
PHYSICAL REVIEW A 93, 023427 (2016)

Quantum-control-landscape structure viewed along straight paths through the space of control fields
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The dynamics of closed quantum systems may be manipulated by using an applied field to achieve a control
objective value for a physical goal. The functional relationship between the applied field and the objective value
forms a quantum control landscape, and the optimization process consists of a guided climb up the landscape
from the bottom to the top. Two classes of landscape features are important for understanding the ease of finding
an optimal control field. The first class of topological landscape features has been proven to be especially simple
in that no suboptimal local maxima exist (upon satisfaction of certain assumptions), which partially accounts
for the ease of finding optimal fields. Complementary to the topology, the second class of features entails the
landscape structure, characterizing the sinuous nature of the paths leading to an optimal control field. Previous
work found that the landscape structure is also particularly simple, as excursions up the landscape guided by a
gradient algorithm correspond to nearly straight paths through the space of control fields. In this paper we take
an alternative approach to examining landscape structure by constructing, and then following, exactly straight
trajectories in control space. Each trajectory starts at a corresponding point on the bottom of the landscape and
ends at an associated point on the top, with the observable values taken either as the state-to-state transition
probability, the expectation value of a general observable, or the distance from a desired unitary transformation.
In some cases the starting point is at a suboptimal critical-point saddle, with the goal, again, of following a straight
field path to the optimal objective yield or another suboptimal critical point. We find that the objective value
almost always rises monotonically upon following a straight control path from one critical point to another, which
shows that landscape structure is very simple, being devoid of rough bumps and gnarled “twists and turns”. An
analysis reveals that the generally featureless nature of quantum control landscapes can be understood in terms
of the occurrence of many interfering quantum pathways contributing while traversing the landscape, essentially
smoothing out the terrain. These results also provide a basis for further studies to seek a new efficient algorithm
to discover optimal fields by means of taking into account the inherently smooth landscape structure.
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I. INTRODUCTION

Quantum optimal control theory (OCT) [1,2] has provided
a foundation for the increasing success of quantum control
experiments [3]. Typically, these experiments involve adjust-
ing the form of an applied field under algorithmic guidance
to produce the desired system performance. Recent successes
include manipulating population dynamics in Bose-Einstein
condensates [4], controlling ionization of silver atoms [5],
minimizing the defects created in a quantum phase transition
[6], and coherently transporting energy in light-harvesting
complexes [7], among many other applications. Closed-loop
learning algorithms [8] directing pulse shapers [9] have
allowed for finding optimal control fields with only modest
experimental effort. Theoretical analysis bolstered by simula-
tions [10] attributes the ease of finding effective controls to
the nature of the underlying quantum control landscape [11],
which is the physical observable as a functional of the control
field. The present work employs simulations and carries out
additional analysis to show that quantum control landscapes
appear exceptionally smooth. This finding provides the basis
for ultimately creating especially efficient optimal control
algorithms.

We consider a closed N -level quantum system driven
by a time-dependent field, E(t),t ∈ [0,T ]. In the dipole
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approximation, the system is described by the Hamiltonian

H (t) = H0 − μE(t), (1)

where H0 is a diagonal matrix representing the field-free
Hamiltonian and μ is the dipole moment matrix. The system
evolves according to the unitary matrix U (t) ≡ U (t ; 0), which
satisfies the Schrödinger equation

i�
∂U (t,0)

∂t
= H (t) U (t,0), U (0,0) = 1. (2)

The desired control objective J expressed as a function of
the final propagator U (T ) specifies a cost functional, J [E(·)],
forming a quantum control landscape, which associates a
value of J with every control field. In this work we con-
sider either the state-to-state transition probability landscape
Jif = Pi→f = |〈f |U (T )|i〉|2, the quantum ensemble control
landscape JO = Tr (ρ(T )O) = Tr (U (T ,0)ρ(0)U †(T ,0)O), or
the unitary transformation landscape JW = ‖W − U (T )‖2 =
2N − 2Re{Tr (W †U (T ))}, relevant for quantum information
processing [12]. Here |i〉 and |f 〉 are eigenstates of H0,
ρ(0) is the initial density matrix of the ensemble, W is a
unitary matrix, and ‖ · ‖ denotes the Frobenius norm. Starting
from an arbitrary control field, one may optimize a particular
cost functional J using a suitable algorithm, such as the D-
MORPH [13] gradient-based procedure. Using this algorithm,
the form of the field will morph along a landscape gradient
ascent trajectory, and we conveniently introduce a variable
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0 � s � smax which parametrizes the control field E(t) →
E(s,t) to follow its form as a function of t , as s is systematically
increased. The goal is to find a field E(smax,t) that produces
a high-quality outcome at s = smax located acceptably close
to the optimal value of the landscape. In this fashion an
optimization can be viewed as generating a corresponding
trajectory through control space, starting from the initial field
E(0,t), which yields a low value of J , and then reaching the
final field E(smax,t), providing the nearly optimal value of J .

