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We report our detailed analysis of a tabletop system for the measurement of the weak-force-induced electric
dipole moment of a ground-state hyperfine transition carried out in an atomic beam geometry. We describe an
experimental configuration of conductors for application of orthogonal rf and static electric fields, with cavity
enhancement of the rf field amplitude, that allows confinement of the rf field to a region in which the static
fields are uniform and well characterized. We carry out detailed numerical simulations of the field modes and
analyze the expected magnitude of statistical and systematic limits to the measurement of this transition amplitude
in atomic cesium. The combination of an atomic beam with this configuration leads to strong suppression of
magnetic dipole contributions to the atomic signal. The application of this technique to the measurement of
extremely weak transition amplitudes in other atomic systems, especially alkali metals, seems very feasible.
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I. INTRODUCTION

Laboratory measurements of very weak atomic transitions
that violate the usual parity selection rules are a means
of determining the weak force at low collision energies
[1–5]. The component of this parity nonconserving (PNC)
electric dipole transition moment EPNC that is induced by the
weak-force coupling between nucleons has become of great
interest in recent years [6–13]. These nuclear spin-dependent
(NSD) contributions to EPNC are expected to result from
the nuclear anapole moment of the nucleus, with additional
smaller contributions from the weak neutral axial-vector
nucleon vector electron (An,Ve) current, and the combined
effect of the hyperfine interaction and the (Vn,Ae) current
[10,14–17]. To date, the only nonzero determination of NSD
contributions to EPNC in any element was based upon the
difference between measurements of EPNC/β in atomic cesium
[18], where β is the vector polarizability for the transition, on
two different hyperfine components of the 6s → 7s transition:
the F = 3 → F ′ = 4 and the F = 4 → F ′ = 3 lines. EPNC/β

on these lines differed by ∼5% of their average value.
This NSD factor was much larger than was expected, and
theoretical efforts [3,6,10,14,19] to understand this result have
not been successful. Meson exchange coupling constants of
the so-called DDH model [20] derived from this result do
not agree well with results derived from measurements of
the asymmetry in the high-energy scattering of light nuclei
[3,21–24]. While the applicability of the DDH model to such
a large atom is questionable, there is nonetheless strong interest
in understanding the NSD of large nuclei, as evidenced by the
many efforts under way worldwide in a variety of systems.
Laboratory efforts have sought, or are currently under way, to
determine the anapole moment of other nuclei, including Tl
[25], Yb [11,26–28], Fr [29–31], Ba+ [32–34], Ra+ [35–38],
and Yb+ [39] and several molecular systems as well [9,13].
Differences between EPNC on various hyperfine lines for these
systems could reveal the nuclear anapole moment of these
systems. Comparison between different isotopes of the same

species could remove the dependence of the determination
on precise atomic theory, subject to the ability to correct for
variations in the nuclear structure among the isotopes [40–44].

Measurements performed on a hyperfine transition between
components of an atomic ground state present an attractive
alternative to the above schemes for determining the NSD
contributions to EPNC. This moment contains only the NSD
contribution, simplifying the measurement, and in many cases
the value of EPNC on ground-state transitions is predicted to be
larger than the weak amplitude between different electronic
states [12]. Of particular interest is a large program on
francium [7], one goal of which is to measure EPNC on
transitions between hyperfine levels of the ground state of
this unstable heavy element at TRIUMF. To carry out these
measurements, the development of techniques for cooling and
trapping these species in a magneto-optical trap and carrying
out the measurements in this restricted space is necessary.

The measurement in atomic cesium that we have under
development in our laboratory, which we describe in this work,
has several features in common with those of the francium
effort. As a ground-state transition, atomic coherences are
long lived, and we exploit the interference between the direct
transition driven by a radio-frequency (rf) field and the Raman
process driven by a two-frequency cw laser field in a derivation
of the two-pathway coherent control techniques that we have
developed for similar measurements [45,46]. Atomic cesium
offers several benefits over the francium system that are derived
from an atomic beam geometry: That is, a greater atomic
density, the capability of sequential preparation, interaction,
and detection, and a less restrictive experimental environment.
Furthermore, the beam geometry allows us to spatially separate
the interaction regions for the different coherent fields and to
highly suppress the magnetic dipole contributions to the atomic
signal, a primary challenge in ground-state measurements of
weak signals. In this work, we discuss how the two-pathway
interference method can be used to determine the ratio of the
PNC amplitude to the Stark vector polarizability β. While our
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primary interest is in atomic cesium, the technique is generally
applicable in any of the stable alkali-metal species.

We describe in detail the measurement requirements and
the capability of our technique. The optimal arrangement uses
rf and static electric fields that are oriented in perpendicular
directions, and the rf field should be confined to a space
within which the static field is uniform. These requirements
can be satisfied by a parallel-plate transmission line (PPTL)
configuration to which cylindrical reflectors (to form an rf
resonant cavity) and isolated conducting pads (for application
of the orthogonal dc field) have been added. We report the
results of our detailed numerical analysis of the electric and
magnetic fields supported by this structure, and we use the
magnitudes of the field components to estimate the residual
systematic effects that one should expect in a determination of
EPNC in atomic cesium.

This paper is organized as follows. In Sec. II, we discuss
the transition probability of a two-level atom interacting with
a resonant rf field and a two-frequency optical field through a
Raman interaction. We show that, when a variable dc electric
field is applied, this coherent control process allows one to
determine EPNC/β. We then discuss in Sec. III the various
transition amplitudes, including the magnetic dipole, Stark-
induced electric dipole, and weak-induced electric dipole, for
the transition between hyperfine levels of the ground state of
an alkali-metal atom. We present an estimate of the signal
size in Sec. IV, with an estimate of the statistical uncertainty,
and review the benefits of carrying out the measurement in
a standing-wave cavity for suppression of magnetic dipole
contributions in Sec. V. In the following section, we introduce
the PPTL structure and describe the field modes supported
by it. Finally, we analyze the magnitudes of the dominant
residual contributions to the measurement ofEPNC and consider
the effects of the distribution of atomic velocities in the
beam.

II. THE COHERENT CONTROL SCHEME

We employ the two-pathway coherent control scheme for
sensitive measurement of weak moments. This technique is
based on the interference between various optical interactions
driven by two or more coherently related fields. We developed
and employed this technique on measurements of the magnetic
dipole transition moment M on the 6s 2S1/2 → 7s 2S1/2 transi-
tion in atomic cesium [45,46]. The Fr collaboration bases their
measurements on this technique also [7]. In this section, we
describe the principles behind this technique, with particular
attention paid to a transition between hyperfine components
of a ground-state system in which both states are long lived.
We show how this measurement can yield a determination of
EPNC/β independent of the profile or amplitude of the rf field
that drives the transition.

