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Generating and manipulating quantized vortices on-demand in a Bose-Einstein condensate:
A numerical study

B. Gertjerenken,1,2 P. G. Kevrekidis,1,3 R. Carretero-González,4,* and B. P. Anderson5
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We numerically investigate an experimentally viable method for generating and manipulating on-demand
several vortices in a highly oblate atomic Bose-Einstein condensate (BEC) in order to initialize complex vortex
distributions for studies of vortex dynamics. The method utilizes moving laser beams to generate, capture,
and transport vortices inside and outside the BEC. We examine in detail this methodology and show a wide
parameter range of applicability for the prototypical two-vortex case, as well as case examples of producing and
manipulating several vortices for which there is no net circulation, corresponding to equal numbers of positive
and negative circulation vortices, and cases for which there is one net quantum of circulation. We find that the
presence of dissipation can help stabilize the pinning of the vortices on their respective laser beam pinning sites.
Finally, we illustrate how to utilize laser beams as repositories that hold large numbers of vortices and how to
deposit individual vortices in a sequential fashion in the repositories in order to construct superfluid flows about
the repository beams with several quanta of circulation.
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I. INTRODUCTION

The realm of atomic Bose-Einstein condensates (BECs)
[1–3] has presented a pristine setting where numerous features
of the nonlinear dynamics of quantized vortices, vortex
lattices, and other vortex distributions can be both theoretically
studied and experimentally observed. Research in this domain
has enabled observations of, for example, precession and
excitation of few vortices [4–10], collective excitations and dy-
namics of vortex lattices [11–15], decay of multiply quantized
vortices into singly quantized vortices [16,17], decay of dark
solitons into vortices and vortex rings [18–20], and generation
of quantum turbulence [21,22]. Additionally, experimental
efforts directed towards new methods of vortex detection
[8,23] are motivated by the need for direct measurements
of the dynamics of arbitrary distributions of vortices. These,
and numerous other experiments [24], demonstrate enormous
progress towards developing a more complete understanding
of vortex dynamics in BECs.

Nevertheless, to the best of our knowledge, there has
not been an experimental demonstration of a method to
construct at will arbitrary (topological charge, as well as spatial
position) distributions of more than two vortices in a BEC.
Such a method would enable detailed experimental studies of
interactions of vortices with each other, with sound, and with
trap impurities. New methods to study the evolution of many-
vortex states involving quantum turbulence, as well as chaotic
vortex dynamics [25–27], would be available, and the role of
dissipation in superfluid dynamics could be more precisely de-
termined based on experimental data. Here we extend a proof-
of-principle experimental demonstration, described in a com-

*http://nlds.sdsu.edu

panion article [28], of on-demand vortex generation and ma-
nipulation of two oppositely charged vortices to many-vortex
distributions, and further characterize the experimental param-
eters that enable two-vortex generation and manipulation. We
refer to this approach as the “chopsticks method.” We consider
a highly oblate harmonically trapped BEC that is pierced by
multiple blue-detuned laser beams (that play the role of the
chopsticks that manipulate the vortices) whose positions and
intensities can be dynamically controlled. We examine condi-
tions for which the motion of the laser beams nucleates vortices
in such a way that individual vortices are pinned to distinct
laser beams during the nucleation process. Our numerical
results indicate that on-demand engineering of many-vortex
distributions is an experimentally realistic possibility, and open
up new directions for the study of vortex dynamics in BECs.

The prototypical case on which our numerical study is based
involves the presence of two blue-detuned Gaussian laser
beams that pierce a highly oblate BEC. Each laser beam acts as
a barrier of maximum potential energy U0 that is of the same
order of magnitude as the BEC chemical potential. Initially, the
two beams are stationary and overlap within the BEC. Consider
a case where both beams begin to move in the y direction at
a velocity that is significantly lower than the critical speed
for vortex dipole nucleation. As described in a companion
paper [28], the beams push atomic superfluid out of the way,
and superfluid fills in the space vacated by the laser beam.
Simultaneously, the beams are pulled apart in the x direction,
each beam having equal but opposite x-velocity component.
Then, although the beams are always traveling at a speed
well below the critical speed for vortex dipole nucleation,
the “holes” (and the specific path they take) created by the
laser beams facilitate the formation of two singly quantized
vortices of opposite circulation that are simultaneously created
and pinned (one per beam). Further slow, adiabatic motion
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(below the critical speed) of the laser beams, which serve
as vortex optical tweezers, guides the position of the pinned
vortices. After using the chopstick beams to transport the
vortices to desired locations, they can be released into the
BEC to evolve freely by ramping off the laser beams. It is
worthwhile to add here that recently an attractive impurity has
been utilized in a one-dimensional setting, in order to perform
similar manipulations for one or more dark solitons [29].