Previous work found that when certain conditions are
satisfied, the topology of the transition probability control
landscape Pi→f (T ) is especially amenable to finding optimal
quantum controls, in that all critical points, or control fields
E(t) for which δPi→f

δE(t) = 0 ∀t ∈ [0,T ], are located at either
the bottom or the top of the landscape. In particular, this
statement is valid, regardless of whether or not the quantum
system of interest is degenerate, whenever the following
three basic assumptions are satisfied: (i) the quantum system
is controllable, (ii) the functional derivatives δUij (T )

δE(t) ∀i,j

are linearly independent functions of time t ∈ [0,T ], and
(iii) the controls are not constrained. Upon the satisfaction of
these assumptions (i.e., sufficient conditions), a gradient-based
algorithm will always achieve the maximum value of the cost
functional starting from any initial field [11,14,15]. Under
the same assumptions, analogous studies of the landscape for
JO and JW show a similar favorable topology including non-
trapping saddle features at particular intermediate elevations
on these landscapes. In addition, the structure of the control
landscape, which refers to features other than the critical
points, can play an important role in determining the efficiency
of an algorithm (e.g., a local gradient procedure) for climbing
the landscape. A highly complex landscape structure could
force the algorithmically guided trajectory to take a circuitous
path up the landscape (and through control space), making
optimally controlling quantum systems a demanding task.
However, recent studies using the gradient algorithm found
that the landscape structure is very simple as manifested by
R values near 1.0 [17–19], where R = dPL/dEL (�)1 is the
ratio of a control trajectory’s path length dPL to the Euclidean
distance between its endpoints, dEL, respectively, defined as

dPL =
∫ smax

0

[
1

T

∫ T

0

(
∂E(s,t)

∂s

)2

dt

] 1
2

ds (3)

and

dEL =
[

1

T

∫ T

0
[E(smax,t) − E(0,t)]2dt

] 1
2

. (4)

For a state-to-state transition probability control landscape
[18], as well as for quantum ensemble and unitary control
landscapes [19], it was found that R generally took on values
less than 2.0 for gradient-guided control trajectories, starting
from the bottom and ending at the top of the landscape (i.e., the
notions of “bottom” and “top,” respectively, refer to the worst
and best values of J , according to the application). Indeed,
control trajectories were even found for which R − 1 ∼ 10−3

in some cases. Thus, these works reveal that quantum control
landscapes admit a preponderance of nearly straight gradient-
based monotonic trajectories (here, monotonicity is assured

FIG. 1. Schematic showing portions of the initial and final
submanifolds of fields, {EI (t)} and {EF (t)}, respectively, in control
space corresponding to a high final yield and a low initial yield. The
specification of an initial or final yield J depends on the physical
situation, as explained in the text. Straight paths in control space are
displayed in red, connecting pairs of randomly selected points on the
initial and final submanifolds. A gradient path, in green, originates at
the same point as one of the monotonic straight paths (shown by the
yellow star on the initial submanifold) but veers away, ending at a
significantly different final control field on the final submanifold. The
functional J always changes monotonically along a gradient path, but
in general these paths are not straight. In contrast, along the exactly
straight paths from the bottom to the top, J is observed generally to
exhibit nearly, if not fully, monotonic behavior.

by the gradient algorithm) when going from the bottom to the
top.

In this work, we further explore landscape structure by
putting aside the gradient algorithm and its assured mono-
tonicity of J and consider the converse situation of following
exactly straight trajectories through control space with R =
1.0, while then assessing the degree to which J changes
monotonically. In this situation, if we find exactly straight
control trajectories also being frequently accompanied by
monotonicity (or even near monotonicity) of J , then this
occurrence would further demonstrate the presence of very
smooth and simple landscape structural features. Performing
this assessment is facilitated by prior control landscape
analyses revealing the existence of submanifolds of controls
at the bottom or top of the landscape [14,15]. Figure 1 depicts
portions of these two critical submanifolds in control space
and shows a curved trajectory (thick green curve) created by a
gradient algorithm resulting in R > 1, while monotonically
climbing the landscape. Also shown in Fig. 1 are straight
trajectories (red lines), all satisfying R = 1, in control space
connecting arbitrary points on the bottom and top subman-
ifolds, thereby linking the lowest and highest values on the
landscape. By examining large collections of randomly chosen
straight paths among the bottom, top, and intermediate control
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submanifolds associated with quantum control landscapes, we
show that a plurality of these paths produces monotonically
increasing values of J . One may liken this approach to
assessing landscape smoothness as akin to taking a helicopter
ride over the Rocky Mountains, while flying along a straight
level path, and observing the height of the mountains directly
below on the excursion. Naturally, the observer on such an trip
would generally report terrain of repeatedly rising and falling
height encountered along the ride. Similarly, the expectation
is that following an analogous straight ”flight” (path) through
control space would encounter extended rising and falling J

values on the way from the bottom to the top of the landscape.
Expressed in such terms, our observation in Sec. III of only
relatively few lapses of monotonicity in most cases, and modest
variation from monotonicity in the remaining cases, bolsters
the evidence for the existence of an unexpectedly simple
quantum-control-landscape structure. This finding does not,
in and of itself, provide a simple constructive ”straight-shot”
control algorithm, as the results in this paper rest on the
exploitation of prior identification of the controls with J

values corresponding to the bottom and top of the landscape.
However, our findings suggest that an efficient algorithm
may exist, specifically honed for quantum control, which can
exploit the generally smooth nature of control landscapes. The
present paper lays the foundation for future research along this
line.