We consider a sinusoidal wave of amplitude εrf and
frequency ωrf , incident upon a two-level atom with hyperfine
components ψi and ψf of the ground state, of energy Ei and
Ef , respectively. We choose the field to be continuous wave,
but spatially varying, such that as the atoms move across the
interaction region, they effectively see a time-varying field.
When the atoms are initially prepared in a single hyperfine
component ψi and when the field components are chosen so

FIG. 1. An abbreviated energy level diagram showing the relevant
ground-state levels. We prepare the cesium atoms in one hyperfine
component of the ground state (F,m), where m = ±F . Through the
interactions with the rf field and the optical field, some of the atoms
are transferred to the level (F ′,m′). In this figure, we show (3,3) as
the initial state and (4,4) as the final state.

as to couple the initial state to a single final state ψf , the
atomic system is very closely described as a two-level system,
and we can write the state of the atoms using the time-varying
amplitudes ci(t) and cf (t) as

ψ(t) = ci(t)ψie
−iωi t + cf (t)ψf e−iωf t .

The time evolution of the system is described in terms of the
Hamiltonian H0 + V int, where H0 is the atomic Hamiltonian
and V int describes the interaction between the atom and the
field. In this work, we consider the weak-force-induced electric
dipole interaction V int

PNC, the Stark-induced electric dipole
interaction V int

St , and the magnetic dipole interaction V int
M of

the atom with the rf field, plus a Raman interaction V int
Ram of

the atom with a two-frequency laser field, all of which we
describe in more detail later, and write V int as the sum of the
individuals

V int = V int
PNC + V int

St + V int
M + V int

Ram.

We illustrate these interactions schematically in Fig. 1.
When the atoms exit the interaction region, the probability

that they are in state ψf is

|cf (∞)|2 = f (δ) sin2

(∣∣∣∣∣
∑

i

�i

∣∣∣∣∣
)

, (1)

where the �i are the integrated interaction strengths of any of
the individual interactions,

�i =
∫ ∞

−∞
�i(t)dt.

The Rabi frequencies of the various interactions are �i =
V int

i /�, and f (δ) represents the reduction in amplitude when
the rf frequency is detuned from the resonant frequency by
δ = ωrf − |Ef − Ei |/�. f (δ) depends on the temporal shape
of the “pulse” as the atoms travel through the interaction region
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FIG. 2. The field orientations for the measurement of EPNC/β

on the 	F = ±1, 	m = ±1 ground-state hyperfine transition. The
static electric and magnetic fields are oriented in the z direction, while
the polarization of the rf field is in the x direction. The polarizations
of the laser-field components that drive the Raman interaction, not
shown, are aligned with the x and z axes. The rf and Raman fields
propagate parallel to one another, shown as the direction k, as required
to maintain a uniform phase difference between interactions.

in a nontrivial way, and we limit our discussion to resonant
excitation, δ = 0, for which f (δ) = 1.

In an atomic beam, collisions are infrequent, and the atoms
travel through the interaction region with a constant velocity
v. In this case, the interaction strength can be rewritten

�i = 1

v

∫ ∞

−∞
�i(z)dz. (2)

We use notation similar to that of Gilbert and Wieman
[47] for each of the various interactions and show the optimal
field geometry for this measurement in Fig. 2. That is, the
rf and Raman fields propagate in the y direction, the dc
electric E0 and magnetic B0 fields are oriented in the z

direction, and the electric field εrf of the rf field is directed
in the x direction. (Parallel propagation of the rf and Raman
fields is necessary to maintain a uniform phase difference
between interactions.) Not shown in this figure are the two
components of the laser electric field that drive the Raman
transition, each linearly polarized, one in the x direction and
the other in the z direction. In this geometry, the primary
rf and Raman fields each independently drive a 	F = ±1,
	m = ±1 transition, the magnetic dipole contribution on
this transition is suppressed, and the Stark-induced and the
PNC interactions are in quadrature phase with one another.
The primary contributions here, under the precise (idealized)
conditions specified in Fig. 2, are

V int
St = βE0

z ε
rf
x ei(ωrf t−ky−φrf ) CF ′m±1

Fm (3)

and

V int
PNC = ∓iIm{EPNC}εrf

x ei(ωrf t−ky−φrf )CF ′m±1
Fm . (4)

In Eq. (3), β is the vector polarizability and CF ′m±1
Fm is a factor

related to the Clebsch-Gordon coefficients, defined in detail in
Ref. [48]. Note that we have explicitly included the phase of
the rf field in these expressions.

In addition to these primary amplitudes, extra contributions
due to magnetic dipole transitions and field misalignments can

arise. The largest of these is

V int
M = η0M

{[ ∓ hrf
x + ihrf

y

]
CF ′m±1

Fm

+hrf
z

(
±B0

x + iB0
y

B0
z

CF ′m
Fm CF ′m

F ′m±1

gF ′

+ ∓B0
x + iB0

y

B0
z

CFm±1
Fm CF ′m±1

Fm±1

gF

)}
ei(ωrf t−ky−φrf ) (5)

for 	m = ±1 transitions, where the hrf
i are the components

of the magnetic field of the rf wave, M is the magnetic dipole
transition moment, η0 = √

μ0/ε0 = 120π � is the impedance
of vacuum, and gF and gF ′ represent the gyromagnetic ratio
of the initial and final states. For cesium, gF is −1/4 for the
F = 3 level and +1/4 for the F = 4 level of the ground state.
The first terms in Eq. (5) are the magnetic dipole amplitude
driven by the hrf

x and hrf
y field components, while the last

terms in hrf
z and B0

x or B0
y arise from Zeeman mixing of

the hyperfine components by the static magnetic field. To
investigate possible interferences from 	m = 0 transitions,
we also present the magnetic dipole transition amplitude for
these transitions,

V int
M = η0M

{
hrf

z CF ′m
Fm +

∑
±

[ ∓ hrf
x + ihrf

y

]

×
[(

∓B0
x + iB0

y

B0
z

)
CF ′m±1

Fm CF ′m±1
F ′m

gF ′

+
(

±B0
x + iB0

y

B0
z

)
CFm∓1

Fm CF ′m
Fm∓1

gF

]}
ei(ωrf t−ky−φrf ). (6)

In addition to these transitions driven by the rf field, we
consider the Raman transition of the form

V int
Ram = β̃εR1

z

(
εR2
x

)∗
ei(ωrf t−φRam) CF ′m±1

Fm ,

where εR1
z and εR2

x are the electric-field amplitudes of the
two laser components, and ωrf = ωR1 − ωR2, where ωR1 and
ωR2 are the optical frequencies. The phase φRam is the phase
difference between the phases of the two components φR1-φR2.
The Raman polarizability β̃ depends on the detuning 	 of
these field components from the D2 transition frequency, and
the Raman transition can be enhanced by making 	 small.