Here we numerically focus on the use of several laser beams
to create and manipulate several vortices within the BEC. We
show that by moving the laser beams to desired locations and
then ramping them off, vortices are released into the BEC and
subsequently evolve according to their intervortex dynamics.
Since the basic vortex generation process creates two vortices
of opposite circulation, neutral vortex charge configurations
with equal numbers of vortices of positive and negative
circulation can be readily created. However, by driving some
of the chopstick beams out of the condensate, nonneutral
charge configurations can also be generated. Furthermore, by
driving multiple chopstick beams together or onto a separate
“repository” laser beam, multiply quantized circulations about
a single laser beam can be generated and stored. We confirm
that by using either many moving laser beams or by depositing
vortices to stationary repository beams and reinitiating the pro-
cess of creating two pinned vortices with two chopstick beams,
arbitrary amounts and configurations of quantized vorticity can
be prepared in the system, enabling the examination of a wide
array of associated phenomena. An experimental realization
of the prototypical scenario considered herein involving two
beams is explored in the companion paper [28].

Our discussion is organized as follows. In Sec. II, we
briefly discuss the theoretical model that is used for our study,
namely the two-dimensional (2D) Gross-Pitaevskii equation
(GPE) in the presence of a parabolic trap and a set of localized
movable defects. In Sec. III, we present our numerical results.
We start with the simplest case of creating two vortices with
two chopstick beams, which constitutes our benchmark for
quantifying the success of the method, and describe how the
vortex generation and trapping process depends on the beam
parameters. Subsequently, we demonstrate that the process
can be scaled up to neutral configurations of more than two
vortices. We then consider the removal of a single vortex from
neutral configurations by removing one chopstick beam. For
the case of two initial vortices, this allows a single vortex to
remain in the condensate at a location that is determined by
the remaining beam. More generally, removing a single vortex
by driving a beam out of the condensate leaves an imbalanced
vortex charge configuration. Although in the present work
we will consider imbalances leading to a total charge of ±1,
it will be evident that the method can enable arbitrary such
imbalances in the system. Finally, we explore a number of
variants to the problem. To distill out acoustic energy from
these latter vortex configurations, we explore the effect of
thermally induced dissipation [30], analyzed for vortices, e.g.,
in Ref [31–33] (see also references therein). We also present
the possibility of depositing large amounts of vorticity of the
same charge in a vortex repository. In many cases, we explore
the vortex dynamics and distributions that result from ramping
off the laser beams. Finally, in Sec. IV, we summarize our
findings and discuss directions for future study.

II. MODEL

We numerically investigate a Bose-Einstein condensate
in the presence of a strongly anisotropic trapping potential
Vext = 1

2m(ω2
xx

2 + ω2
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2 + ω2
zz

2) with ωx = ωy ≡ ωr � ωz.
In this case the trapped BEC acquires a nearly planar “pancake”
shape. We start from the three-dimensional Gross-Pitaevskii
equation
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2� , and ψ(x,y,t) is
normalized to the number of atoms. Multiplying Eq. (1) by
�∗(z) and integrating over all z yields the 2D GPE:

i�∂tψ = − �
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2m
�ψ + g2D|ψ |2ψ + Vext(x,y,z = 0)ψ. (2)

Here, we have introduced the 2D interaction parameter
g2D = g3D/(

√
2πaz) and the harmonic oscillator length az =√

�/mωz.
We nondimensionalize the 2D GPE by setting t̃ = tωz,

(x̃,ỹ) = (x,y)/az, and ψ̃ = azψ . The dimensionless 2D GPE
then becomes

iψ̃t̃ + 1
2 (ψ̃x̃x̃ + ψ̃ỹỹ) − g|ψ̃ |2ψ̃ − V ψ̃ = 0, (3)

where g = 4πas/(
√

2πaz) and V = 	2

2 (x̃2 + ỹ2), where the
effective (2D) harmonic trapping frequency is 	 = ωr/ωz.
Further letting u = √

gψ̃ , and dropping all tildes hereafter for
notational simplification, the 2D GPE for the case of repulsive
interatomic interactions then becomes

iut + 1
2 (uxx + uyy) − |u|2u − V u = 0. (4)

In the presence of N Gaussian laser beams of identical
1/e2 radii σ (a dimensionless length, measured in units of az),
the external effective (2D) potential is given by the following
combination of harmonic trapping and the laser beams:

V (x,y,t) = 	2

2
(x2 + y2) +

N∑
j=1

U0,j e
−2

(x−xj )2+(y−yj )2

σ2 , (5)

where, for the j th laser beam, U0,j and (xj (t),yj (t)) are,
respectively, the time-dependent height of the light-induced
barrier measured in units of �ωz and its position measured
from the trap center in units of az.

For ease of evaluation of the experimental possibility of
utilizing our vortex generation and manipulation methods in
the discussion below, we define and utilize a dimensional
measure of the full width at half maximum of the chopstick
beams as bw = az

√
2 ln(2)σ . The beam height U0,j for each

beam is given in terms of the chemical potential μ measured
in units of �ωz. Furthermore, we specify all velocities in terms
of the maximum sound speed

c = 2�

m

√
πasnmax, (6)
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where nmax is the maximum of the three-dimensional atomic
density (usually attained at the center of the parabolic trapping)

nmax =
(mωz

π�

)1/2
max(|u|2)/

(
4πasaz√

2π

)
. (7)

Our procedure is conceptually similar to that of the
companion article [28], where blue-detuned laser beams are
used in order to produce repulsive barriers that generate and
then dynamically manipulate vortices inside the BEC. We
specify parameters used in the calculations, and present the
results of our numerical simulations using those parameters.