The remainder of the paper is organized as follows.
Section II explains how the randomly chosen straight control
paths are constructed, and Section III furnishes illustrations of
the landscape behavior upon following such paths. Section IV
contains a discussion and conclusions. Finally, the Appendix
presents a statistical argument to explain the observed smooth
features of the landscapes which arise when many interfering
pathways contribute to the control mechanism involved.

II. STRAIGHT FIELD PATHS

The trajectories we consider in this work are straight
paths in control space, where each path begins at a field
EI (t) producing a low (or poor) initial value of the cost
function Jif = Pi→f on the landscape and ends at a final field
EF (t) producing a corresponding high (or good) value of Jif .
These paths are parameterized by a variable 0 � v � 1 (i.e.,
equivalent to s discussed above but referred to as v here to
distinguish the exactly straight paths from the gradient-guided
trajectories), so that each path is defined by

E(v,t) = (1 − v)EI (t) + vEF (t), (5)

where J [EI (·)] = J I and J [EF (·)] = JF . We also consider
analogous cases for trajectories between critical points (in-
cluding the bottom and top) for JO and JW ; a critical point
is where the first derivative of the landscape cost function,
with respect to the field, is 0. To generate a straight trajectory,
we first choose two random control fields, E1(0,t) and E2(0,t),
and use D-MORPH to continuously adjust each field until they,
respectively, reach J [E1(smax1 ,t)] = J I and J [E2(smax2 ,t)] =
JF , where smaxi

is the appropriate final value of s in each
case needed to reach either J I or JF , respectively. We then
set EI (t) = E1(smax1 ,t) and EF (t) = E2(smax2 ,t) for use in
Eq. (5), and the process is repeated many times to create a

family of controls lying as a set of points on the bottom and
top submanifolds (or specified critical points for JO and JW ).
There is no special relationship between field EI (t) and field
EF (t), as they are all randomly chosen as pairs from the two
respective manifolds. Each of the random fields is constructed
starting with

E(t) = 1

F0
exp[−0.3(t − T/2)2]

M∑
n=1

an sin(ωnt + φn), (6)

where T = 10, and the amplitudes an and phases φn are chosen
randomly from the uniform distributions [0,1] and [0,2π ],
respectively. M is set to 20, with the frequencies being ωn =
n, so that the initial control field contains frequencies that
coincide with every transition in the systems given by H0 in
Eqs. (7) and (11). The normalization factor F0 is set for each
random field to ensure that it has unit fluence. Each initial field
chosen in Eq. (6) is then directed by the D-MORPH algorithm
to go either to the bottom submanifold or the top submanifold.
This process was performed by discretizing the initial random
field in Eq. (6) into 104 time points, with the field strength at
these points being the control variables used by D-MORPH
and in subsequent straight paths through control space using
Eq. (5). Typically, 500 field pairs corresponding to points on
the initial and final critical submanifolds were found. Arbitrary
units are used in the simulations, and T is the final time at
which J is evaluated.

III. RESULTS

A. State-to-state transition probability landscape

We now provide numerical illustrations probing the land-
scape structure revealed by following exactly straight field
paths with Eq. (5). The state-to-state transition probability
landscape in this work is associated with the Hamiltonian in
Eq. (1), where

H0 =

⎛
⎜⎜⎜⎝

−10 0 0 0 0
0 −7 0 0 0
0 0 −3 0 0
0 0 0 2 0
0 0 0 0 8

⎞
⎟⎟⎟⎠ (7)

and

μ =

⎛
⎜⎜⎜⎝

0 ±1 ±0.5 ±0.52 ±0.53

±1 0 ±1 ±0.5 ±0.52

±0.5 ±1 0 ±1 ±0.5
±0.52 ±0.5 ±1 0 ±1
±0.53 ±0.52 ±0.5 ±1 0

⎞
⎟⎟⎟⎠. (8)