We analyze these rf transition amplitudes later using electric
and magnetic-field amplitudes that we expect to encounter
for our parallel-plate structure to place limits on unwanted
magnetic dipole contributions to the PNC signal. Before we
do this, we return to Eq. (1), which we examine in the limit
of the Raman interaction strength �Ram being much greater
than any of the interactions driven by the rf field �St, �M, and
�PNC. Under these conditions, and with the detuning δ = 0,
Eq. (1) can be expanded to the form

|cf (∞)|2 = sin2(|�Ram|) + sin(2|�Ram|) sin{|�St

+�M + �PNC| cos[	φ + δφ(Ez)]}. (7)

	φ = φrf − φRam is the controllable phase difference be-
tween the rf field and the phase difference φRam, and
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δφ(Ez) = tan−1(EPNC/βE0
z ) is the phase shift introduced by

the quadrature combination of EPNC and βE0
z . (In writing this

phase shift, we presume that the magnetic dipole contributions
are suppressed, as we show later.) We see from this expression
a feature that is similar to that of the coherent control
scheme on a short-lived state [45,46]; that is, that the signal
consists of a dc term resulting from the Raman interaction
alone, plus a sinusoidally varying contribution that varies
with the phase difference 	φ between the Raman field and
the one-photon rf field. Furthermore, the amplitude of the
modulating term is the magnitude of the sum of interaction
angles |�St + �M + �PNC| ≈ |�St + �PNC|, where we have
omitted the small magnetic dipole integrated angle in the final
step. A laboratory measurement of this population modulation
amplitude as a function of the dc electric field E0

z yields
EPNC/β. We see this as

|�St + �PNC| = 1

v

∣∣∣∣
∫ ∞

−∞
[�St(z) + �PNC(z)]dz

∣∣∣∣,
which, using Eqs. (3) and (4), becomes

|�St + �PNC| = 1

�v

∣∣βE0
z ∓ iIm{EPNC}∣∣

×CF ′m±1
Fm

∫ ∞

−∞
εrf
x (z)dz, (8)

valid when E0
z is uniform in the interaction region. Since the

Stark and PNC moments add in quadrature, the amplitude of
the sinusoidal modulation of the signal scales as

∣∣βE0
z ∓ iIm{EPNC}∣∣ =

√(
βE0

z

)2 + |EPNC|2. (9)

At small dc field, the modulation amplitude is proportional to
Im{EPNC} alone, while at large field, the modulation amplitude
is nearly proportional to βE0

z . By measuring this amplitude
of the population modulation as a function of the dc field,
therefore, one can determine the ratio EPNC/β.

To optimize the amplitude of the signal modulation in
Eq. (7), one should adjust the amplitude of the Raman inter-
action to |�Ram| = π/4. At this value, the factor sin(2|�Ram|)
is equal to 1, and the atomic population due to the Raman
interaction alone is equal to 1/2, i.e., equal probability in the
initial and final states. Any additional interactions of the atom
with the rf field add (slightly) to the population in the ψf state
when this interaction is in phase with the Raman interaction
and subtract when out of phase.

We can gain some insight into the interference by following
the evolution of the amplitudes |cf (z)| (red solid) and |ci(z)|
(blue dashed) as the atoms move across the interaction region,
which we show in Fig. 3. For this illustration, the atoms move
from left to right and encounter the Raman field first, centered
at z = −4 cm, which prepares them in a coherent superposition
state. The atoms then enter the broad rf field. We use Gaussian
profiles for the rf and Raman fields. For the former, the peak
amplitude is εrf

x,0 and beam radius wrf in the interaction region,

εrf
x (z) = εrf

x,0 e−(z/wrf )2
.

We show this for two values of the phase 	φ in Fig. 3.
Figure 3(a) shows the magnitudes of the state amplitudes

when the Raman and rf-driven interactions are in phase

FIG. 3. The variation of state amplitudes |cf (z)| (red solid line)
and |ci(z)| (blue dashed line) versus z as the atoms pass through the
interaction region from left to right. The atoms are prepared by the
Raman beams in a superposition state before entering the broad rf
field. Both fields are Gaussian in shape, with peak Rabi frequency
and beam radii of �Ram,0 = 23.9 ms−1 and 0.5 cm for the Raman
beam, and �w,0 = 0.61 ms−1 and 2.5 cm for the rf-driven interaction.
In (a), the Raman and rf interactions are in phase with one another,
while in (b), the interactions are out of phase. In either case, the
duration of the interaction is wRam/v 
 19 μs for the Raman beam
and wrf/v 
 93 μs for the rf field.

with one another, while Fig. 3(b) shows the state amplitudes
when the interactions are π out of phase with one another.
The peak Rabi frequency, center position, and beam radius
are �Ram,0 = 23.9 ms−1, zc = −4 cm, and wRam = 0.5 cm
for the Raman beam, and �w,0 = 0.61 ms−1, zc = 0, and
wrf = 2.5 cm for the rf-driven interaction. We use 270 m/s,
the peak velocity of the atoms in our atomic beam for v. The
duration of the interaction is wRam/v 
 19 μs for the Raman
beam, and wrf/v 
 93 μs for the rf field. When the amplitudes
are in phase with one another, |cf (z)| grows monotonically,
while when the interactions are out of phase, the amplitude
decreases after its initial preparation by the Raman beam. The
value of |cf (∞)| after the atoms have exited the interaction
region is

√
1/2 + sin(|�w|) for in-phase interactions and√

1/2 − sin(|�w|) for out-of-phase interactions. When the
PNC and Stark-induced terms are driven by the rf field, then
|�w| is |�St + �PNC|, where the PNC interaction angle is

�PNC = ( ∓ iIm{EPNC}CF ′m±1
Fm /�v

) ∫ ∞

−∞
εrf
x (z)dz

= ( ∓ iIm{EPNC}CF ′m±1
Fm /�v

)√
πwrfε

rf
x,0. (10)

Similarly, the integrated area of the Stark-induced inter-
action angle for this Gaussian-shaped profile is �St =
βE0

zC
F ′m±1
Fm

√
πwrfε

rf
x,0/�v. The term 1/2 in the expres-

sions for |cf (∞)| comes from sin2(|�Ram|), with |�Ram| =√
πwRam|�Ram,0|/v. The weak signal strength is |�w| =√
πwrf|�w,0|/v; in this example it is 0.10. Any interaction

of the atoms with the rf field, therefore, is evident as a
modulation of this signal as we vary the phase difference
between the fields. We illustrate this in Fig. 4, which shows
the sinusoidal modulation of the final-state population as a
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FIG. 4. The sinusoidal variation of the signal as a function of the
phase difference between the rf and Raman interactions. The peak
Rabi frequency of the rf-driven interaction is �w,0 = 0.061 ms−1 for
this plot. Other parameters are as given in the caption to Fig. 3.

function of 	φ. Here the parameters are as they were in
Fig. 3, with the exception of �w,0, which we have decreased
to 0.061 ms−1 for this figure. The amplitude of the modulation
of |cf (∞)|2 is |�w| = √

πwrf�w,0/v = 0.010, in agreement
with the numerical data in the figure. In our simulations, the
amplitude of the modulation scales linearly with the weak
amplitude.

