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Implementation of the multiconfiguration time-dependent Hatree-Fock method for general
molecules on a multiresolution Cartesian grid
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We report a three-dimensional numerical implementation of the multiconfiguration time-dependent Hartree-
Fock method based on a multiresolution Cartesian grid, with no need to assume any symmetry of molecular
structure. We successfully compute high-harmonic generation of H2 and H2O. The present implementation
will open a way to the first-principles theoretical study of intense-field- and attosecond-pulse-induced ultrafast
phenomena in general molecules.
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I. INTRODUCTION

The dynamics of atoms and molecules under intense (typi-
cally, �1014 W/cm2) laser pulses is of great interest in a variety
of fields such as attosecond science and high-field physics
[1–3], with a goal to directly measure and manipulate
electronic motion. Numerical simulations of such electron
dynamics are a challenging task [4]. Direct solution of the time-
dependent Schrödinger equation (TDSE) cannot be applied
beyond He, H2, and Li due to a prohibitive computational
cost. Thus, one of the major recent directions attracting
increasing interest is the multiconfiguration self-consistent-
field (MCSCF) approach, which expresses the total wave
function �(t) as a superposition [5–9]

|�(t)〉 =
∑

J

cJ (t)|J 〉 (1)

of Slater determinants |I 〉 built from the spin orbitals |φ(i,σ )〉 =
|φi〉 ⊗ |σ 〉, where {φi} and σ ∈ {α,β} denote one-electron
spatial orbital functions and spin eigenfunctions, respectively.
Different variants with this ansatz have recently been actively
developed [4].

The time-dependent configuration-interaction (TDCI)
methods take the orbital functions to be time independent
and propagate only CI coefficients cI (t). Greenman et al.
[10] have implemented its simplest variant, i.e., the time-
dependent configuration-interaction singles (TDCIS) method,
to treat atomic high-field processes. In this method, only up to
single-orbital excitation from the Hartree-Fock (HF) ground
state is included. Bauch et al. [11] have recently developed TD
generalized-active-space CI based on a general CI truncation
scheme and discussed its numerical implementation for atoms
and diatomic molecules.

In the other class of MCSCF approaches, not only CI
coefficients but also orbital functions are varied in time.
The multiconfiguration time-dependent Hartree-Fock (MCT-
DHF) method [12,13] considers all the possible electronic
configurations for a given number of spin orbitals. As its
flexible generalizations, we have recently formulated the
TD complete-active-space self-consistent field (TD-CASSCF)
[8] and TD occupation-restricted multiple-active space (TD-
ORMAS) [9] methods. The latter is valid for general MCSCF

wave functions with arbitrary CI spaces [4,14], including,
e.g., the TD restricted-active-space self-consistent-field (TD-
RASSCF) theory developed by Miyagi and Madsen [15].
Numerical implementations of MCTDHF for atoms as well
as diatomic molecules have been reported for the calculation
of valence and core photoionization cross sections [16]. We
have also implemented TD-CASSCF for atoms by expanding
orbital functions with spherical harmonics and successfully
computed high-harmonic generation and nonsequential double
ionization of Be [17].

Practically, all the existing implementations are intended
for atoms and diatomic molecules, exploiting the underlying
symmetries with either the spherical [18–22], cylindrical
[23–26], or prolate spheroidal [27–30] coordinates.

In this study, we report a three-dimensional (3D) numerical
implementation of MCTDHF based on a multiresolution
Cartesian grid, with no need to assume any symmetry of molec-
ular structure; this can, in principle, be applied to any molecule.
With the use of a multiresolution finite-element representation
of orbital functions, we can fulfill a high degree of refinement
near nuclei and, at the same time, a simulation domain large
enough to sustain departing electrons. As demonstrations,
we successfully compute high-harmonic generation (HHG)
from H2 and H2O. The present implementation will open a
way to the first-principles theoretical study of intense-field-
and attosecond-pulse-induced ultrafast phenomena in general
molecules.

This paper is organized as follows. In Sec. II, we briefly
summarize the MCTDHF method. Section III describes the
multiresolution Cartesian grid. Section IV explains the numeri-
cal procedure that we implement. In Sec. V, we show examples
of simulation results for He, H2, and H2O. Conclusions are
given in Sec. VI. Atomic units are used throughout unless
otherwise stated.

II. MCTDHF

In the MCTDHF method [12,13], the sum in Eq. (1) runs
over the complete set of

(
M

Nα

)(
M

Nβ

)
Slater determinants |J 〉 that

can be constructed from Nα electrons with spin projection
α,Nβ electrons with spin projection β, and M spatial orbitals.
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Their spin projection is consequently restricted to Sz = (Nα −
Nβ)/2.