The signs of the dipole matrix elements were chosen randomly
such that the matrix remained symmetric and then were fixed
for all the simulations. We remark that the diagonal elements
of Hamiltonian H0 are rather arbitrarily chosen, and the falloff
of the dipole coupling in μ is physically reasonable as the
levels become further separated. Our extensive numerical
studies revealed little impact on the landscape features for
reasonable variations of H0 and μ. Figure 2 displays the value
of P1→5(v) on the landscape as a function of v in Eq. (5) for a
collection of 500 random straight control-space paths that were
constructed using the procedure set out in Sec. II. The paths
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FIG. 2. The value of P1→5 along a collection of 500 straight paths
between randomly chosen points E(0,t) = EI (t) on the submanifold
close to the bottom of the landscape, such that J [E(0,t)] = 10−4, and
randomly chosen points E(1,t) = EF (t) on the submanifold close
to the top of the landscape, such that J [E(1,t)] = 0.99. For a large
portion of the paths, P1→5(v) increases monotonically over 0 � v � 1
as the path is traversed from the bottom to the top utilizing Eq. (5).
Inset: Near the bottom of the landscape, for a subset of the straight
control paths, the value of P1→5 initially decreases by a small amount
near the beginning of the trajectory.

begin with initial fields E(0,t) all producing P I
1→5 = 10−4,

which approximates the bottom submanifold of the landscape,
and terminate at a height of P F

1→5 = 0.99, which is considered
to be an acceptably high yield. Remarkably, the paths appear
to be monotonic. However, the inset in Fig. 2 shows that
approximately 45% of the trajectories initially proceed to
lower values of P1→5 < 10−4; for this set of trajectories, these
“dips” only occur in the beginning, at extremely low values on
the landscape.

Since the nonmonotonic behavior in Fig. 2 occurs only near
the initial submanifold where P I

1→5 = 10−4 on the landscape,
it is natural to consider the outcome of changing the starting
and ending values P I

1→5 and P F
1→5, respectively. We carried

out simulations using similar values of P I
1→5 but very different

values of P F
1→5 (data not shown), which revealed that the

degree of monotonicity found along a straight control path is
not affected by the choice of P F

1→5. However, it was found that
starting at larger initial values of P I

1→5 resulted in deeper dips
like those in the inset in Fig. 2. These collective results imply
that we may specify the final submanifold corresponding to
any desired high value of P F

1→5 and focus attention on taking
the initial yield to its extreme limit of P I

1→5 = 0.
As a step towards the latter limit, we performed additional

simulations where P I
1→5 was further reduced (i.e., below 10−4

in Fig. 2), and as a result, fewer trajectories were found to
exhibit nonmonotonic behavior (not shown here). Note that
the climb down from randomly chosen suboptimal landscape
levels at the initial value s = 0 to the near landscape bottom
is very fast, indicative of the structure being smooth in the
lower portion of the landscape. We then considered the extreme
case of an initial field EI (0,t) = 0, which produces P I

1→5 ≡ 0,

FIG. 3. The value of P1→5 for a collection of 500 straight control
paths with each initial point located at E(0,t) = EI (t) = 0, producing
P1→5 ≡ 0, and the final point being a randomly chosen field E(1,t) =
EF (t) such that P1→5[E(1,t)] = 0.99. Each of these straight paths in
control space results in a strictly monotonic climb of the transition
probability P1→5 control landscape.

and collected 500 straight paths where each final field EF (t)
corresponded to the value P F

1→5 = 0.99. Utilizing these fields
in Eq. (5) with EI (0,t) = 0 produced the results shown in
Fig. 3, where all of the straight field paths led to P1→5(v)
proceeding monotonically up the landscape (we have verified
this behavior by checking for satisfaction of the inequality
dP1→5

dv
= ∫

δP1→5
δE

∂E
∂v

dt > 0 at fine steps in v for all of the
paths). We note as well for this class of straight field paths that
E(v,t) = vEF (t) is simply amplitude modulation, 0 � v � 1,
but with the field form EF (t) containing complex positive and
negative features arising from the sum in Eq. (6). The results
in Fig. 2, even with its small deviation from monotonicity,
and Fig. 3, showing strict monotonicity, imply that the Pi→f

landscape is very smooth.

B. Quantum ensemble control landscape

The bottom and top submanifolds are the only critical points
in the Pi→f landscape. In contrast, the quantum ensemble
control landscape JO generally possesses intermediate saddle
critical submanifolds [16]. Thus, we consider quantum en-
semble control in order to determine the effect of these saddle
submanifolds on the monotonicity of a landscape climb upon
following straight field paths. We again utilize the Hamiltonian
and dipole matrices of Eqs. (7) and (8) and specify the initial
density matrix

ρ =

⎛
⎜⎜⎜⎜⎝

1
3 0 0 0 0
0 1

3 0 0 0
0 0 1

5 0 0
0 0 0 1

15 0
0 0 0 0 1

15

⎞
⎟⎟⎟⎟⎠, (9)

023427-4



QUANTUM-CONTROL-LANDSCAPE STRUCTURE VIEWED . . . PHYSICAL REVIEW A 93, 023427 (2016)

FIG. 4. The value of JO along a collection of 500 straight control
paths. The initial point in each path is a null field E(0,t) = EI (t)
and the final point in each path is a randomly chosen field E(1,t) =
EF (t) located at the top of the landscape. All of the straight paths
monotonically climb to the top.

with the observable

O =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1

2 0
0 0 0 0 1

2

⎞
⎟⎟⎟⎟⎠. (10)