Important conditions and features of this measurement
technique include the following.

(1) Mutual coherence of the different time-varying fields
is required. This can be implemented in the laboratory by
using nonlinear mixing, injection locking of diode lasers, or
frequency modulation techniques.

(2) The coherent beams that drive the interactions must
propagate in the same direction in order to maintain a uniform
phase difference for all atoms in the interaction region.

(3) The Raman and the rf field distribution need not overlap
one another. Since the ground state is long lived, the final
level retains its coherence, and the net excitation of the final
state depends on the accumulated effect across the interaction
region.

(4) We control the phase difference between the transition
amplitudes with rf devices, completely external to the interac-
tion region.

(5) We select the particular interactions that contribute to
the measurement by choosing the orientation of the various
fields in the interaction region.

(6) The measurement uses only modest dc electric fields,
� 100 V/cm. This allows flexibility in the experimental
configuration.

(7) Since the interactions �PNC and �St are π/2 out of
phase with one another, these amplitudes add in quadrature.
This indicates that the amplitude of the modulating signal is
at a minimum when the static electric field is turned off, and
increases when a static field of either polarity is applied.

(8) Using different field orientations, this coherent control
technique may be used to determine M/β. This may be a useful
means of determining the vector polarizability β, but we defer
any further discussion of this to a future report.

In the following sections, we discuss the expected magni-
tudes of the different interactions and present an experimental
assembly of conductors for such a measurement in an atomic
beam configuration. Finally, we analyze the effect of expected
magnetic dipole contributions to the measurement.

III. EXPECTED MAGNITUDES OF M, β, AND EPNC

In order to design a measurement system and understand
the effect of stray fields and the magnitude of unwanted
contributions to the signal, we must first know the expected
magnitudes of the PNC moment,EPNC, the vector polarizability
β, and the magnetic dipole moment M for the transition.

The PNC amplitude for this transition is calculated [12] to
be

EPNC = 1.82 × 10−11iea0, (11)

where e and a0 are the electron charge and the Bohr radius,
respectively. This is larger than EPNC for the moment on the
6s → 7s transition in cesium by a factor of 2.2.

The vector polarizability has not previously been calcu-
lated, but we can estimate its approximate magnitude using
the sum-over-states expansion of Refs. [1] and [48],

β = e

6�

[∑
n

r2
n,1/2

(
1

	4;n,1/2
− 1

	3;n,1/2

)

+ 1

2
r2
n,3/2

(
1

	4;n,3/2
− 1

	3;n,3/2

)]
,

where rn,j represents the reduced dipole matrix elements
〈npj ||r||6s1/2〉 for j = 1/2 or 3/2, and �	F ;n,j are the energy
differences E6s,F − Enpj

for the two hyperfine states F = 3
or 4 of the ground 6s 2S1/2 and the excited np 2Pj states. The
n = 6 term dominates this sum, and the ground-state hyperfine
splitting 	hfs is small compared to the energy of the 6p states,
so the polarizability is approximately

β 
 e	hfs

6

[∣∣〈6p1/2

∣∣|r|∣∣6s1/2
〉∣∣2(

E6s − E6p1/2

)2 + 1

2

∣∣〈6p3/2|
∣∣r|∣∣6s1/2

〉∣∣2(
E6s − E6p3/2

)2

]
.

We use 〈6p1/2||r||6s1/2〉 = 4.5062a0 and 〈6p3/2||r||6s1/2〉 =
6.3400a0 [49–54] to estimate the vector polarizability for
this transition as β 
 0.00346a3

0 . Based on these expected
magnitudes of β and EPNC, the ratio EPNC/β is about 27 V/cm;
upon application of a static electric field of this magnitude,
the magnitudes of the Stark-induced amplitude and the PNC
amplitude are equivalent. Since β is so small for this transition,
we conclude that systematic errors due to uncontrolled electric
fields in the interaction region, due to surface contamination
and patch effects and estimated to be � 0.1 V/cm, are
inconsequential in these ground-state measurements. This is
in strong contrast to measurements of EPNC on the 6s → 7s

transition [18], for which uncontrolled electric fields were of
major concern.

In addition to these two relatively weak amplitudes
driven by the rf field, the magnetic dipole moment is
active on this transition. The amplitude for this transition is
V int

M = 〈6s 2S1/2 F ′m′| − μm · brf|6s 2S1/2 Fm〉, where μm =
μB(gLL + gSS + gI I) is the magnetic moment of the atom,
μB = e�/2m is the Bohr magneton, and brf is the magnetic
flux density of the rf wave. L, S, and I are the usual orbital,
spin, and nuclear angular momenta, and gL, gS , and gI are the
respective gyromagnetic ratios. For the transition of this work,
the orbital angular momentum is zero, and gI is much less than
gS (which is ≈ 2) due to the heavy mass of the nucleus. For
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the ground-state transition, the spatial parts of ψi and ψf are
the same, and using εrf/brf = c, the magnetic dipole amplitude
is M = μBgS/2c 
 μB/c. However, μB/c = ea0α/2, where
α 
 1/137 is the fine structure constant, so M 
 ea0α/2,
and the ratio M/EPNC 
 2 × 108. The magnetic dipole con-
tributions to the signal must be suppressed for a successful
measurement of EPNC, representing the primary challenge of
these measurements. The orientations of the field components
that we have shown in Fig. 2 are an important first step in
meeting this challenge.

IV. MAGNITUDE OF SIGNAL

In this section, we use the results of the analysis of Sec. II,
in particular Eqs. (7) and (10) and the calculated value of
EPNC given in Eq. (11), to estimate the magnitude of the
PNC signal and, from this, the integration time required to
achieve a useful statistical uncertainty of the measurement.
To calculate the signal size, we use |CF ′m±1

Fm | = √
7/8, εrf

x,0 =
250 V/cm, and wrf = 2.50 cm. The value of CF ′m±1

Fm is valid for
cesium ground-state transitions (F,m) = (3, ± 3) → (4, ± 4)
or (4, ± 4) → (3, ± 3), and we show in Sec. VI that the values
of the peak field amplitude and radius are reasonable. Then
using the cesium atomic beam peak velocity v = 270 m/s, we
estimate that the interaction angle for the PNC interaction is

�PNC = ±i5.6 × 10−6.

To measure this amplitude, one can drive the interfering Raman
and PNC interactions and count the transition rate as a function
of the phase difference between the transitions. A minimal
measurement may consist of N+, the total count of atomic
excitations when the rf and Raman interactions are in phase
with one another (|cf |2 = 1

2 + |�PNC|), and N− the total count
of excitations when the rf and Raman interactions are π out of
phase with one another (|cf |2 = 1

2 − |�PNC|). Then

�PNC = 1

2

N+ − N−
N+ + N−

.