As mentioned previously, in recent years a significant
consideration in connection to vortices concerns their dy-
namics in the presence of thermally induced dissipation; see,
e.g., Refs. [30–34] for which the system is described by the
dissipative Gross-Pitaevskii equation (dGPE)

(i − γ )ut + 1
2 (uxx + uyy) − |u|2u − (V − μ) u = 0, (8)

where γ is a dimensionless, phenomenological, damping
constant—depending on the temperature of the condensate;
see, for instance, Ref. [35]—and μ is the (adimensional)
chemical potential that the BEC equilibrates to for the given
temperature. As we show below, considering dissipation in our
system not only corresponds to a more realistic experimental
scenario, but it helps to remove vortices from the periphery of
the BEC cloud as dissipation induces them to spiral outwards.

III. NUMERICAL RESULTS

The initial condition for our evolutionary dynamics is
obtained by a 2D fixed point iteration (a Newton’s method) in
order to identify the ground state of the system in the presence
of an even number of beams, ranging from two to eight. This
state is devoid of vortices. Subsequently, we compute the time
evolution using a variable-order Adams PECE algorithm, of
the type originally elaborated in Ref. [36].

Although our findings can be straightforwardly general-
ized to different trapping and atomic gas parameters, for
concreteness within our pancake-shaped geometry, we choose
parameter values consistent with the experiments of the com-
panion article [28]. Namely, we choose ωr = 2π × 2 Hz, ωz =
2π × 90 Hz, and as = 5.3 nm corresponding to 87Rb [48].
We examine a range of chemical potentials, and indicate this
value of μ for each case study. These parameters correspond
to dimensionless times measured in units of 1.77 ms.

A. Neutral vortex configurations

First we discuss the generic example of the creation and
trapping of a pair of oppositely charged vortices that can later
be used as a building block for the generation of a larger
distribution of an even number of vortices, with equal numbers
of positively and negatively charged trapped vortices. Two
beams of equal waist and height are initially located at the
same position and are subsequently moved with the same speed
under a suitable angle to two different final positions. For a
given value of the beam size bw, there is a range of suitable
values of the beam velocity, exceeding a (lower) critical value
but much less than the speed of sound, for which the flow
around the beams results in the generation and pinning of
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FIG. 1. Regions of successful and unsuccessful vortex generation
and trapping as a function of the beam width bw and the scaled
chopsticks speed v/c. The chemical potential corresponds to μ = 1.5
and the beam height is 2μ. Both beams are initially situated at (0,−20)
μm and moved diagonally on straight lines with the corresponding
velocity to their final positions at (±10,0) μm. Region I: The velocity
of the chopsticks is too small and vortices are not created. Region
II: Two vortices of opposite charge are created, successfully trapped,
and dragged along with the laser beams. Region III: The velocity
of the laser beams is too large, resulting in the vortices being
lost from their respective beams and remaining behind the beams.
For beamwidths approximately smaller than bw = 4 μm no vortex
trapping is supported: any vortices created are immediately lost from
the beams. Movies showing the full time evolution exemplary for
each of the three regimes (and for each of the following figures) can
be found at http://nonlinear.sdsu.edu/∼carreter/Chopsticks.html.

two vortices with opposite charge. If the velocity is chosen
to be higher than this range, vortices are created but cannot
remain trapped by their respective beams. These vortices
start lagging behind their respective beams and finally are
released from the trapping action of the chopstick beams. The
vortices may then annihilate one another. Given that this is a
prototypical benchmark scenario, in Fig. 1 we display regions
of successful and unsuccessful vortex generation and stable
trapping and manipulation, for various beamwidths bw and
beam speed v/c [measured in units of the maximum speed of
sound; see Eq. (6)] for an experimentally realistic chemical
potential μ = 1.5, which corresponds to ∼4.4 × 105 atoms
comprising the BEC for the parameters given previously, a
radial Thomas-Fermi BEC radius of ∼87 μm, and a BEC
healing length of ∼0.64 μm. The waist of the beams should
be large enough to support the existence and trapping of the
vortices. We find that for the BEC parameters used in our study,
with μ ∼ 1.5, the beamwidth approximately has to exceed
4 μm. For beamwidths below this value, the vortices created
are immediately expelled from the trapping beams [37]. We
have used throughout this study a beam height twice as large as
the BEC chemical potential (U0,j = 2μ). However, we have
checked that for lower beam heights between U0,j = μ and
U0,j = 2μ, vortex nucleation is still successful for beamwidths
approximately larger than 4 μm.
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We now examine the trajectories of two oppositely charged
vortices that result from turning off the chopstick beams, in
the case of typical symmetric and asymmetric configurations
of the vortices [9]. We choose a value of μ = 1.5 for the
chemical potential, a beam waist bw = 6 μm, and a beam
height U0,j = 2μ. It is worth mentioning at this stage that
lower values of the chemical potential resulted in large (density
modulation) disturbances as the chopsticks move through the
condensate, especially if more than two beams are present;
on the other hand, the case of larger values of the chemical
potential is more difficult to track numerically as the vortex
width becomes relatively small compared to the numerical
domain and thus a large numerical grid is necessary. Therefore,
for larger numbers of trapped vortices, discussed later, it is
necessary to increase the value of μ at the expense of more
intensive numerics. The typical generation of a symmetric
vortex configuration is shown in Fig. 2. After the vortices
have been created and have reached the desired symmetric
final positions (±10,0) μm the beams are adiabatically and
linearly ramped down to release the vortices to undergo free
(i.e., uninhibited by the presence of the chopstick beams)
time evolution. As a result, the released vortices exhibit the
typical dynamical features of a vortex dipole configuration
[9,38]. This is illustrated in Fig. 3(a) for the symmetric case of
Fig. 2. Figure 4 shows a similar example to the one depicted
in Fig. 2 but for an asymmetric motion of the chopsticks. In
this case, one laser beam is kept fixed after t = 110 at (10,0)
μm while the other beam is moved further until t = 200 where
both beams are kept fixed and ramped down. This procedure
seeds an asymmetric configuration that, after removal of the
chopsticks, evolves in the typical epitrochoidal trajectories for
asymmetric vortex dipoles [9,38] as shown in Fig. 3(b).