These matrices were chosen so that the null field EI (t) = 0
corresponds to a point located at the bottom of the control
landscape, where JO = Tr (ρO) = 1/15 ∼ 0.06. As in the
previous section, we optimize JO to the value 124

375 ∼ 0.331
(the absolute maximum value is 1

3 ) by starting with randomly
chosen control fields in Eq. (6) to obtain 500 final fields EF (t).
The observable value JO along 500 straight paths between
the null control field and the random final fields is plotted
in Fig. 4. All of the paths show that JO rises monoton-
ically, indicating that the presence of intermediate critical
submanifolds (at observable values of JO = 2/15, 3/15,
and 4/15) does not alter the conclusions in the previous
section.

We also addressed the circumstances of taking straight
field paths which correspond to beginning at an intermediate
critical submanifold. This goal may be achieved by altering
the order of the initial eigenvalues of ρ. In particular, we
stipulate a new initial density matrix which arises from a
permutation which swaps the third and last diagonal elements
of ρ to form ρ ′. With ρ ′ and EI (t) = 0 the initial value
of the ensemble observable is JO = 2

15 , which is a saddle
submanifold. In Fig. 5, we display JO associated with 500
straight field paths of the form E(v,t) = vEF (t), where each
final field EF (t) was determined by the procedure in Sec. II.
All of the paths are again monotonic, thus suggesting that
straight field paths to the top of the landscape need only
begin on a critical submanifold to monotonically climb the
landscape.

FIG. 5. The value of JO along a collection of 500 straight control
paths. Each path is driven by a field E(v,t) = vEF (t), where EF (t)
is determined to produce a maximal yield [i.e., at E(1,t) = EF (t)]
by first starting with a random field and then optimizing it with
D-MORPH. The field E(0,t) = EI (t) = 0 gives a yield located on
the saddle critical submanifold at JO = 2/15. Importantly, all of
the straight control paths correspondingly start at a saddle, and the
trajectories all monotonically climb to the top.

The final investigation pertains to whether straight field
paths between two intermediate saddle submanifolds are also
monotonic in the observable value JO . To answer this, we
altered ρ again in Eq. (9) with a permutation matrix which
swaps the first and last diagonal elements of ρ to form ρ ′′. As
a result, the final objective is to reach JO = Tr (ρ ′′O) = 3

15 ,
which is a saddle submanifold. The initial state is again
ρ ′ such that JO = Tr (ρ ′O) = 2

15 starts out as a saddle
submanifold with EI (t) = 0. The control fields are all of the
form E(t) = vEF (t), where EF (t) is found using the procedure
in Sec. II to reach the final saddle submanifold. In order to
assure that JO = 3

15 is actually a saddle, the target cost was
‖ρ[EF (t)] − ρ ′′‖. Figure 6 displays JO associated with 500
straight field paths between two saddle submanifolds. Not all of
the paths are monontonic in JO , so the results suggest that, for
the quantum ensemble control landscape, if both endpoints of
a straight field path correspondingly connect two intermediate
saddle submanifolds, then JO shows modest deviations from
monotonicity.

C. Unitary transformation landscape

The unitary transformation landscape JW also possesses
intermediate saddle critical submanifolds [20]. We considered
straight field paths for a unitary transformation landscape using
the Hamiltonian and dipole matrices

H0 =

⎛
⎜⎜⎜⎜⎜⎝

−10 0 0 0 0 0
0 −7 0 0 0 0
0 0 −3 0 0 0
0 0 0 2 0 0
0 0 0 0 8 0
0 0 0 0 0 15

⎞
⎟⎟⎟⎟⎟⎠ (11)
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FIG. 6. The value of JO along a collection of 500 straight
control paths. The initial point in each path is a randomly chosen
field E(0,t) = EI (t) located on the saddle critical submanifold at
JO = 2/15, and the final point in each path is a field E(1,t) = EF (t)
located at the saddle critical submanifold with JO = 3/15. Here not
all of the straight control paths are monotonic in the cost function but
the deviations from monotonicity reveal a gentle landscape free of
gnarled features.

and

μ =

⎛
⎜⎜⎜⎝

0 ±1 ±0.5 ±0.52 ±0.53 ±0.54

±1 0 ±1 ±0.5 ±0.52 ±0.53

±0.5 ±1 0 ±1 ±0.5 ±0.52

±0.52 ±0.5 ±1 0 ±1 ±0.5
±0.53 ±0.52 ±0.5 ±1 0 ±1

⎞
⎟⎟⎟⎠.

(12)
For JW = ‖W − U (T )‖2 the worst field will produce the
transformation U (T ) = −W such that JW = 4N = 24 in the
present circumstance with N = 6. The choice for W was
picked as W = −UI (T ), where UI (T ) was generated from
a random field EI (t) of the form in Eq. (6). A set of 500
optimal fields EF (t) was generated by the procedure in
Sec. II, seeking the final cost JW [EF (t)] = 0.01 × 4N = 0.24.
Straight trajectories through control space were then generated
by Eq. (5). The associated values of JW along these straight
control paths are shown in Fig. 7. As in Fig. 3, all of the straight
field paths produce monotonic trajectories JW (v) and show no
hint of being influenced by saddle submanifolds occurring at
values of JW = 4, 8, 12, and 16.