To use this result to determine EPNC, however, one must also
have an accurate determination of the rf beam profile and field
amplitude. Alternatively, one can apply a dc electric field to
the atoms and measure the amplitude of the modulation as a
function of the field amplitude E0

z , as suggested in Eqs. (8)
and (9).

When the precision of N+ and N− is limited by counting
statistics, then the uncertainty in either of these counts is
σN = √

N , where N represents either N+ or N− (which are
essentially the same). The uncertainty in �PNC is σPNC =
1/

√
8N , and to achieve a 3% measurement of �PNC, one must

count N = 1/8σ 2
PNC = 3 × 1012 atoms for each individual

measurement. In a counting interval T , the number of counts is
N = 1

2ρCsAvT , where 1
2 is the average excitation probability,

ρCs is the number density of the atomic beam (109 cm−3),
A is the cross-sectional area of the atomic beam (1 mm2),
and v is the peak velocity of the atoms in the beam. The
counting time T to achieve the required statistics is 20 s per
data point. During the course of a measurement, one must
repeat the process at many different phases, not just two, and
one must vary the dc electric-field strength E0

z and repeat the

measurement. Regardless, the estimate of the integration time
shows that the measurement is feasible in the beam geometry.

We conclude this section with an estimate of the maximum
value of the dc field amplitude E0 needed. As discussed
in the previous section, we expect that the ratio EPNC/β is
approximately 27 V/cm. In carrying out the measurements,
we must vary the Stark-induced angle �St over the range from
zero to ∼ ±3|�PNC|. This requires a variable field strength of
maximum value 3EPNC/β ≈ ±80 V/cm.

V. STANDING-WAVE CAVITY

In the previous section, we estimated the magnitude of the
hyperfine ground-state PNC coherent control signal, based on
expected atomic parameters and reasonable field strengths that
can be generated in the laboratory. Among the latter was an
rf field amplitude εrf

x,0 of 250 V/cm. This field amplitude can
be achieved either inside a resonant power buildup cavity or
by using a very large rf amplifier. Use of a resonant cavity
also helps to suppress the magnetic dipole contributions to the
measured signal, as we now discuss. This approach is also
discussed in Ref. [7].

As we discussed earlier, the large magnetic dipole ampli-
tude is suppressed to first order by the choice of orientations
of the primary fields. (The hrf

z component drives a 	m = 0
transition, whereas the interference that we have discussed
takes place on a 	m = ±1 transition.) Still, due to the large
magnitude of the ratio M/EPNC and reasonable limits in
the field uniformity and experimental alignment, additional
measures are required to suppress this interaction further.
This additional suppression can be achieved by working in
a standing-wave configuration, in which the nodes of the
magnetic field coincide with the antinodes of the electric
field, as we illustrate in Fig. 5. At this point, the interactions
V int

PNC and V int
St are maximized, and V int

M is minimized. To take
best advantage of this, one should (1) use a cavity geometry
in which the amplitudes of the traveling waves propagating
in the +y and −y directions, εrf

+ and εrf
−, respectively, are

equal, and (2) keep the radius b of the atomic beam small.
The first requires either that the cavity is symmetric (the
reflectivities of the two end reflectors are equal, and the
cavity is excited by equal amplitude inputs on each side) or

y

εrf

hrf

atomic beam

λ
FIG. 5. The standing-wave pattern of the rf electric field εrf

x and
magnetic field hrf

z , with the atomic beam located at the node of the
magnetic field.
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that one of the reflectors has unit reflectivity. The choice of
beam radius b is a compromise between large atom number,
improving the counting statistics, or small magnetic dipole
amplitude for atoms at the edge of the beam, which scales as
sin(kb) = sin(2πb/λ), where λ = 3.2 cm is the wavelength of
the 9.2-GHz wave. For b = 0.5 mm, this reduction factor is
∼0.1. Furthermore, the sign of the magnetic dipole amplitude
is opposite on the two sides of the node, further reducing this
contribution. We return to this reduction in Sec. VII. In the next
section, we discuss the design and analysis of a symmetric rf
power buildup cavity based on a PPTL structure, which allows
spatial confinement of the rf field and generation of a transverse
dc electric field.

VI. PARALLEL PLATE TRANSMISSION
LINE STRUCTURE

The measurement that we have described presents several
experimental challenges. First, we must apply rf and static
electric fields that are oriented in directions that are perpen-
dicular to one another. Second, we require that the rf field is in
a standing-wave configuration for suppression of the magnetic
dipole contributions. Third, we must minimize the unwanted
field components of the rf field, as these also lead to systematic
magnetic dipole contributions to the signal. In this section, we
describe an electrode configuration that allows us to meet these
requirements.

In Fig. 6, we show a section of a PPTL, with waves
propagating in the ±y directions, that is modified in two
regards. First, we have isolated several conducting pads on
the top and bottom conductors for application of a dc bias, and
second, we have inserted cylindrical reflectors to either side of
the interaction region to form an rf cavity, open on the z faces,
allowing power buildup of the cavity mode at the resonant
frequency. When we have biased the dc pads progressively, at
a voltage +V on one side to −V on the other, we can generate
an electric field E0 in the central region between the plates
that is primarily directed in the ±z direction. We capacitively
couple each of the bias pads to the transmission line structure
so that they carry the ac components without any significant
perturbation. For a transmission line characteristic impedance
Z0 = 50�, this requires a coupling capacitance of C � 30 pF.

We can model the cavity modes that are supported by the
parallel-plate structure in the region between the cylindrical
reflectors approximately using the elliptical Hermite-Gaussian
modes as described in Yariv [55]. These modes are nearly
Gaussian in shape in the z direction, but uniform in the
x dimension, in the limit of an infinite beam size in this
dimension. Within the cavity, the spatial mode is described

FIG. 6. The electrode configuration (not to scale) that supports
the standing-wave rf field εx and the static electric field E0

z .

by the superposition of waves traveling in the +y and −y

directions,

εrf
x (y,z) = εrf

+(y,z) + εrf
−(y,z) (12)

and

hrf
z (y,z) = 1

η0
[εrf

+(y,z) − εrf
−(y,z)], (13)

where

εrf
±(y,z) = εrf

0,±

√
w0

w(y)
exp

{
∓ i[ky − η(y)]

− z2

[
1

w2(y)
+ ik

2R(y)

]}
.