Let us consider a Hamiltonian in the length gauge,

H (t) = H1(t) + H2, (2)

H1(t) =
N∑

i=1

(
−∇2

i

2
−

∑
a

Za

|xi − Xa| + xi · E(t)

)
, (3)

H2 =
N∑

i=1

i−1∑
j=1

1

|xi − xj | , (4)

where N = Nα + Nβ,Xa and Za are the charge and position of
the ath atom, respectively, and E(t) is the laser electronic field.
One can derive the equations of motion for the CI coefficients
cJ (t) and spatial orbital functions φi(t), resorting to the time-
dependent variational principle [31–33],

δ

(∫ t2

t1

〈�|H (t) − i∂t |�〉dt

)
= 0, (5)

with additional constraints for uniqueness [12],

〈φj |φk〉 = δj,k,

〈
φj

∣∣∣∣∂φk

∂t

〉
= 0. (6)

The equations of motion are

iċJ =
∑
K

〈J |H (t)|K〉cK (7)

and

i|φ̇i〉 = P̂

⎛
⎝H1(t)|φi〉 +

∑
jklm

(ρ−1)ij ρ
(2)
jklmĝlm|φk〉

⎞
⎠,

(8)

with

P̂ = 1̂ −
M∑

j=1

|φj 〉〈φj |, (9)

ρi,j =
∑

σ

〈�|â†
iσ âjσ |�〉, (10)

ρ
(2)
jklm =

∑
στ

〈�|â†
jσ â

†
lτ âmτ âkσ |�〉, (11)

glm(x) =
∫

dx
′
φ∗

l (x
′
)

1

|x − x′ |φm(x
′
), (12)

where 1̂ denotes the identity operator and â
†
iσ and âiσ are

the Fermion creation and annihilation operators, respectively,
associated with spatial orbital i and spin σ . Equation (12) is
computed by solving the Poisson equation,

∇2glm(x) = −4πφ∗
l (x)φm(x). (13)

It is convenient to rewrite Eq. (8) as

iφ̇i = P̂ [T φi + Wi(t)], (14)

where T is kinetic energy.

III. MULTIRESOLUTION CARTESIAN GRID

We discretize spatial orbital functions on a multiresolution
Cartesian grid, inspired by the work of Bischoff and Valeev
[34] and the finite-volume method [35]. Figure 1(a) schemat-
ically shows how to generate it. We start from an equidistant
Cartesian grid composed of cubic cells. If a given cell is too
large to represent orbital functions with sufficient accuracy,
typically near the nuclei, we subdivide it into eight cubic cells
with half the side length of the original cell. We continue
the subdivision until accuracy requirements are satisfied. The
center of each cube is taken as the grid point representing the
cell.

The Laplacian ∇2φ of orbital function φ(r,t) is evaluated
at each grid point by finite difference. We first illustrate it for
a one-dimensional case for simplicity in Fig. 1(b). One can
evaluate the second derivative of a function f (x) at grid point
xi as

d2

dx2
f (xi) ≈ g+

i − g−
i

�xi

, (15)

where �xi is the size of cell i and the first derivatives g±
i at

the cell boundaries are approximated by

g+
i ≈ 2[f (xi+1) − f (xi)]

�xi + �xi+1
, (16)

g−
i ≈ 2[f (xi) − f (xi−1)]

�xi + �xi−1
. (17)

We show the extension to two dimensions in Fig. 1(c).
The grid points are marked by red and blue circles. In
order to evaluate the second derivative with respect to the
vertical direction at the center of cell i, we need the first
derivative evaluated at the cell boundary marked by the
orange triangle, for which we need, in turn, the value of
the function at the position marked by the star in cell i + 1.
We approximate this latter by the value fi+1 ≡ f (ri+1) at
the grid point, i.e., the center of the cell i + 1. Although
inferior in terms of accuracy, this scheme is much more
advantageous in terms of computational cost over conventional
methods such as the alternating-direction implicit method
[36], moving least squares [37,38], and symmetric smoothed
particle hydrodynamics [39,40].