By finding a suitable initial field EI (t) such that the straight
field path begins at a saddle submanifold, we can further
inquire whether straight trajectories beginning at a saddle point
and ending at the bottom of the landscape (the optimal value
taken here is 0.01 × 4N = 0.24) are also monotonic in JW .
By specifying W = UI (T ) ∗ X, where UI (T ) is defined as in
the preceding paragraph, as being generated from the random
field EI (t) and X = diag(−1,−1,+1,+1,+1,+1), we ensure
that the randomly selected field EI (t) lies on a saddle point
[20] with

JW = 2N − 2Re{Tr (XU
†
I (T )UI (T ))} = 8.

FIG. 7. The value of JW along a collection of 500 straight control
paths, with the initial point in each path located at a randomly
chosen field E(0,t) = EI (t) yielding a unitary evolution operator
U = −W and the final points located at a randomly chosen field
E(1,t) = EF (t) yielding an evolution operator U = W . Each straight
control path interpolates between fields at the bottom and top of
the unitary transformation landscape according to Eq. (5), and the
landscape trajectory displays monotonic behavior, with no sign of
being influenced by the intermediate saddle submanifolds of the
landscape.

Figure 8 displays JW along 500 straight field paths beginning
at this saddle submanifold with the field EI (t) and ending near
the optimal value of the landscape following the procedure
in Sec. II to generate the optimal fields EF (t). All of the
trajectories on the landscapes are still monotonic in JW .
Finally, we assessed whether straight field paths between two
saddle submanifolds also produce monotonic paths for JW (v).

FIG. 8. The value of JW along a collection of 500 straight control
paths. Each path begins at a random field E(0,t) = EI (t) located on a
saddle point where JW = 8 and ends at a random field E(1,t) = EF (t)
located at the bottom of the unitary transformation landscape. All of
the runs are monotonic.
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FIG. 9. The value of JW along a collection of 500 straight control
paths, with the initial point in each path located at a randomly
chosen field E(0,t) = EI (t) on a saddle point with JW = 16 and
the final points located at a randomly chosen field E(1,t) = EF (t)
also located on a saddle point, with JW = 8. A small subset of the
paths displays nonmonotonic behavior of the cost function consistent
with encountering only modest landscape structural features.

In this case, after choosing the random initial field EI (t), we
specify W = UI (T ) ∗ Y , where UI (T ) is generated from EI (t)
as described above and Y = diag(−1,−1,−1,−1,+1,+1). As
a result, the initial field EI (t) lies on a saddle submanifold
with

JW = 2N − 2Re{Tr (YU
†
I (T )UI (T ))} = 16.

Then, we generate a set of 500 optimal fields EF (t) by
starting with random fields according to Eq. (6) and seeking
to minimize the modified cost function J ′

W = ‖W ∗ Y ∗ X −
U (T )‖2, where X is defined as in the previous paragraph. As
a result, the final fields EF (t) lie on a saddle submanifold with

JW = 2N − 2Re{Tr (XYYU
†
I (T )UI (T ))} = 8.

In Fig. 9, we plot JW along 500 straight paths between these
two saddle submanifolds. Although a preponderance of the
paths is monotonic, there are clearly several which fall below
the initial value of JW = 8. It is noted that the results in Figs. 7–
9 each correspond to assessing features in a statistically chosen
family of landscapes, as distinct values of W were generated
for each trajectory.

IV. DISCUSSION AND CONCLUSIONS

This paper shows that nearly all the exactly straight paths
in control space taking the yield from close to the bottom
of the landscape to the top correspond to monotonically
increasing climbs. Furthermore, when critical saddle subman-
ifolds exist and can be exactly accessed, straight paths in
control space between saddle generating fields and the top
are still monotonic in the yield and are not influenced by
the other critical submanifolds. However, it was found that
straight paths between fields starting and fields ending at
saddles showed a preponderance of monotonic behavior, along

with some modest deviations. Even the trajectories showing
the highest degree of nonmonotonic behavior reflect merely
gentle landscape features (i.e., typically at most a single
small dip or rise deviation from monotonicity was present
in these cases, as shown in Figs. 6 and 9). These findings
appear surprising, as the quantum control landscape is defined
over a high-dimensional control space and encapsulates a
generally very nonlinear relationship between the control field
and the cost function. The collective observations from the
simulations in this work bolster prior studies showing that
paths taken up the landscape guided by a gradient algorithm
(and thus guaranteed to be monotonic in the objective value)
correspond to nearly straight trajectories through control
space giving R close to 1.0 [17–19]. The present work
gives a complementary perspective on landscape structure by
following exactly straight control-field trajectories and then
finding that the objective value was almost always monotonic
if the trajectories connected critical submanifolds including
the bottom and top of the landscape. These dual perspectives
are both reflective of the existence of a dramatically simple
landscape structure. The Appendix establishes a statistical
basis to understand the observed general smoothness of the
landscape by considering the multiple interfering pathways
that often arise in reaching the desired objective. In this regard,
the analysis performed in the Appendix for Pi→f and Tr (ρO)
is distinct from considering ‖W − U‖2, but the conclusion
in all cases is to generally expect monotonic variation of the
objective upon taking a straight path in control space. The
analysis involved is statistical, and as such some deviation from
monotonicity could still occur, as found in the simulations.