In these expressions, w0 is the 1/e2 (intensity) beam radius at
the focus, the beam profile radius a distance y from the focus
is

w(y) = w0

√
1 + (y/y0)2,

y0 is the confocal parameter,

y0 = πw2
0/λ,

R(y) is the radius of curvature of the wave fronts,

R(y) = y[1 + (y0/y)2],

and η(y),

η(y) = 1
2 tan−1 (y/y0),

is the slow phase shift (the Guoy phase) through the focal
region. For a symmetric cavity constructed of cylindrical
reflectors of radius of curvature R separated by a distance
�c, the confocal parameter is y0 = (�c/2)

√
2R/�c − 1, the

beam radius at the center is w0 = (λ�c/2π )1/2(2R/�c − 1)1/4,
and the beam radius at the reflectors is w(y = ±�c/2) =
(λR/π)1/2(2R/�c − 1)−1/4. The cavity mode has an electric-
field antinode (and magnetic-field node) at the center when the
cavity length �c is approximately (n + 1/2)λ, where n is an
integer. The rf beam radius w(y = ±�c/2) at the reflectors is
minimized when the reflector spacing is confocal, i.e., �c = R.
By adjusting the reflector slightly away from the confocal
spacing, one can retain the small mode size w(±�c/2) at the
reflectors, but shift the frequencies of the transverse modes
away from the frequency of the lowest order mode, improving
the selectivity of cavity modes. We calculate that for R = 12
cm and �c = 11.9 cm, the cavity has a resonance at the cesium
hyperfine transition frequency (9.2 GHz), its free spectral
range (FSR) is c/2�c = 1.26 GHz, the beam radius at the
waist is 2.50 cm, the beam radius at the reflectors is 3.53 cm,
and the transverse mode spacing is 0.2487 times the FSR, or
about 313 MHz.

We estimate the field amplitude at the interaction region
as follows. We choose the spacing between the parallel plates
of the transmission line to be 1 cm and the conductor width
7.5 cm. These dimensions yield a characteristic impedance
of the transmission line of 50� and allow for a reasonable
clearance of the atomic beam in the space between the
conductors. With a copper thickness on the reflectors of
170 nm, we calculate a reflection coefficient of 0.9992. Note
that this thickness is smaller than the skin depth δ = 680 nm of
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FIG. 7. Color maps of (a) Re[εrf
x (y,z)], (b) Im[hrf

z (y,z)], and (c) Im[hrf
y (y,z)] for the lowest-order mode supported by the rf cavity. Units

for εrf are V/m and for hrf are A/m.

copper at this frequency, so the transmission losses are small,
but not negligible. With this reflectivity, the cavity losses due
to reflection are of the same magnitude as the losses L due
to other mechanisms, primarily conduction losses in the upper
and lower conducting plates and diffraction losses due to the
finite size of the conductor. (These results come from our
numerical analysis of the cavity modes, which we discuss
next.) For an rf input power of 250 mW incident on the cavity
from either side, the incident voltage amplitude is 5.0 V, and
the electric field of the traveling wave incident on the cavity
is ε+

in = 5.0 V/cm. The amplitude of the traveling wave inside
the cavity is

ε+ = 2
t ε+

in

1 − r2(1 − L)
= 125 V/cm,

where we use t = 0.04 for the transmission coefficient of
the reflector and (1 − L) = r2. The factor 2 results from
symmetric inputs from the two sides. At the antinode of the
field, where the amplitudes of the two traveling waves inside
the cavity add in phase, the field amplitude is twice this value,
or 250 V/cm. This is the value of the rf field amplitude that
we used in Sec. IV to estimate the signal size. In making this
estimate, we have not included the absorption of the copper
reflector, which reduces the amplitude, or the increase of the
wave amplitude as the wave propagates to the waist of the
Gaussian profile.

In order to determine more-detailed field parameters, we
have carried out a series of numerical simulations of the
cavity mode using Comsol MULTIPHYSICS. These simulations
allow us to determine the effects of resistive losses of the
parallel plates, the thickness of the reflective copper layers,
and the finite width of the cavity on the cavity Q; the effect
of the gaps in the conductor between the dc bias pads; and
the uniformity of the static electric field in the interaction
region. We show the three primary components, Re[εrf

x (y,z)],
Im[hrf

z (y,z)], and Im[hrf
y (y,z)], of the simulated rf field mode

in Fig. 7. We note very close agreement of the components
εrf
x (y,z) with the analytic result in Eq. (12) and hrf

z (y,z) with
Eq. (13). The component Im[hrf

y (y,z)] would be negligible for a
weakly focused beam, but since in our geometry, wrf ∼ λ, this
component survives. For this figure, the separation between
the upper and the lower conducting planes of the PPTL

and the width of the conductors are as before, 1.0 and
7.5 cm, respectively, as are the radius of curvature of the
cylindrical reflectors R = 12.0 cm, and the reflector separation
�c = 11.9 cm. With the thickness of the copper reflector layers
equal to 200 nm, we determine a cavity Q of 9000, while
for a 1.5-μm ∼2δ layer, the Q increases to 13 000. In the
latter case, the Q is limited primarily by the resistive losses
in the conductors and diffraction losses of the finite width of
the reflectors. For a cavity Q of 9000, the linewidth of the
transmission peak of the cavity is 	ν = ν0/Q ∼ 1 MHz. We
show the computed Gaussian rf field amplitude εrf

x (0,z) across
the interaction region as the solid blue curve in Fig. 8. The
diameter of the cavity mode agrees well with 2w0 = 5.0 cm
that we determined analytically earlier.

We used the eigenfrequency module and frequency domain
analysis to carry out these calculations, and determined the
quality factor of the cavity as the ratio of the energy stored
inside the cavity to the diffraction and dissipation losses. We
obtained the field patterns by launching a 9.2-GHz plane-wave-
like electric field on the PPTL towards the cavity, exciting a
TEq,n cavity mode, where indices q and n label the transverse
and longitudinal modes. The mode spacing between the TEq,n

FIG. 8. Field profiles of E0
z (z) (red dashed line) and E0

x (z) (black
dotted line), each normalized to the maximum magnitude of E0

z (z), at
the center of the region between the parallel conducting plates. Also
shown is the Gaussian rf field amplitude, εrf

x (0,z) (blue solid line).
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and the TEq,n+1 modes agrees well with the 1.26-GHz FSR that
we determined earlier. We used a trial-and-error approach to
reduce the diffraction losses by varying the cavity parameters,
such as the width and height of the cavity, while maintaining
the resonant mode frequency close to 9.2 GHz.

In order to calculate the rf field distributions in a more re-
fined manner in the interaction region, we added about 10 000
times more mesh points in the vicinity of the interaction region.
Higher mesh-point density helped to reduce errors that are
present in the interpolation schemes, without compromising
the eigenfrequency calculations. We used ten bias pads, with
the spacing between the pads about one-tenth the width of the
pads. As long as the transmission lines are thin (less than
0.1 mm), the gaps have little impact on the rf fields. We
found that neither horizontal nor vertical misalignment of the
cylindrical reflectors affects the field patterns or the Q factor,
for misalignment less than 1◦.