Next, we investigate the possibilities to create larger, even
numbers of vortices in a neutral configuration with four,

FIG. 2. Controlled generation of a vortex dipole for μ = 1.5.
Throughout this paper the upper row shows the atomic density in
false color (white corresponds to highest densities, blue to lowest)
while the lower row displays the phase (blue to white corresponds to
phases from 0 to 2π ) at the times indicated in the legend. A pair of
beams with bw = 6 μm and beam height U0,j = 2μ initially (t = 0)
placed at (0,−20) μm are moved within �t = 110 to (±10,0) μm.
The process nucleates a vortex dipole that is dragged along to the
desired location. From t = 110 to t = 210 the beams are linearly
ramped down to release the vortices to the free time evolution where
the vortices start the typical motion of a symmetric dipole pair. The
numerics for μ = 1.5 are run on 749 × 749 grid points. The resulting
spatial discretization dx = 0.23 guarantees the existence of about 10
grid points within the vortex profile.
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FIG. 3. (a) Vortex trajectories for the symmetric vortex configu-
ration from Fig. 2 displayed from the release of vortices at t = 210 up
to t = 4000. (b) Vortex trajectories for the asymmetric configuration
of Fig. 4 from release of vortices up to t = 16 000. Blue [(a) left
and (b) outer] and red [(a) right and (b) inner] curves represent the
trajectories for each vortex.

six, and eight vortices. The idea is to start with two, three,
or four pairs of overlapping chopstick beams close to the
center of the BEC and use the same methodology as above
to create vortices from each beam pair with the same protocol
as described above. Doing so, each chopstick nucleates and
moves an independent vortex that might be placed in a desired
location. The beams then are kept fixed at their final destination
and subsequently linearly and adiabatically ramped down to
release the vortices that in turn are free to evolve without the
chopsticks being present. Figure 5 shows that this methodology
is indeed feasible for controllably creating, moving, and
releasing configurations bearing four, six, and eight vortices.
In principle, this method can be straightforwardly generalized
to even larger numbers of vortices as long as there is enough
room within the BEC to move the chopstick beams. As can
be observed from the last density distributions, the motion
and removal (ramping down) of multiple chopsticks has a
significant perturbative effect on the background density. In
fact, if the disturbances to the condensate are considered to be
too strong, it would be advantageous to increase the value
of the chemical potential in order to diminish the role of
interference of the resulting sound waves. For this purpose,
in our examples with multiple chopsticks we choose a slightly
larger value of the chemical potential (when compared to the
previous results with a single chopstick pair) of μ = 2. In view

FIG. 4. Similar to Fig. 2 but for an asymmetric vortex configu-
ration. While one beam is kept fixed after t = 110 at (10,0) μm, the
other beam is moved further until t = 200. Then both beams are kept
fixed in this asymmetric configuration and are linearly ramped down
within �t = 100. As a result, asymmetric vortex dipole dynamics
arises past the ramp-down time.
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FIG. 5. Controlled generation of four, six, and eight vortices.
Chosen parameters are chemical potential μ = 2, beam heights 2μ,
and beam widths bw = 6 μm. Upper set of panels: Two pairs of
beams initially located at (0,±8) μm are moved outward with v/c =
0.123 until t = 80, then their positions are kept fixed. From t = 80
until t = 280 the beams are linearly ramped down, the vortices are
finally released, and the time evolution is monitored. Middle panel:
Similar but for 3 pairs of beams initially located symmetrically at
a distance of 10 μm from the origin with linear ramp-down from
t = 70 until t = 270. Lower panel: Similar but for 4 pairs of beams
initially symmetrically located at a distance of 15 μm from the origin
and moved at a speed v/c = 0.15 and linearly ramped down from
t = 50 until t = 250.

of the disturbances created by a larger number of beams, we
found that starting close to the center of the BEC and moving
the beams outward is advantageous in comparison to starting
further outwards and moving the beams inward.