Then, in the 3D case, we evaluate the Laplacian ∇2φ(r) as

∇2φ(ra) ≈ Laaφ(ra) +
∑

b

′Labφ(rb), (18)

where a and b are cell indices, the primed sum is taken over
the cells adjacent to the ath cell, and

Laa = −
∑

b

′Lab, (19)

Lab = l2
b

l2
a

2

la + lb

1

la
(a �= b, lb < la), (20)

Lab = 2

la + lb

1

la
(a �= b, lb � la), (21)

with la being the side length of the ath cell. If lb < la , a face
of a cell of side length la would contact with l2

a/ l2
b adjacent

cells of side length lb. The prefactor l2
b/ l2

a of Eq. (20) takes
into account the weight of each of the latter.
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FIG. 1. (a) Schematic of the Cartesian-based multiresolution grids. (b) Schematic of the computation of a second-order differential at
one-dimensional irregular grids. (c) Schematic of the computation of the first differential at the surface of the grid at two-dimensional irregular
grids. Real grid points are red and blue circles.

IV. NUMERICAL PROCEDURE

We present the essential steps of MCTDHF simulations
using a multiresolution Cartesian grid as follows:

Step 1: Generation of grid and Laplacian ma-
trix. We consider a cuboid simulation region V cen-
tered at the origin: {x = (x,y,z) ∈ R2 | x ∈ [−xL,xL],y ∈
[−yL,yL],z ∈ [−zL,zL],xL > 0,yL > 0,zL > 0}. We set the
locations of the grid points and prepare the Laplacian matrix
elements Lab using Eqs. (19)–(21). These are done only once
in the beginning.

Step 2: Computation of ρ and ρ(2). Each time step starts
with the computation of ρ and ρ(2), using Eqs. (10) and (11),
respectively.

Step 3: Computation of glm. We solve the Poisson equation
(13) to obtain glm via the conjugate residual method [41,42].
The condition at the simulation boundary ∂V is given by the
multipole expansion

glm(xbound) =
∫

V

1

|xbound − x′|φ
∗
l (x′)φ∗

m(x′)dx′ (22)

=
∞∑
l=0

∫
V

|x′|lPl(cos θ )

|xbound|l+1
φ∗

l (x′)φ∗
m(x′)dx′ (23)

for xbound ∈ ∂V , where Pl(z) denotes the Legendre polynomial
and θ is the angle between x′ and xbound. In the present study, we
truncate the sum in Eq. (23) at l = 2 (second-order multipole
expansion).

Step 4: Time propagation of cJ and φi . We solve the
equations of motion (7) and (14) using a second-order

exponential integrator [43,44]. Equation (7) is integrated as

c
(1)
J (t + �t) = cJ (t) + �t

∑
K

〈J |H |K〉cK, (24)

c
(2)
J (t + �t) = c

(1)
J (t + �t)

+ �t
∑
K

〈J (1)|H |K (1)〉c(1)
K (t + �t), (25)

cJ (t + �t) = cJ (t) + c
(2)
J (t + �t)

2
, (26)

where |J (1)〉 with superscript (1) denotes the Slater determinant
constructed with orbital functions φ

(1)
i defined below in

Eq. (27). Equation (14) is integrated as

φ
(1)
i = φi(t) + P̂

1

1 + i�tT /2
[(−i�tT )φi(t) + �tWi(t)],

(27)

φ
(2)
i (t + �t) = φ

(1)
i + P̂ (1) 1

1 + i�tT /2

× [
(−i�tT )φ(1)

i + �tWi(t + �t)
]
, (28)

P̂ (1) = 1̂ −
M∑

j=1

∣∣φ(1)
j

〉〈
φ

(1)
j

∣∣, (29)

φi(t + �t) = φ
(2)
i (t + �t) + φi(t)

2
. (30)

In Eqs. (27) and (28), (1 + i�tT /2)−1 is operated by the
conjugate residual method [41,42].
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Step 5a: Absorbing boundary (only in real-time propaga-
tion). To prevent the reflection from the grid boundaries, after
each time step, φi is multiplied by a cosine mask function
M(x,y,z) that varies from 1 to 0 between the absorption
boundary set at x = x0,y = y0, and z = z0 (0 < x0 < xL,0 <

y0 < yL,0 < z0 < zL) and the outer boundary ∂V [45,46]:

M(x,y,z) = C

( |x| − x0

xL − x0

)
C

( |y| − y0

yL − y0

)
C

( |z| − z0

zL − z0

)
,

(31)

where

C(x) = 1 (x � 0), cos(x) (x > 0). (32)

Alternatively, one may use, e.g., exterior complex scaling
[47,48].

Step 5b: Rescaling of cJ and orthonormalization of φi (only
in imaginary-time propagation). We obtain the initial ground
state via the imaginary-time propagation [49]. After each
(imaginary) time step, cJ is rescaled so that

∑
J |cJ |2 = 1, and

φi is orthonormalized through the Gram-Schmidt algorithm.
Step 6: End of time step. We go back to step 2 to start the

next time step.