We have also modeled all components of the static electric
field E0 and shown that with an array of 10 bias pads and
	V = 100 V between pads, we can generate a relatively
uniform field of magnitude E0

z (z) ∼ 140 V/cm. We show this
field, normalized to its maximum value, as the red dashed
line in Fig. 8. We also show E0

x(z) in the plot (black dotted
line), which is small in magnitude and has an average value of
zero. The nonuniform part of E0

z (z), seen in Fig. 8 as a nearly
sinusoidal modulation of amplitude ∼7% of the constant
part, has little impact on the measurement. We can see this
by integrating the product E0

z (z)εrf
x (z) across the interaction

region in z. For the case of ten bias pads, as shown, the
correction to the signal due to the sinusoidal modulation is
less the 0.7% of the signal. We can also see in this figure that
the width of the Gaussian-shaped rf field profile is somewhat
less than the width of the dc field, allowing us to avoid fringe
effects of the dc field near the edges of the conductors.

We have used these simulations of the field amplitudes,
and their variation through the interaction region, to estimate
systematic contributions to the PNC signal. We discuss these
contributions in the next section.

VII. ESTIMATION OF MAGNETIC DIPOLE
CONTRIBUTIONS TO THE PNC SIGNAL

In this section, we make use of the field simulations of the
previous section in order to estimate the expected systematic
contributions to the PNC signal. The primary contributions that
must be considered are the magnetic dipole terms, due to the
relatively large magnetic dipole moment M on this transition.
As we have shown, the primary magnetic-field components
of the rf field are h′′

z (y,z) and h′′
y(y,z), where we use primed

(double-primed) variables for the real (imaginary) part of the
field quantities and omit the superscript “rf”. By setting up the
geometry of the experiment to make the atomic beam cross
the rf field at the center of the cavity, where the component
h′′

z (y) is minimal, the magnetic dipole contributions to the
signal from any individual atom can be reduced. Furthermore,
the contributions from atoms on one side of the node are of
opposite sign to those on the other side of the node, and the net
magnetic dipole contribution can be suppressed even further.
In this section, we use the numerical simulations of the fields

supported by the resonant cavity to explore the magnitude of
magnetic dipole contributions to the PNC signal.

The net contribution of the h′′
z (y,z) term can be minimized

by adjusting the relative position 	y of the center of the atomic
beam relative to the node of the magnetic field. (No control
of the x position is necessary, since the fields are uniform
in this direction.) For a uniform beam density with beam
radius b, the magnitude of the h′′

z (y,z) contribution grows
as k	y (independent of b). With piezoelectric adjustment
and feedback control of the distance 	y, such that 	y

is maintained to a value less than, say, 10 μm, then the
magnetic dipole signal is suppressed by an additional factor
of 2 × 10−3. This approach to suppression of this magnetic
dipole contribution is applicable even with less than ideal
beam symmetries, such as an asymmetric beam density, a
misalignment of the beam with the z axis, or divergence of
the atomic beam. Due to the sign reversal of h′′

z (y,z) across the
node, there must always exist a beam location for which this
signal averaged over all the atoms in the beam vanishes.

For the h′′
y(y,z) contributions, the zero is also guaranteed,

but for a different reason. As can be seen in Fig. 7, this field
component is maximal along the atom beam at the center of the
cavity, y = 0, but is an odd function of z. Since the magnetic
dipole contribution scales as the integral of h′′

y(y,z) across
the interaction region, and since hy(y,z), by Faraday’s law, is
proportional to ∂εx/∂z, the path integral of h′′

y(y,z) across the
interaction region depends only on εx at the beginning and
end of the path. However, εx is zero far from the center of the
PPTL, so this contribution also vanishes.

For these various reasons, we find that the average value of∫
hi(z)dz (including effects of the divergence of the atomic

beam) is equal to zero for all components of hi , where
the average is computed over all atoms in the beam and
presuming that we have successfully adjusted the node of hz

to be colocated with the center of the atomic beam. �M for
individual atoms may have nonzero values, but when averaged
over all atoms, every one of these terms vanishes. In Table I,
we have listed the magnetic dipole contributions that appeared
in Eq. (5). These terms can potentially contribute to 	m = ±1
transitions and are therefore candidates for obscuring the
EPNC signal. In the second column of this table, we list the
average value of each of the

∫
hi(z)dz terms, which we have

already argued must vanish in each case. A better metric
for comparison is therefore the standard deviation of the
distributions of the relevant path integrals of hi(y,z), which
we list in the third column of Table I. For this calculation, we
computed the distribution of the integrals

∫
hi(z)dz (separately

for the real and imaginary parts) over various straight-line
paths through the interaction region and determined the width
of this distribution by calculating the root-mean-square value,
[
∫

hi(z)dz]rms. After N atoms have traveled through the
interaction region, the standard deviation of the mean of these
integrals is [

∫
hi(z)dz]rms/

√
N . We use N = 3 × 1012 for this

purpose, the number of atoms that we computed would be
necessary to produce a shot-noise limited measurement with an
uncertainty of 3% in Sec. IV. Multiplying by μ0M/(v�) (which
numerically is equal to 380 A−1, which we compute using
M = ea0α/2 = 3.1 × 10−32 Cm and v = 270 m/s) yields
the rms magnitude of each magnetic dipole term. For the
Zeeman mixing contributions, we use a value of 10−4 for

023432-9



J. CHOI AND D. S. ELLIOTT PHYSICAL REVIEW A 93, 023432 (2016)

TABLE I. Estimates of potential contributions to the atom signal due to magnetic dipole interactions. For comparison, the amplitude of the
PNC-induced term |�PNC| is EPNC

∫
ε′

x(z)dz/�v, which we evaluate as 5.6 × 10−6. We have organized these terms by those that add in phase
to the EPNC term, followed by those that add in quadrature to the EPNC term. In the second column, we list the average value of field component,
averaged over the interaction region, which is zero for each component. In the third column, we list the rms value of the field component. In
the right column, we list the contribution of this term. All magnetic dipole contributions are suppressed to less than 0.2% of the EPNC term.