B. Nonneutral configurations

We now consider creating an odd number of vortices with
a charge imbalance of one, such that there is one more or
one fewer positively charged vortex compared with negatively
charged vortices. To create such a nonneutral distribution in
a controllable and repeatable manner we start by creating
a neutral configuration as discussed in the previous section

FIG. 6. Controlled generation of a single vortex for μ = 2, beam
height 2μ, and beamwidth bw = 6 μm. The initial pair of beams
located at (0,−20) μm is moved with v/c = 0.106 to (±10,0) μm.
One beam is then kept fixed at this position while the other one is
moved further outwards, dragging the associated vortex with it. At
t = 500 the former beam is ramped linearly down within �t = 100
to release the single vortex close to the condensate center. The chosen
grid size for this case is 749 × 749 resulting in a spatial discretization
with spacing dx = 0.26.

and then take one vortex out of the condensate. We first
demonstrate this procedure starting with a pair of oppositely
charged vortices, removing one of the vortices, and leaving
a single vortex that can then be repositioned at will. The
creation of a larger nonneutral configuration of vortices follows
a similar principle.

Figure 6 illustrates the ability to create a single vortex.
First the protocol follows the generation of two vortices as in
Fig. 2. When the beams have reached (±10,0) μm, one of the
beams is kept stationary at its position while the other beam is
moved further towards the edge of the condensate, dragging the
trapped vortex with it. Ideally, the vortex would be dragged
all the way out of the condensate. However, shortly before
reaching the edge of the condensate the vortex detaches from
the beam and this edge vortex starts circulating indefinitely
around the condensate (see Fig. 6 where the vortex is barely
visible in the last two density snapshots, but is clearly visible in
the corresponding phase profile). This type of “detachment”
is a general issue that is encountered when trying to “rid”
the configuration of individual vortices by moving one of the
beams out of the BEC in a direction that is normal to the edge
of the BEC. A number of pointers about how to bypass this
issue, most notably adjustments to the beam trajectory, and
relying on the dissipation stemming from thermal excitations,
is discussed below. As soon as the outgoing beam has reached
the edge of the condensate the first beam is linearly and
adiabatically ramped down to release the remaining single
vortex to undergo free time evolution.

While it is advantageous to reduce the beam velocity when
dragging the vortex out to allow the vortex to follow the beam
trajectory closer to the edge of the condensate (at the cost
of larger time scales), typically in our observations it is not
sufficient to drag the vortex all the way out of the BEC.
This is due to the fact that the density becomes small at
the condensate edge and thus the (density) contrast created
by the laser beam close to this edge is too small to pin or
drag a vortex. Nonetheless, we have found that the presence
of dissipation (typically present in all BEC experiments),
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FIG. 7. Similar to Fig. 6 but in the presence of dissipation, as
described by Eq. (8) with γ = 2 × 10−2.

as described by Eq. (8), can resolve this issue. Figure 7
depicts the results corresponding to Fig. 6 with the addition of
dissipation with γ = 2 × 10−2. As is evident from the figure,
at t = 1200 the edge vortex is already very close to the edge
of the condensate (as is visible in the phase profile) and has
completely left the condensate by t = 1600. Figure 8 shows
a similar case but for the experimentally more realistic value
γ = 2 × 10−3; see the relevant discussion in Ref. [33], as
well as in earlier works on coherent structures such as dark
solitons in Ref. [39]. In this case, the vortex is still visible at
t = 8000 and has completely left the condensate at t = 12 000.
We find the time scale for expelling the edge vortex from the
condensate—with a starting point at about t = 600 where the
dragging beam has reached the edge of the condensate—to
be approximately a factor ten times larger than that for
γ = 2 × 10−2. As the physical picture is qualitatively the same
but the (computational) time scales are considerably shorter in
the following we will always opt to use the value γ = 2 × 10−2

to obtain results in the presence of dissipation. It is relevant
to mention at this stage that the value of γ depends on the
temperature of the condensate. For instance, for a BEC of
sodium it was recently found that the relationship between the
phenomenological damping coefficient and the temperature
was monotonic (larger coefficient corresponding to higher
temperatures) [35]. Under these very recent experimental
conditions, values of γ such as 2 × 10−3 lie at the edge of
the accessible region of temperatures.

A more efficient protocol to drag a vortex out of the BEC
relies on adjusting the laser beam path such that its trajectory
becomes more azimuthal as the beam gets closer to the edge

FIG. 8. Similar to Fig. 7 but in the presence of a more realistic
dissipation value of γ = 2 × 10−3.

FIG. 9. Improved protocol to create a single vortex. Same as
Fig. 6 but with a circular trajectory (as indicated by the white line
in the left panel) instead of a straight line to drag the vortex out of
the condensate. Additionally, the velocity of the dragging beam is
reduced by 50% after t = 110. At t = 1000, when the latter beam
starts to leave the condensate, the other beam is ramped down linearly
within �t = 100.

of the BEC and thus mimicking the natural tendency of the
vortex to precess about the trap center. Figure 9 depicts this
improved protocol where one of the beams is moved on a
circular path of diameter equal to the Thomas-Fermi radius
(see white line) such that it leaves the condensate tangentially.
Additionally, the velocity of the dragging beam is reduced by
50% after t = 110. This results in the successful creation of
a single vortex at t = 1620 as the second vortex seems to be
completely removed from the BEC (it is not visible in the
density nor in the phase plot).

