â†

1â1 − â
†
2â2) = 1

2
(N̂1 − N̂2), (11c)

where N̂1(N̂2) is the population in mode â1(â2). The MZ
interferometer performs the unitary transformation Ûφ =
exp (−iφĴy), where φ is the accumulated phase difference
between the modes, such that

Ĵz(tf ) = Û
†
φĴz(t1)Ûφ = Ĵz(t1) cos φ − Ĵx(t1) sin φ. (12)

For a given quantum state |�(t1)〉 input to the device, the
smallest phase shift φ resolvable by the device is given by the
quantum Cramer-Rao bound (QCRB) [43–46]

�φQCRB = 1√
FQ

, (13)

where FQ is the quantum fisher information, which for pure
states can be calculated by

FQ = 4(〈∂φ�φ|∂φ�φ〉 − |〈∂φ�φ|�φ〉|2), (14)

where

|∂φ�φ〉 = d

dφ
(Ûφ|�(t1)〉). (15)

Using Ûφ = exp (−iφĴy) gives

FQ = 4V (Ĵy), (16)

where the variance is calculated with respect to the input state
|�(t1)〉.

However, for a given choice of measurement signal, Ŝ, the
phase sensitivity of the device is

�φ = ξS√
Nt

, (17)

where

ξS =
√

Nt

√
V (S)

|∂φ〈Ŝ〉| (18)

and V (S) = 〈Ŝ2〉 − 〈Ŝ〉2 is the variance of the signal. We refer
to ξS as the quantum-enhancement parameter, as it quantifies
the phase sensitivity relative to the SQL; ξS < 1 indicates
sensitivity better than the SQL. A measurement scheme is
optimum when it saturates the QCRB, i.e., �φ = �φQCRB, or
equivalently, ξS = ξF , where

ξF =
√

Nt√
FQ

. (19)

Taking Ŝ = Ĵz(tf ), at the most sensitive phase for our choice
of input state, φ = π

2 , we find

ξS =
√

Nt

√
V (Ĵx(t1))

|〈Ĵz(t1)〉| . (20)

However, as in [37,40,47–49], we can gain an enhancement by
using information recycling: if the atomic degrees of freedom
are correlated with the optical field, it may be possible to gain
an enhancement by incorporating measurements of the optical
field into our signal. Specifically, we choose

Ŝ = Ĵz(tf ) + Ŝb, (21)

where Ŝb is some observable that involves only the photonic
degrees of freedom of the system. Noting that measurements
of Ŝb are independent of φ, at φ = π/2 we find

ξS =
√

Nt

√
V (−Ĵx(t1) + Ŝb(t1))

|〈Ĵz(t1)〉| . (22)

Obviously, V ( − Ĵx(t1) + Ŝb(t1)) � V (Ĵx(t1)) when the
atomic and photonic systems are separable. However, when
there is atom-light entanglement in the system, there may be
some photonic operator Ŝb such that V (S) is reduced and the
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sensitivity is increased over purely atomic measurements. It is
interesting to note that when there is atom-light entanglement,
ignoring information in the photonic degrees of freedom is
equivalent to tracing over these degrees of freedom, and the
state of the system is no longer pure, and the quantum Fisher
information cannot be calculated via Eq. (16). However, if this
information is incorporated into the signal, then the system
can be treated as pure, and Eq. (16) remains appropriate [49].

In the next section, we will model the dynamics of the
system and investigate how the choice of Ŝb affects ξS .

III. CAVITY DYNAMICS

A. Perfect cavity

We begin by analyzing the simplified case of a perfect
cavity, and also neglect the effects of spontaneous emission by
setting κ → 0, γ → 0 in Eqs. (5). In [37], as we did not include
an optical cavity, a seed in mode â2 was required to stimulate
transitions into this mode. A minimum value of the seed was
required in order for the stimulated processes to dominate the
spontaneous emission. In a perfect cavity, however, there is
nothing to prevent us setting the seed size to zero, assuming
that the effective cavity coupling rate χ

√
Nt , where Nt is the

total number of atoms, is large compared to the spontaneous
emission rate γ . The use of a cavity also gives us the freedom
to use a seed in mode ĉ.