We remark again that all the studies in this work started
and ended at submanifolds of critical points. Each manifold
is inherently flat with a countable number of steepest paths
up (or down, as appropriate) accompanied by an-infinite
dimensional flat null space. In this regard, we note the finding
with the transition probability landscape in Sec. III A, where
starting farther from the bottom of the landscape leads to
deeper dips before continuing on a final monotonic climb.
Thus, we performed a further numerical study of landscape
structure based on taking straight shots between arbitrary
initial and final fields for all of the landscapes Jif , JO , and
JW . We observed that straight paths between fields chosen
randomly from arbitrary locations on any of the landscapes
showed only modest degrees of nonmonotonic behavior, again
consistent with the landscapes being remarkably free of
gnarled structures.

The emerging picture of a very smooth control landscape
structure suggests seeking an efficient climbing algorithm
which is able to discover straight paths through control
space while attaining at least near monotonicity of the yield
while climbing. In this regard, it is significant to note that
the submanifold at the top of the landscape has vanishing
measure in an infinite-dimension control space, so it would
seem that picking an initially fixed direction to proceed along
in control space would rarely, if ever, yield a monotonic path
to the top or even arrive close to it. However, the results in this
work show that such desirable directions exist. The challenge
is to find a constructive algorithm that does not utilize prior
knowledge of fields on the top submanifold to identify those
initial directions. In creating such an algorithm, the straight
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nature of a control path arriving at the top of the landscape
appears to be a more desirable characteristic than monotonicity
of the yield, as straight control paths are likely to be shorter and
require fewer evaluations of the cost functional. In this context,
the evidence shows [17–19] that the gradient algorithm is
already very good, as all runs generally achieve R < 2.0, but
the gradient algorithm still appears to be wanting in terms
of reaching the desired ideal efficiency, given the evidently
generic simple structure of quantum control landscapes. We
leave open for future work consideration of the possibility of
creating a constructive algorithm for climbing the landscape
by progressing in a straight line in control space.

As a concluding remark we return to the prior analyses of
generally finding very favorable control landscape topology
based on what appears to be easily satisfied assumptions
[11,14,15]. We now also see that the landscape structure
rarely shows any significant gnarled structure. The dual
very attractive landscape features of topology and structure,
although apparently each of distinct physical origin, act in
a cooperative fashion to provide a basis to generally expect
ready discovery of effective control fields.
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APPENDIX: UNDERSTANDING THE BASIS FOR THE
OBSERVATION OF GENERALLY STRUCTURE FREE

QUANTUM CONTROL LANDSCAPES

1. Background

As discussed in the text, an experimental study [17] and
a number of simulations [18,19,21] guided by the gradient
algorithm revealed that the observed path length ratio R is
generally low, R � 2, for climbing various types of quantum
control landscapes. The simulations included either fields or
Hamiltonian time-independent structural variables as controls.
These studies considered either Pi→f , Tr(ρO), or ‖W − U‖2

as the objectives for optimization, in each case on the landscape
denoted J . The overall finding that R � 2 implies that
quantum control landscapes appear to be nearly devoid of
structural features upon using a gradient algorithm to guide the
optimization process. The present paper bolsters this finding
by putting aside the gradient algorithm and, instead, following
straight-shot paths through control space from an initial to a
final field accompanied by an observation of the evolving value
of the landscape height along a climb. The key finding in this
paper is that almost all such trajectories are monotonic, again
reflecting the presence of a simple landscape structure.

This Appendix lays out a foundation for understanding the
collective observations about landscape structure summarized
above. Importantly, the explanation has a generic character, in
keeping with the observed simplicity of the structural findings
found over a wide set of circumstances. Interestingly, the
explanation of the landscape topological features also rests on

generic theoretical foundations, but the structural analog has
a distinct explanation linked to the nature of quantum control
mechanisms possibly containing large numbers of significant
participating interfering terms in the Dyson expansion of the
unitary transformation driving a particular control objective.
This definition of control mechanism expressed through the
Dyson expansion [22] has proved to be useful in many
simulations, and it also may be experimentally implemented
[23]. The technical details of how to extract the relevant Dyson
expansion terms are not important for understanding their
linkage to explaining the general finding of small values for
the path length ratio R.