For the generation of three, five, or seven vortices with
a charge imbalance of one, the idea is the same: start with
a neutral configuration with four, six, or eight vortices (see
Fig. 5) and displace one beam outward with the aim of
removing a single vortex from the neutral configuration. More
specifically, after an even number of vortices is created,
all but one of the beams then are kept stationary at their
respective locations while the remaining beam is moved further
outward to ideally drag the trapped vortex all the way out of
the condensate. This is followed by linearly ramping down
the other beams and releasing the vortex configuration in
order for it to perform free (i.e., unaffected by the beams
beyond this time) time evolution. The results for this proposed
methodology are displayed in Fig. 10. The case for initially
four (and subsequently three) vortices is depicted in the top
two panels in Fig. 10. This case is more successful than for the
creation of a single vortex; i.e., here the remaining vortex has
nearly vanished in the background. The case corresponding
to initially six (and subsequently five) vortices is depicted in
the middle rows of panels in Fig. 10. In this case, the edge
vortex is still visible at t = 1200 but cannot be distinguished
from the background at t = 1600. Finally, the bottom rows of
panels in Fig. 10 illustrate the results for initially eight (and
subsequently seven) vortices. This case example is again fairly
successful in the sense that a potential edge vortex cannot be
distinguished from the background.

C. Comparison with vortex imprinting method

The dynamics of vortices can also be explored by imprinting
vortex solutions onto the ground-state BEC in the presence
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FIG. 10. Controlled generation of an odd number of three to
seven vortices for the same parameters and initial configurations as
in Fig. 5. Upper rows: At t = 80, three beams are kept fixed, while
beam number four is moved further outwards dragging one vortex out
of the condensate. The beam velocity is reduced to 25% of its original
value. After linearly ramping down from t = 1200 to t = 1400 the
other vortices are released from their beams. Middle rows: Similar
but for six vortices stemming from three pairs of beams. Five beams
are kept fixed at t = 65 and linearly ramped down from t = 600 to
t = 800, leading to a five-vortex configuration, while the other is
moved out of the condensate, again with reduced speed of 25% of
the original value. Bottom rows: Similar to the previous cases but
for four pairs of beams. Seven beams are kept fixed at t = 75 and
linearly ramped down from t = 800 to t = 1000 while one vortex is
dragged all the way out of the condensate, endowing the system with
a configuration of seven vortices of alternating charge.

of only the harmonic confinement. Such a technique has
been used successfully in generating coherent structures [40],
although it should be noted that typically in these experiments
only a phase imprinting is induced. The latter necessitates the
“morphing” of the density around the imprinting spot into a
vortex profile, a process which, in turn, generates considerable
sound wave emission clearly visible in some of the case
examples of Refs. [40]. Here, when we refer to imprinting,
we more accurately mean both phase and density engineering,
or “implanting” a vortex in the system, namely imprinting the

phase, concurrently with modulating the density in order to
produce an “as nearly exact as possible” vortex wave form
in the system. While the latter scenario is quite idealized and
not straightforwardly achievable practically in the laboratory,
our aim is to compare the dynamics of our produced vortices
via the chopsticks method (containing the density modulations
induced by the light beams, etc.) to “target” vortex dynamics
for a similar set of initial vortex locations.

In the following we compare the time evolution that is
initialized by the chopsticks method and compare it with
the results obtained for the vortex implanting method. It
should be stressed that while the chopsticks method generates
(sometimes large) sound waves in the condensate as well as
allowing vortices to move prior to fully ramping off the laser
beams, the implanting method generates the most pristine
setting with minimal sound creation and nearly “pure” vortex
dynamics. Note that this is a numerical comparison only, as
there have not been any demonstrations of phase engineering
and imprinting of arbitrary vortex distributions into a BEC.
We choose the case of three vortices, as displayed in the top
rows of Fig. 11. To initialize the vortex implanting method
we determine the positions and charge of the three vortices
(resulting from two sets of split beams as explained in the pre-
vious subsection) at t = 1400. The ground-state solution of the
BEC is then multiplied with the corresponding (normalized)
vortex solutions (obtained for a homogeneous background
BEC) at the desired locations (this is the “implanting” part).
Figure 11 clearly shows that the two methods generate a
nontrivially differing time evolution. While the qualitative
structure of the vortex positioning and trajectories when using
the chopsticks has been found to follow that of the “implanted”
vortex configuration with the same initial vortex positions, the
density modulations induced by the vortex generating beams
definitely affect the precise aspects of the vortex dynamics.