We can gain an understanding of how the correlations can
enhance the interferometry and what is a useful choice for
Ŝb with a simplified model. Treating mode â1 as a large
undepletable reservoir, we can make the undepleted pump
approximation â1 → √

Na1 , yielding the simplified equations
of motion

i ˙̂a2 = χ
√

Nt ĉ
†, (23a)

i ˙̂c = χ
√

Nt â
†
2, (23b)

which has solution

â2(t) = â2(0) cosh r − iĉ†(0) sinh r, (24a)

ĉ(t) = ĉ(0) cosh r − iâ
†
2(0) sinh r, (24b)

where r = √
Ntχt . It is well known from quantum op-

tics [41,42,50] that such dynamics leads to correlations
between the amplitude and phase quadratures of modes â2

and ĉ. Specifically, when |�(t0)〉 = |0〉,
V (X̂a2 − Ŷc) = 2e−2r , (25)

where

X̂a2 = â2 + â
†
2, (26a)

Ŷc = i(ĉ − ĉ†). (26b)

In order to minimize Eq. (22), we notice that in the un-
depleted pump limit, Ĵx ≈ √

Na1X̂a2 , and therefore setting
Ŝb = √

Na1 Ŷc gives

ξS ≈
√

2e−2rNt (Nt − sinh2 r)

|Nt − 2 sinh2 r| ∼
√

2e−r , (27)

where we have enforced conservation of the total number of
atoms via Na1 = Nt − 〈â†

2â2〉. When |�(t0)〉 has a nonzero
component in either â2 or ĉ, the expression is more compli-
cated, and depends on the relative phases of these two coherent
seeds.

To investigate the effect of depletion from â1, we proceed
by using the truncated Wigner (TW) approximation [41,51].
Following standard methods [52,53], the Heisenberg equations
[Eqs. (5)] can be converted into Fokker-Plank equations (FPEs)
by using the correspondences between the quantum operators
and the Wigner function. By truncating third- and higher-order
terms, the FPEs can be mapped onto a set of stochastic partial
differential equations for complex valued variables α1, α2, βin,
and C, which we solve numerically. The stochastic differential
equations describing the evolution of the system are

iα̇1 = χα2C − i
γ

2
α1 + i

√
γαin, (28a)

iα̇2 = χα1C∗, (28b)

iĊ = χα1α
∗
2 − i

κ

2
C + i

√
κβin, (28c)

where we have made the operator correspondences â1(2) →
α1(2), b̂in → βin, and ĉ → C. By averaging over many trajec-
tories with initial conditions sampled from the appropriate
Wigner function, expectation values of quantities corre-
sponding to operators in the full quantum theory can be
obtained [52,54]. Specifically,

〈{f (â†
1,â1,â

†
2,â2,ĉ

†,ĉ)}〉sym = f (α∗
1 ,α1,α

∗
2 ,α2,C∗,C), (29)

where “sym” denotes symmeteric ordering, and the overline
denotes the mean over many stochastic trajectories. We
typically assume that the initial state of each mode of the
field is a Glauber coherent state:

|�(t0)〉 = Da1Da2Dc|0〉, (30)

where

Da1 = exp(α10â
†
1 − α∗

10â1), (31a)

Da2 = exp(α20â
†
2 − α∗

20â2), (31b)

Dc = exp(C0ĉ
† − C∗

0 ĉ). (31c)

One subtlety of this choice of initial state is that massive
particles obey superselection rules, which strictly forbid the
possibility of coherent superpositions of different numbers of
particles, such as are present in the Glauber coherent state.
However, it was shown in [27] that a mixture of coherent states
with randomized phase (which corresponds to a Possonian
mixture of number states) behaves identically to a pure
coherent state for the purposes of atom interferometry. This
is true even for the choice of a nonzero seed in mode â2, as
long as it was created by coherently transferring atoms from
mode â1. In this case, while the phase of both α10 and α20 are
random, the relative phase is not.