V. EXAMPLES

A. Benchmark: HHG from helium

We simulate the HHG from a helium atom located at the
origin. The side length of the cell is set to be 0.6 (r > 4),
0.3 (2 < r < 4), and 0.15(r < 2), respectively, depending
on the distance r of the grid point at the center of each
cell and the origin. We also set xL = 70,yL = zL = 35 and
x0 = 0.7xL,y0 = 0.7yL,z0 = 0.7zL. The time step size �t is
set to be 0.0025. We consider a laser pulse linearly polarized
along the x axis, whose electric field E(t) is given by

E(t) = Eenv(t) sin ωt, (33)

Eenv(t) =

⎧⎪⎨
⎪⎩

ωt/2π (ωt < 2π ),

2 − ωt/2π (2π < ωt < 4π ),

0 (otherwise),

(34)

FIG. 2. HHG spectrum of helium computed by multiresolution
MCTDHF (red solid line) and method of [17] (black dashed line).
The arrow represents the cutoff energy.

with a central wavelength of 400 nm and a peak intensity
of 8 × 1014 W/cm2. For such an ultrashort pulse, the cutoff
energy predicted by the semiclassical three-step model [50,51]
is Ip + 2.07Up = 49.6 eV, which corresponds to the 16.0th
order, where Ip is the ionization potential and Up is pondero-
motive energy. The harmonic spectrum is obtained from the
Fourier transform of the dipole acceleration.

In Fig. 2 we compare the HHG spectrum calculated with
the present implementation with that calculated with another

FIG. 3. Calculated high-harmonic spectra from a hydrogen
molecule. See text for laser parameters. (a) Comparison of the results
with M = 1 (blue dotted line), M = 2 (black solid line), and M = 3
(purple solid line) for laser polarization parallel to the molecular
axis. Yellow dashed line: spectrum from H2

+ multiplied with the
ionization probability of H2 (2.4 × 10−4). (b) Comparison of the
results with l0 = 0.7 (red solid line) and 0.55 (black dashed line).
The calculation was done with M = 1 for polarization parallel to
the molecular axis. (c) Result for laser polarization 30◦ from the
molecular axis [polarization direction is (cos 30◦, sin 30◦,0)]. M = 3
was used. Red solid line: harmonics emitted in the y direction; black
dashed line: harmonics emitted in the x direction. Arrows in each
panel indicate the cutoff positions expected for H2 (22.1th order) and
H2

+ (34.6th order).
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TABLE I. Ground-state energy (a.u.) of a hydrogen molecule,
obtained by relaxation in imaginary time. The values in the column
labeled “0.7∗” are obtained with grids displaced parallel to the x axis
by 0.025 a.u.

Number of Largest cell side length l0

orbitals M 0.7 0.7∗ 0.6 0.55

1 −1.83661 −1.83622 −1.84318 −1.84123
2 −1.85451 −1.85467 −1.86164 −1.85964
3 −1.86218 −1.86233 −1.86925 −1.86723
6 −1.87329 −1.87342 −1.88027 −1.87756

implementation in spherical coordinates [17]. One can see that
they agree with each other very well.

B. HHG from a hydrogen molecule

Next, we simulate the HHG from molecular hydrogen
where two hydrogen atoms are located at (±0.7,0,0), respec-
tively. The side length of the cell is set to be l0 (r0 > 4), l0/2
(2 < r0 < 4), and l0/4 (r0 < 2), respectively, where l0 is the
side length of the largest cells (see Table I for its values). We
also set xL = yL = zL = 27 and x0 = 0.7xL,y0 = 0.7yL,z0 =
0.7zL. The time step size �t is set to be 0.01.

The ground-state energy, obtained through relaxation in
imaginary time, is shown in Table I, where M is the number of
orbitals. It consistently tends to the literature value −1.8884
a.u. [52], with an increasing number of orbitals. The slight
dependence on M and l0 has only a small impact on calculated
harmonic spectra, as we will see below in Figs. 3(a) and 3(b).