Comp.
∫

hi(z)dz [
∫

hi(z)dz]rms Magnetic dipole contribution [�M]rms/
√

N

Magnetic dipole contributions in phase with EPNC

h′′
x 0 40 μA η0M[

∫
h′′

x(z)dz]rms/�v
√

N 8 × 10−9

h′
y 0 7 nA η0M[

∫
h′

y(z)dz]
rms

/�v
√

N 2 × 10−12

h′′
z 0 0.1 A η0M[

∫
h′′

z (z)dz]rms/�v
√

N × (B0
x /B

0
z ) 2 × 10−9

h′
z 0 8 nA η0M[

∫
h′

z(z)dz]rms/�v
√

N × (B0
y /B

0
z ) 2 × 10−16

Magnetic dipole contributions in quadrature with EPNC

h′
x 0 5 nA η0M[

∫
h′

x(z)dz]rms/�v
√

N 1 × 10−12

h′′
y 0 50 μA η0M[

∫
h′′

y(z)dz]
rms

/�v
√

N 1 × 10−8

h′
z 0 8 nA η0M[

∫
h′

z(z)dz]rms/�v
√

N × (B0
x /B

0
z ) 2 × 10−16

h′′
z 0 0.1 A η0M[

∫
h′′

z (z)dz]rms/�v
√

N × (B0
y /B

0
z ) 2 × 10−9

the fractional transverse magnetic-field amplitudes B0
x/B

0
z and

B0
y/B

0
z . As can be seen in Table I, the greatest of any of

these magnetic dipole terms is of magnitude 1 × 10−8. For
comparison, the PNC term integrated across the interaction
region is EPNC

∫
εx(z)dz/v, which we compute as 5.6 × 10−6

for the same set of field parameters. Since these rms magnetic
dipole contributions are much less than the PNC term in each
case, we conclude that the magnetic dipole contributions can
be sufficiently reduced and that the PNC measurement in this
geometry can be successfully executed.

Finally, we must consider excitation of the 	m = 0
transition, which, if present at sufficient rates, could obscure
the signal. Excitation of this transition is strongly driven by
the hz field component. This transition is suppressed, however,
by the application of B0

z , which produces a Zeeman shift
between the magnetic levels. For B0

z ∼ 7 G, the Zeeman shift is
∼3 MHz. When the frequencies of the rf and Raman beams are
tuned to resonance with the 	m = ±1 transition, the 	m = 0
transition is off resonant. To gauge the degree of this excitation,
we must estimate the linewidth of the transition. Lifetime
broadening of ground states and the collisional linewidth in
an atomic beam are negligible. There is a small Doppler
broadening of the transition due to divergence of the atomic
beam. 	νD = ν0	vt/c, where ν0 is the 9.2-GHz transition
frequency, and 	vt is the transverse velocity spread of the
atomic beam. Using 1-mm apertures separated by 40 cm to
form the atomic beam gives a divergence angle of ∼2.5 mrad,
and with a mean atomic velocity of 270 m/s, 	vt ≈ 0.7 m/s,
leading to a Doppler width of 	νD ≈ 20 Hz. The broadening
due to the finite interaction time of the atoms with the rf field as
they pass through the interaction region is ∼v/2πwrf = 2 kHz.
This transit time broadening and the linewdith of the rf source
are the primary broadening mechanisms that we expect in this
atomic beam geometry. Since the linewidth for the transition is
much less than the Zeeman shift, excitation of this line is very
weak. Furthermore, when we use phase modulation of the rf
field and phase-sensitive detection of the signal, only the signal
resulting from the interference between the Raman transition
and the rf excitation is detected. The Raman transition on the

	m = 0 transition is highly suppressed by careful orientation
of these polarizations and by the Zeeman shift, and so the net
interference by excitation of the 	m = 0 line is expected to
be below detection limits.

To reduce systematics in this measurement, we have several
tools and metrics available. These include translation of the rf
cavity about the atomic beam, reversals of E0, B0, and the
initial projection state (F , m) in which the atoms are prepared,
and application of transverse B0

x or B0
y field components to

intentionally introduce systematic effects. We expect that these
tests and studies will likely require the bulk of our attention as
we carry out these measurements.

VIII. VELOCITY SPREAD OF AN ATOMIC BEAM

In this section we examine two effects of the distribution
of velocities in the atomic beam on the signal, as well as the
variation of the intensity of the Raman coupling laser beams.

The interaction time for an individual atom depends upon its
velocity, and we show the distribution of the atomic velocities
in Fig. 9. When the oven temperature is 120 ◦C, the peak
velocity of the atoms is 270 m/s, and the standard deviation
of the distribution is 106 m/s. The interaction time will vary
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FIG. 9. The computed probability distribution of velocities of
atoms in the cesium beam at T = 120 ◦C. The peak velocity is
270 m/s, and the standard deviation is 106 m/s.
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among the atoms due to the distribution of their velocities,
resulting in a variation of the interaction angle � for each of the
interactions, as shown in Eq. (2). The interaction affected most
significantly is �Ram, since an increase or decrease of this term
tends to reduce the signal gain factor sin(2|�Ram|) in Eq. (7).
We have analyzed this reduction of signal by numerically
averaging sin(2|�Ram|) over the velocity distribution shown in
Fig. 9 and find that this reduction is ∼23%. Since the Stark and
PNC amplitudes are affected in the same way, the only effect
is a reduction of the signal magnitude; it does not otherwise
affect the accuracy of the measurement.

The distribution of atomic velocities also reduces the signal
through the variation in the flight time of atoms from the
interaction region to the detection region in the measurement
apparatus. This effect is much less significant in our apparatus
for the parameters of our measurement. In our system, this
distance from the interaction region to the detection region is
∼13 cm, so the average time required to reach the detection
region is only 0.5 ms. Due to the width of the velocity
distribution, the spread in arrival times is t	v/v ≈ 0.2 ms.
This satisfies the requirement that this 	t is much smaller than
the inverse of the modulation frequency of the signal, which in
our previous measurements was 150 Hz, and the loss of signal
is a few percent. Once again, this loss only affects the signal
size, but does not affect the accuracy of the measurement.

Finally, we examine the effect of the Gaussian intensity
distribution of the laser beams that drive the Raman transition
in the atoms. Since for an optimized measurement, the
interaction angle �Ram is adjusted to a value of π/4, if we
set the Raman beam amplitudes to this value on the axis, the
angle for any off-axis atoms is less, decreasing our signal. To
ensure that all atoms experience the same field amplitude to
within 10% of the peak value, an atom beam diameter of 1
mm requires a beam radius of the Raman beam of 7 mm. (This

dimension is consistent with the value of wRam that we used
in our simulation shown in Fig. 3, since the Raman interaction
scales as the product of the laser-field amplitudes εR1

z and εR2
x .)

IX. CONCLUSION

In this paper, we have reported our design of an ex-
perimental configuration for the measurement of the weak-
force-induced transition moment on the ground-state hyperfine
transition of atomic cesium, or any of the alkali-metal species,
in an atomic beam configuration. We have introduced an
rf resonant cavity based upon a PPTL structure that allows
one to generate the very uniform, well-characterized, high-
amplitude rf and static fields required for this measurement.
This cavity design could be applied to any measurement that
requires similar levels of controlled fields. We have carried out
detailed numerical simulations of the various field amplitudes
of the standing wave and used these results to estimate the
magnitude of the magnetic dipole contributions to the atomic
signal. The atomic beam geometry is especially well suited
to these purposes, allowing suppression of all magnetic dipole
contributions, and we estimate that a precision measurement of
EPNC on the ground-state hyperfine transition can be achieved
within an integration time of a few tens of seconds.
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