We also allow for the possibility of driving the cavity
with either a pulsed or continuous coherent light. Specifi-
cally, we assume that the state of the EM field outside the
cavity is

|�in(t)〉 = exp(β0(t)b̂† − β∗
0 (t)b̂1)|0〉, (32)
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FIG. 3. (a) Na2 = 〈â†
2â2〉 vs r = χ

√
Nt t calculated via Eqs. (28)

(blue solid line) and Eq. (24) (red dashed line), for an initial state
such that 〈â†

2â2〉 = 〈ĉ†ĉ〉 = 0. (b) ξS (blue solid line) and ξF (red
dashed line). The black dotted lines are simply to guide the eye,
with the lowest line indicating �φ = 1

Nt
. Parameters: α10 = √

107;
α20 = C0 = 0.

where the time dependence in β0 allows for the possibility
of temporal dynamics in the amplitude of the coherent state.
This leads to the initial condition for the stochastic differential
equations of

α1(0) = α10 + η1, (33a)

α2(0) = α20 + η2, (33b)

C(0) = C0 + η3, (33c)

βin(t) = β0(t) + wβ(t), (33d)

αin(t) = wα(t), (33e)

where ηj is complex Gaussian noise satisfying ηj = 0, and
η∗

i ηj = 1
2δij , and wν(t) is a complex Wiener noise satisfying

wν(t) = 0, and w∗
μ(t)wν(t ′) = 1

2δμνδ(t − t ′).
We begin by investigating the perfect cavity case (γ → 0,

κ → 0), with no seed in either â2 or ĉ (α20 = 0, C0 = 0). We
solved Eqs. (28) numerically. Figure 3(a) shows the population
in â2 calculated from Eqs. (28) compared to the analytic
solution from Eqs. (24). For short times, there is excellent
agreement in the population between the undepleted pump
approximation, and the TW simulation. Figure 3(b) shows ξS

and ξF as a function of preparation time using

Ŝ = Ĵz(tf ) + 1

2

√
〈â†

1â1〉Ŷc (34)

as the signal. For r > log
√

2 ∼ 0.35, ξS < 1, indicating sub-
SQL sensitivities. We have also calculated ξF . As r becomes
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FIG. 4. (a) Na2 = 〈â†
2â2〉 vs r = χ

√
Nt t calculated via Eqs. (28)

(blue solid line) and Eq. (24) (red dashed line), for the initial
state Eq. (30), with α20 = −i

√
Nseed, C0 = √

Nseed, and α10 =√
Nt − Nseed. (b) ξS (blue solid line) and ξF (red dashed line).

Parameters: Nt = 107; Nseed = 104.

greater than ∼ log
√

2, ξS ≈ ξF , indicating that our choice of
signal is close to optimum for the choice of quantum state.
However, as r becomes larger than ∼4, ξS and ξF begin to
diverge. The optimum sensitivity is approximately ξS ≈ 0.021,
while the optimum allowed by the QCRB is ξF ≈ 5.4 × 10−4,
which leads to a sensitivity of �φQCRB ≈ 1.7/Nt , which is
very close to the Heisenberg limit [55,56]. This indicates that
for large values of r our signal is not optimal, and there is some
better measurement or method of processing the information.
It has been shown in [49] that the signal

Ŝ = (
Ĵz(tf ) + ĉ†ĉ − 1

2 (â†
1â1 + â

†
2â2)

)2
(35)

saturates the QCRB. However, for moderate values of r ,
Eq. (34) is almost optimal, and is sufficient to provide signif-
icant quantum enhancement. Furthermore, it is considerably
simpler to work with in practice, as at the optimum phase
shift ∂φ〈Ŝ〉 is large, unlike Eq. (35), for which ∂φ〈Ŝ〉 → 0
at the optimum phase. Additionally, homodyne detection of
quantum optical correlations is reasonably routine, while
high-efficiency photon counting with single-photon resolution
is somewhat challenging [50].