The values in the column labeled “0.7∗” are obtained with
grids displaced parallel to the x axis by 0.025. One can see
that the resulting loss of grid symmetry with respect to the yz

plane also has only a small impact.
Let us consider a linearly polarized laser pulse with a central

wavelength of 800 nm, a peak intensity of 1 × 1014 W/cm2,
and an eight-cycle sine-squared envelope,

E(t) = E0 sin2(ωt/16) cos(ωt). (35)

Figure 3 presents the HHG spectra for laser polariza-
tion parallel to the molecular axis [the x axis; Figs. 3(a)
and 3(b)] and 30◦ from the molecular axis [Fig. 3(c)]. The
cutoff energy predicted by the semiclassical three-step model is
34.3 eV, which corresponds to order 22.1. One can see that the
simulation is converged with respect to the number of orbitals
[Fig. 3(a)] and grid spacing [Fig. 3(b)]. Our multiresolution
Cartesian-grid MCTDHF, with no a priori assumption of
symmetry, can also handle laser polarization oblique to the
molecular axis [Fig. 3(c)].

In Fig. 3 we can clearly see the second plateau, somewhat
weaker than the first one, extending beyond the cutoff (approx-
imately order 22.1). The second cutoff position is consistent
with the value (53.6 eV, or the 34.6th order) predicted by
the three-step model with the ionization potential of H2

+
(34.7 eV). Hence, based on the speculation that the second
plateau harmonics are generated from H2

+ produced via
strong-field ionization, we have simulated the HHG from this
molecular ion with the same laser parameters. The obtained
harmonic spectrum multiplied by the ionization probability of
H2 (2.4 × 10−4) is plotted as a yellow dashed line in Fig. 3(a).

FIG. 4. High-harmonic spectra from a water molecule, calculated with M = 5 (dashed) and M = 6 (solid), for laser polarization along (a)
the x axis (b) the y axis (c) the z axis, as indicated in each panel. Laser polarization in (c) is perpendicular to the plane of the molecule. See
text for laser parameters.
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The spectrum is much weaker than the second plateau from
H2.

Presumably, the harmonic response from H2
+ is sub-

stantially enhanced by the action of the oscillating dipole
formed by the recolliding first electron ejected from the
neutral molecule and the neutral ground state. This mechanics
is similar to enhancement by an assisting harmonic pulse
[53–56], but the enhancement is due to direct Coulomb force
from the oscillating dipole, rather than harmonics emitted
from it. In the words of the semiclassical three-step model,
the recolliding first electron virtually excites H2

+, facilitating
second ionization. Thus, electron-electron interaction plays
an important role in high-harmonic generation in some
cases (see also [57]), whereas HHG is usually considered a
predominantly single-electron process.

C. HHG from a water molecule

As an example of application to molecules of lower
symmetry, we simulate the HHG from a water molecule with
its oxygen atom located at the origin and two hydrogen atoms
at (±1.4299,1.10718,0). The side length of the cell is set to be
0.6 (r0 > 4), 0.3 (2 < r0 < 4), and 0.15 (r0 < 2), respectively,
where r0 is the distance from the nearest atom. The outer
boundary xL,yL,zL is set to be 60 (axis parallel to the
polarization) and 30 (axis perpendicular to the polarization),
and the absorption boundary x0,y0,z0 is set to be 0.7 times
as long as the outer boundary. The time-step size �t is
set to be 0.0025. We use the same laser pulse shape as in
Sec. V A. The cutoff energy predicted by the semiclassical
three-step model is 37.3 eV, which corresponds to the
12.0th order.

Figure 4, which presents the harmonic spectra for three
different directions of laser polarization, demonstrates the high
flexibility of the multiresolution Cartesian-grid MCTDHF im-
plementation. One can see that the curves obtained with M = 5
and 6 almost overlap with each other. The simulation with
M = 6 took ∼28 days on a single node with two hexa-core
3.33-GHz Xeon processors. In this case, the computational

bottleneck was the solution of Poisson’s equation (step 3 in
Sec. IV). We expect that the distributed parallelization of the
code will substantially reduce the computational time, and the
extension to TD-CASSCF [8] and TD-ORMAS [9] methods
will further extend the applicability to larger systems.

VI. CONCLUSION

We have numerically implemented the MCTDHF method
on a multiresolution Cartesian grid. Whereas previous ap-
proaches have relied on the underlying symmetries of the
simulated atoms and molecules, the present implementation
offers a flexible framework to describe strong-field and
attosecond processes of real general molecules. Extension to
computationally more compact methods such as TD-CASSCF
[8] and TD-ORMAS [9] will be rather straightforward and
enable application to large molecules.

As demonstrations, we have successfully calculated high-
harmonic spectra from He, H2, and H2O. As the presence of the
second plateau in Fig. 3 implies, the present implementation
will uncover yet unexplored multielectron, multichannel, and
multiorbital effects, which only first-principles simulations can
reveal.
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