FIG. 11. Comparison of the chopsticks protocol and the vortex
implanting method for the example of the three vortices from Fig. 10
for the configuration at t = 1400 after releasing the vortices from
the beams (first column). For the vortex implanting method the time
evolution is initialized by a wave function with two negatively charged
vortices of charge located at (−10.025,−20.075) and (9.25,21.5)
and one positively charged vortex located at (−8.45,21.5) (second
column). Observable differences in the time evolution can be observed
in comparison to the time evolution generated by the chopsticks
method and the vortex implanting method’s dynamics (columns three
and four, respectively) due to the generation of sound waves in the
former method.
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FIG. 12. Vortex trajectories corresponding to the cases depicted
in (a) Fig. 11 and (b) Fig. 13. The orbits in blue correspond to the
chopsticks method while the red orbits correspond to the implanting
method.

The comparison of the corresponding trajectories using both
methods is depicted in Fig. 12(a).

Next, and for reasons of completeness, we investigate the
influence of dissipation on both cases. While the presence
of dissipation with γ = 2 × 10−2 again helps to expel the
edge vortex from the condensate that is visible at t = 1400
(and barely visible at t = 2000) for the vortex dragging
method it does not have a big influence on the motion of
the other three vortices closer to the BEC center. Also for the
vortex implanting case the influence is negligible; cf. Fig. 13.
Hence, unfortunately, in this case the presence of thermal
excitations does not considerably alleviate this discrepancy.
The comparison of the corresponding trajectories using both
methods is depicted in Fig. 12(b).

D. Repositories

Lastly, we explore the possibility of depositing several
vortices in so-called repository beams. The latter can be
important for various reasons in the form of persistent
currents [37,41], but also towards the monitoring of dynam-
ics of large vortex clusters aggregating with a single sign
of vorticity, so-called Onsager-Kraichnan condensates, also
thermodynamically representing negative temperature states;
see, e.g., the recent analysis of Ref. [42].

As an example, we investigate a configuration where two
stationary repository beams with large beam waist are located
in the BEC; cf. Fig. 14. The idea is to create one pair of oppo-
sitely charged vortices after another and deposit the positively
charged vortices in one of the repositories while the negatively

FIG. 13. Same as Fig. 11 but in the presence of dissipation with
γ = 2 × 10−2.

FIG. 14. Principle of repository beams: Two stationary large
beams with bw = 15 μm and beam height 2μ serve as repository
beams to collect vortices of equal charge. Vortices are created in
oppositely charged pairs by ramping up two chopstick beams with
bw = 6 μm at (0,−30) μm (at t = 0 they are already present) and
by moving the beams to the pinning sites at (±30,30) μm. When
the beams reach the pinning sites they are ramped down while new
chopstick beams are ramped up at (0,−30) μm. At t = 220 one
vortex is present in each repository beam; at t = 1870 seven vortices
are present in each pinning site. If a certain critical number of vortices
per pinning site is exceeded vortices start leaking out of the repository
beams; cf. panel for t = 1980 where a vortex has been expelled from
the repository beam. For this value of the chemical potential (μ = 4),
the grid size is increased to 1199 × 1199, and dx = 0.23.

charged vortices are deposited in the other repository beam.
In this way, persistent currents can be obtained [41]. The
vortex generation portion of the sequence follows the principle
illustrated in Fig. 2. When the chopsticks reach the repository
beams their position is kept fixed and they are linearly ramped
down while a new chopsticks pair is linearly ramped up and
another pair of vortices is created and dragged to the repository
beams. This procedure can be repeated until a critical number
of vortices is trapped in each repository beam. As soon as
a certain number of vortices—depending on the size of the
repository beam—is exceeded, vortices start leaking out of
the repositories. A natural constraint in that regard is that the
repository beamwidth should be larger than the product of the
number of vortices times their corresponding length scale, i.e.,
the healing length of the BEC.

To create a large number of vortices within this procedure
with as little disturbance of the condensate as possible, it
is advantageous to use a larger chemical potential. In the
following, we choose μ = 4. The size of the chopstick beams
is again bw = 6 μm. In Fig. 14 we display results for repository
beams with bw = 15 μm. The time evolution is initialized by
using the stationary state with two chopstick beams present
at (0,−30) μm and repository beams located at (±30,30)
μm. For a duration �t = 233 the chopstick beams are moved
towards (±30,30) μm, creating and dragging the first pair of
vortices with them. At the position of the repository beams the
chopstick beams are linearly ramped down within �t = 100
and the respective vortices are consequently deposited in the
repository beam. While the old chopstick beams are ramped
down a new chopsticks pair is linearly ramped up at the same
initial position as the former, again within �t = 100. Then the
whole procedure is repeated and the second vortex dipole pair
is created, dragged along, and deposited, respectively, within
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FIG. 15. Similar to Fig. 14 but with larger chemical potential
μ = 5 and larger repository beams with bw = 30 μm. In this way
ten vortices can be trapped per repository beam. Within �t = 265
the dragging beams are moved toward the repositories and ramped
up/down within �t = 100. At t = 3550, the repository beams are
linearly ramped down within �t = 100 to release the vortices towards
subsequent free time evolution. A slight amount of sound emission
is present in the dynamics due to the density modulations imposed
by the repository beams. For this value of the chemical potential
(μ = 5) the grid size is further increased to 1499 × 1499, resulting
in dx = 0.21.

the repository beams. For the chosen size of the repository
beams seven vortices can be placed into each beam. After this
critical number has been reached, vortices start leaking out of
the repository beams. At t = 1980 the first vortex has been
expelled from the repository beam.