There may be some situations in which the use of a coherent
seed in either mode â2 or ĉ is desirable, such as when the
effective cavity coupling constant is insufficient to overwhelm
the spontaneous emission rate. Figure 4 shows the population
in â2 and ξS when the initial population in â2 and ĉ were
chosen such that 〈â†

2â2〉 = 〈ĉ†2ĉ2〉 = Nseed. We can see that
the use of the seed causes the population to grow much
more rapidly. However, the use of a seed inhibits the degree
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FIG. 5. (a) Na2 = 〈â†
2â2〉 vs r = χ

√
Nt t calculated via Eqs. (28)

(blue solid line) and Eq. (24) (red dashed line), for the initial
state Eq. (30), with α20 = −i

√
Nseed, C0 = −√

Nseed, and α10 =√
Nt − Nseed. (b) ξS (blue solid line) and ξF (red dashed line).

Parameters: Nt = 107; Nseed = 104.

of quantum enhancement, with min(ξF ) ≈ min(ξS) ≈ 0.16,
indicating that with the use of a large coherent seed, Eq. (34) is
a good approximation to the optimal signal. The degradation
in quantum enhancement is due to the initial seed acting as a
source of uncorrelated particles, which reduces the degree of
correlations between mode â2 and ĉ.

The choice of the phase of the initial seed in each mode
can also affect the dynamics. In the previous example we
chose α20 = −i

√
Nseed, and C0 = √

Nseed. The motivation for
this choice was that a seed in â2 resulting from coherently
transferring atoms from â1 via a two-photon Raman transition
implemented by two coherent lasers with no relative phase
difference between them results in a relative phase between
the two atomic modes of −π/2. The phase of the seed in ĉ

is arbitrary, but a phase of zero indicates that this field is in
phase with the laser driving the |1〉 → |3〉 transition. However,
applying a π phase shift to the seed in ĉ results in significantly
different dynamics. Figure 5(a) shows the population dynamics
in this case. In this situation, the atom-light coupling initially
results in deamplification of the initial seed. After this the
population is then amplified, and grows at a similar rate to the
case with no seed. Both ξS and ξF mimic the seedless case. It is
tempting to think that in this regime we have both the benefits
of a large seed (reduction in spontaneous emission) and a large
QFI. However, as the population is reduced before it grows,
it takes approximately the same amount of time to reach the
optimum, so will suffer approximately the same degree of
spontaneous emission.

Figure 6 shows the minimum obtainable ξS and ξF versus
Nseed for different relative phases of α20 and C0. There is a
general trend that, as the seed is larger, the minimum of ξF

increases, and ξS approaches ξF . The case when {|α20|2 = 0,

100 101 102 103 104 105

Nseed

10-4

10-3

10-2

10-1

100

ξ

FIG. 6. Minimum obtainable ξF (hollow shapes) and ξS (solid
shapes) vs Nseed for α20 = −i

√
Nseed, C = √

Nseed (blue squares),
α20 = −i

√
Nseed, C = −√

Nseed (black diamonds), and α20 =
−i

√
Nseed, C = 0 (red circles).

|C0|2 = Nseed} provides identical sensitivity to the {|α20|2 =
Nseed, |C0|2 = 0} case, so has been omitted for visual clarity.

Obviously, a perfect cavity is unrealistic, and it is unfeasible
to directly make measurements on the cavity mode. To model
a realistic system we must take into account coupling of the
cavity mode to the freely propagating continuum. In the next
section we will investigate the behavior of a realistic cavity,
including coupling between freely propagating modes and the
cavity mode, and the effects of spontaneous emission.

B. Realistic cavity

The previous section ignored the coupling between the
cavity and the environment, as well as the effect of spontaneous
emission. In this section we investigate the behavior of the
system in the presence of these effects, and how information
recycling can be implemented. We begin by investigating the
behavior of the system in the absence of a seed. We solved
Eqs. (28) numerically, using the relevant cavity QED param-
eters {gc,κ,�13} = {0.106,13.0,6.0} × 106 rad s−1. Here, �13

corresponds to the spontaneous emission rate of the D2 line
of 87Rb, and gc and κ correspond to a cavity that is not in
the strongly coupled cavity QED regime where gc > (κ,�13).
The values of gc and κ that we have used are a factor of 100
less and 10 greater than was reported in [57], respectively.
Our motivation for such a choice was that, while these
values would be challenging to achieve, they are not “state
of the art” and therefore not an unreasonable modification
to an existing atom-interferometry setup. Setting �13/�1 =
10−2 gives χ = 1.06 × 103 rad s−1 and γ = 600 rad s−1.
Figure 7 shows the populations Na2 = 〈â†

2â2〉, Nc = 〈ĉ†ĉ〉,
and Nb = ∫ t

0 〈b̂†out(t
′)b̂out(t ′)〉dt ′, calculated by numerically

solving Eqs. (28). For these parameters, the atomic field grows
significantly faster than the cavity field, as photons leak out of
the cavity.

In a real experiment we do not have access to the cavity
mode ĉ, and in order to implement information recycling, we
must rely on the measurements of the output field b̂out. In
analogy with the perfect cavity case, information recycling is
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FIG. 7. Na2 (blue solid line), Nc (red dashed line), and Nb (black
dot-dashed line) vs τ = χ

√
Nt t . The atom-light coupling, χ , was set

to zero at τ = 9.1, which was chosen as it roughly corresponds to
the time when Na2 is equal to the number of transferred atoms when
ξS is minimum in Fig. 3. Parameters: α10 = √

107, α20 = C0 = 0,
β0 = 0, κ = 13.0 × 106 rad s−1, χ = 1.06 × 103 rad s−1, and γ =
600 rad s−1.

implemented by using the signal

Ŝ = Ĵz(tf ) + 1
2

√
〈â†

1â1〉Ŷb, (36)

where Ŷb = i(b̂0 − b̂
†
0) is the phase quadrature of a specific

mode of the output field defined by

b̂0 =
∫ T

0
u∗

LO(t)b̂out(t)dt. (37)

Physically, the mode function uLO(t) corresponds to the
temporal mode shape of the “local oscillator,” or bright
coherent state used in the homodyne detection of the output
field [50]. The choice of this function can significantly affect
the correlations between b̂0 and â2. In order for Ŷb to satisfy
quadraturelike uncertainty relations, we require

∫ T

0
|uLO(t)|2dt = 1, (38)

which implies [b̂0,b̂
†
0] = 1. For the effective implementation

of information recycling, we require efficient transfer of
information from the cavity mode to the output mode b̂out. To
demonstrate how the choice of uLO(t) will influence this, we
first consider the case with no atom-light coupling (χ = 0),
where at t = 0 the optical cavity contains some arbitrary
quantum state |�c〉, while the state of the field outside the
cavity is vacuum: |�(0)〉 = |�c〉 ⊗ |0〉. Using the method
presented in [58,59], we can express the solution to Eqs. (5) as

ĉ(t) = f (t)ĉ(0) + v̂c(t), (39)

b̂out(t) = √
κf (t)ĉ(0) + v̂b(t), (40)

where v̂c(t) and v̂b(t) are chosen to preserve the commutation
relations of ĉ(t) and b̂out(t), and have the property that
v̂b(c)(t)|�(0)〉 = 0. Using this result, we find

V (Ŷb(t)) = 2|η|2〈ĉ†(0)ĉ(0)〉 + 1 − (η2〈ĉ(0)2〉 + H.c.)