To accommodate even more vortices within the repositories,
we increase the chemical potential to μ = 5 and the size of the
repository beams to 30 μm. For these parameters ten vortices
can be deposited in each repository; cf. Fig. 15. Next, both
the chopstick and the repository beams are linearly ramped
down within �t = 100 to release the vortices towards free
time evolution. Figure 16 shows the same protocol as in Fig. 15
but in the presence of dissipation with γ = 2 × 10−2. It can be
seen that the introduction of dissipation is, in fact, beneficial:
the disturbances (relevant sound waves) to the atomic cloud
due to the density modulations induced by the repositories,
which can be seen in Fig. 15, are considerably smoothed out
in the dissipative case.

FIG. 16. Same as Fig. 15 but in the presence of dissipation with
γ = 2 × 10−2. Notice that the sound waves have been chiefly expelled
from the BEC, enabling a more pristine monitoring of the vortex
dynamics.

This specific configuration with two repository beams can
easily be modified to other interesting configurations. Note
that a repository beam sitting on the edge of the condensate
can serve as a location to trap edge vortices that can arise when
a vortex is supposed to be taken out of the condensate as in
Fig. 6 in a reproducible manner. However, note that our results
demonstrate that the presence of dissipation helps to get rid
of the edge vortices while the vortices closer to the center are
less affected by the latter.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have numerically explored a
mechanism that enables the production and manipulation
of multiple quantized vortices, essentially at will, inside an
atomic Bose-Einstein condensate. The use of lasers as vortex
“optical tweezers” in a judicious manner, so as to gradually
create the phase profile associated with a pair of oppositely
charged vortices, as well as to pin vorticity and create persistent
current, enabled us to locate vortices at various positions within
the BEC by moving the laser beams. We were subsequently
able to transfer these vortices at will, including moving them
outside the BEC or positioning them within a repository beam.
Repeating the process either with multiple optical beams or
after the delivery of the first pair to the repository beams,
starting the process anew, we were able to produce arbitrary
neutral and nonneutral vortex distributions. Naturally, the
process has a number of limitations, such as the emergence
of density modulations due to the carrying beams (which also
to some extent affect the vortex motions), or in some cases the
difficulty of carrying individual vortices outside the condensate
(due to the so-called “detachment” from the beam in regions
of low density near the condensate rims). With respect to most
of these aspects, the contribution of thermal fluctuations in the
context of the so-called dissipative Gross-Pitaevskii equation is
beneficial, enabling the outward motion of vortices and also the
partial reduction of sound waves. The method is also generally
limited by the number of laser beams of finite width that can
be located and moved within a BEC of finite radius.

This technique creates a broad set of possibilities that
are quite worthwhile for subsequent experimental and fur-
ther numerical exploration. As far as we know, no other
technique available in the literature is as versatile towards
creating/engineering multiple vortices while selecting their
charge and position distributions at will. Constructing and
understanding the dynamics of such vortices and vortex
clusters [43,44], especially in the context of anisotropy where
they can be robust, e.g., in collinear states [45,46], and
exploring more systematically their stability is now a tractable
and experimentally realizable topic. Further studies oriented
towards devising methods of decreasing the generation or
effects of residual sound waves so as to enable a more direct
engineering of free-vortex states and initialization and study
of vortex dynamics would certainly be desirable. This would
be especially important towards being able to use the particle
picture developed for vortices (as well as for dark solitons
in 1D and vortex rings in 3D) to understand subsequent
vortex dynamics. However, it should be highlighted here that
our results are only a first step towards the creation of the
relevant vortex patterns, while a more systematic treatment
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of the thermal density and phase fluctuations is worthwhile
to consider in future work; cf. e.g. [47]. Finally, extending
these types of methods to higher dimensional BECs in three
dimensions in the case of vortex lines and vortex rings would
be of particular interest in its own right.
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[10] R. Navarro, R. Carretero-González, P. J. Torres, P. G. Kevrekidis,
D. J. Frantzeskakis, M. W. Ray, E. Altuntaş, and D. S.
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Dynamics of vortex dipoles in anisotropic Bose-Einstein con-
densates, SIAM J. Appl. Dyn. Syst. 14, 699 (2015).

[28] E. C. Samson, K. E. Wilson, Z. L. Newman, and B. P. Anderson,
Deterministic creation, pinning, and manipulation of quantized
vortices in a Bose-Einstein condensate, Phys. Rev. A 93, 023603
(2016).

[29] I. Hans, J. Stockhofe, and P. Schmelcher, Generating, dragging,
and releasing dark solitons in elongated Bose-Einstein conden-
sates, Phys. Rev. A 92, 013627 (2015).

[30] Quantum Gases: Finite Temperature and Non-Equilibrium
Dynamics, edited by N. Proukakis, S. Gardiner, M. Davis, and
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