+ (η〈ĉ(0)〉 − H.c.)2, (41)
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FIG. 8. Dynamics of a realistic cavity in the absence of a seed.
The atom-light coupling was switched off at τ = 9.1, as indicated by
the vertical black dotted line in both figures. (a) The temporal shaping
of |uLO(t)|2 (blue solid line) used to calculate ξS . For comparison, we
have also shown uLO(t) ∝ 1 (red dashed line). (b) ξS using Eq. (44)
(blue line) and uLO(t) ∝ 1 (red dashed line). For each point on the
curve, the normalization condition

∫ t

0 |uLO(t ′)|2dt ′ = 1 was enforced.
For comparison, we have included ξF = √

Nt/
√

4V (Jy) (black dot-

dashed line). Parameters: α10 = √
107, α20 = C0 = 0, β0 = 0, κ =

13.0 × 106 rad s−1, χ = 1.06 × 103 rad s−1, and γ = 600 rad s−1.

where

η =
∫ t

0
u∗

out(t
′)
√

κf (t ′) dt ′. (42)

By choosing u∗
out(t) such that η is real, this simplifies to

V (Ŷb(t)) = η2V (Ŷc(0)) + (1 − η2). (43)

We can see that as η → 1, V (Ŷb(t)) → V (Ŷc(t)), indicating
that correlations initially contained in Ŷc are efficiently
transferred to Ŷb. When η is complex, this corresponds to a
rotation of the quadrature of the cavity mode. Clearly, the
normalized function uLO(t) that maximizes η is uLO(t) ∝
f (t) ∝ 〈ĉ(t)〉 ∝ 〈b̂out(t)〉.

In the presence of atom-light coupling, Eqs. (5) are no
longer linear and we can no longer make a simple linear ansatz
for the solution. However, we can use our insight from the
previous example to postulate that a good choice for uLO(t) is
proportional to the field of the cavity mode, or since 〈ĉ(t)〉 = 0,

uLO(t) ∝
√

〈ĉ†(t)ĉ(t)〉 ∝
√

〈b̂†out(t)b̂out(t)〉. (44)

Physically, this would require matching the temporal shape of
the local oscillator to the expectation value of the intensity
of the output field. It is assumed that the carrier frequency of
the local oscillator ωLO is the same as the cavity mode ωc,
which has automatically been accounted for in our change of
variables [Eqs. (6)]. Figure 8 shows ξS , from Eq. (36), using
Eq. (44), for the same parameters as used in Fig. 7. After
most of the light leaking out of the cavity has been collected,
ξS ≈ 0.023. This is close to the limit set by the QCRB: ξF =√

Nt/
√

4V (Jy) ≈ 0.018. We note that, due to the presence
of spontaneous emission, the appropriate QFI is no longer
precisely 4V (Jy), unless every spontaneously emitted particle
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FIG. 9. Dynamics of a realistic cavity with α20 = −i
√

104 and
C0 = −√

104. The atom-light coupling was switched off at τ = 7, as
indicated by the vertical black dotted line in both figures. (a) The
temporal shaping of |uLO(t)|2 from Eq. (44) (blue solid line) and
Eq. (45) (red dashed line) used to calculate ξS . (b) Enlargement to
show the details at early times. (c) ξS using Eq. (44) (blue line)
and Eq. (45) (red dashed line), and Eq. (45) with 1% detection loss
of light (red circles) and 1% detection loss of atoms (red squares).
For each point in time, a different uLO(t) was used, such that the
normalization

∫ t

0 |uLO(t ′)|2dt ′ = 1 could be enforced. Parameters:
α10 = √

Nt − Nseed, α20 = −i
√

Nseed, C0 = −√
Nseed, Nseed = 104,

Nt = 107, β0 = 0, κ = 13.0 × 106 rad s−1, χ = 1.06 × 103 rad s−1,
and γ = 600 rad s−1.

could be captured and included in the measurement signal. The
number of atoms transferred to â2 is approximately 1.6 × 103,
which roughly corresponds to Na2 at the most sensitive point
of Fig. 3. For comparison, we have shown the sensitivity in the
absence of any temporal shaping [uLO(t) ∝ 1], which fails to
achieve any significant quantum enhancement. This indicates
that the choice of local oscillator is crucial to the ability to
extract the best measurement sensitivity from the system.

For completeness we have included the case of a coherent
seed of 104 particles in both â2 and ĉ, and chosen the phase
such that it corresponds to the initial de-amplification of atoms
(Fig. 5). This seed could be created by a coherent Raman
transition with classical light, and then allowing the population
of cavity photons to decay to the appropriate level before
the driving field �13 is switched back on. As some of the
photons leak out of the cavity during the state preparation
stage, the dynamics do not exactly correspond to the case
presented in Fig. 5. As such, the QFI does not obtain the same
degree of enhancement as the perfect cavity case, but is still
better than the case presented in Fig. 4. An explanation for
this is that as some of the seed leaks out of the cavity, the
conditions for perfect deamplification are no longer met and
the dynamics begins to mimic the case with a large atomic
seed and no optical seed. Figure 9 shows ξS , from Eq. (36),
using Eq. (44). The sensitivity using this signal is significantly
worse than the optimum allowed by the QCRB. By setting
the local oscillator intensity proportional to the intensity of
b̂out, we are incorporating information from all the photons
in the field into our measurement signal. This includes the
initial “seed” photons, which carry no useful information. We

can enhance our signal further by using a different choice of
local oscillator which weights the information carried by the
photons that arrive later (which are more likely to come from
an atom-photon pair creation even) more highly than the early
arriving photons (which are more likely to come from the
uncorrelated seed). Specifically, we set

uLO(t) ∝
√

〈b̂†outb̂out〉(1 − exp(−γct)). (45)

This function takes into account that the contribution from
the seed (which carries no information) will exponentially
decay, and that the photons produced during the Raman
superradiance process (which carry the correlations with the
atomic mode) will begin to dominate on time scales greater
than 1/γc. Figure 9 shows the sensitivity using this modified
local oscillator shaping, and demonstrates that it does provide
a sensitivity closer to the limit set by the QCRB.

We have also included the effect of detection inefficiencies,
by assuming a simple linear loss model q̂ → √

1 − ζ q̂ +√
ζ v̂, for q̂ = {â1,â2,b̂0} where v̂ is assumed to operate on

a vacuum mode. As with most schemes that rely on quantum
correlations to enhance sensitivity, a small amount of loss
can significantly degrade the sensitivity. Interestingly, the
performance is more sensitive to loss of photons than loss
of atoms. For the parameters used in Fig. 9, a detection loss of
1% of either atoms or photons roughly doubles ξ , with loss
of atoms performing slightly better than loss of photons. For
an atomic loss of 5%, we found that the sensitivity reached
a minimum of ξ ≈ 0.5, while the same level of photonic loss
reduces the sensitivity to worse than the SQL.

IV. SUMMARY

In conclusion, we have modeled the generation of atom-
light entanglement in an optical cavity via Raman superra-
diance, and shown how this entanglement can be used to
enhance the sensitivity of atom interferometry. Information
from the light emitted from the cavity is correlated with the
noise in the atom interferometer, so can be used to increase the
sensitivity to better than the standard quantum limit. We found
that a simple choice of estimator involving the combination
of the atomic spin operator Ĵz and the quadrature of the light
was close to optimal, in that it yielded a sensitivity close to
the limit set by the QCRB. However, this required careful
selection of the temporal profile of the local oscillator used
to measure the quadrature via homodyne detection. We found
that an optical cavity reduces the need for a large atomic seed,
which enhances the sensitivity over what we found in [37] by
a factor of five. We found for realistic cavity parameters that
an enhancement of 50 below the standard quantum limit was
achievable.
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