Appendix 2 below lays out the Dyson expansion in a form
particularly relevant to the pathway analysis, and Appendix 3
considers the expected behavior of R(v), where 0 � v � 1
is the progress variable along a straight-line field trajectory
specified in Eq. (5) of the text. Appendix 3 considers the
behavior of R(v) in a separate fashion for the individual cases
of Pi→f ,Tr (ρO), and ‖W − U‖. Some concluding remarks
aree given in Appendix 4.

2. Quantum control mechanism viewed from the significant
terms in the Dyson expansion

The Schrödinger equation for all applications considered in
this paper may be written as follows by combining Eqs. (1),
(2), and (5) of the text:

i�
∂U (t)

∂t
= [(H0 − μEI (t)) − vμ(EF (t) − EI (t))]U (t),

(A1)
where it is understood that U (t) ≡ U (t,0). Various cases are
considered in the text, including EI (t) = 0, but the analysis
here considers the general form in Eq. (5) that is re-expressed
in the Hamiltonian on the right-hand side of Eq. (A1). In
the cases of J being either Pi→f or Tr (ρO), in the text we
considered that J was being maximized, with EI (t) giving a
lower yield than EF (t). If the opposite circumstance was of
interest, then the operator on the right-hand side of Eq. (A1)
needs to be equivalently written as

[(H0 − μEF (t)) − (v − 1)μ(EI (t) − EF (t))]. (A2)

In this case the derivations in Appendixes 3 a and 3 b below
follow in the same way, with the conclusions being that
monotonic minimization is expected. In the case of J =
‖W − U‖2 in the text and Appendix 3 c below we naturally
start at a higher critical point on the landscape, seeking to be at
a final lower one. If, once again, the opposite circumstance was
sought, then the Hamiltonian form in Eq. (A2) applies, with
the result on the monotonicity being more complex to assess.
However, in all practical physical circumstances the goal is
to minimize J = ‖W − U‖2, and the analysis as presented is
consistent with the general findings in the simulations.

For notational simplicity, we make the definitions H ′
0(t) =

H0 − μEI (t) and �E(t) = EF (t) − EI (t) to rewrite Eq. (A1)
in the following form:

i�
∂U (t)

∂t
= [H ′

0(t) − vμ�E(t)]U (t). (A3)

A new evolution operator is defined, U(t), where U (t) =
U0(t)U(t), permitting Eq. (A3) to be rewritten in the interaction
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FIG. 10. The complex amplitudes entering into the Dyson ex-
pansion, Eq. (A5), for optimizing P1→3 in a four-level system. The
amplitudes have been slightly separated for visual clarity. Note that
these amplitudes in the complex plane are referred to as “composite
pathways,” with each arrow likely arising from multiple distinct terms
in the Dyson expnasion and, therefore, exhibiting more interference
structure than is directly evident. [Reprinted with permission from
Ref. [22]. Copyright (2003) by the American Physical Society.]

representation,

i�
∂U(t)

∂t
= −vμ(t)�E(t)U(t), (A4)

where μ(t) = U
†
0 (t)μU0(t) with i� ∂U0(t)

∂t
= H ′

0(t)U0(t). In
standard fashion, the Schrödinger equation in Eq. (A4) may
be iterated to form a Dyson expansion,

Uif (T ) ≡ 〈i|U(T )|f 〉 =
∞∑

n=0

vnUn
if , (A5)

where the states |i〉 and |f 〉 may be eigenstates of H0 or chosen
in some other physically motivated fashion associated with the
nature of the objective. The nth term in Eq. (A5) has the form

Un
if =

(
i

�

)n

〈i|
∫ T

0
dtnμ(tn)�E(tn)

∫ tn

0
dtn−1μ(tn−1)�E(tn−1)

. . .

∫ t2

0
dt1μ(t1)�E(t1)|f 〉. (A6)

The landscape structural analysis in Appendix 3 c is based on
the assumption that the control mechanism has a number of
significant amplitudes Un

if entering into Eq. (A5). A variety
of studies have been carried out investigating this matter, with
some evident trends in behavior. Two extreme limiting cases
are shown in Figs. 10 and 11, respectively, corresponding to
from a few constructively cooperating amplitudesUn

if to a very
large number of rather uniformly distributed amplitudes in the
complex plane. Most cases studied lie between these extremes,
but still with a significant number of amplitudes scattered in
the complex plane.

A previous work examined the relation of the landscape
structure to the mechanism based on the Dyson expansion [25].
Although no evident pattern was found in relating mechanism
to structure, all of the cases considered in the study had at
least modest number of significant terms in Eq. (A5). This
Appendix takes a closer look at the relation of mechanism and
landscape structure viewed through the Dyson expansion. The
analysis assume that a significant number of terms contribute
to Eq. (A5), leading to a particular approximation whose con-
clusion is consistent with the observed generally monotonic

FIG. 11. The complex amplitudes of the Dyson expansion,
Eq. (A5), are shown for an intense field eliciting many higher order
multiphoton processes. In spite of the magnitude of the amplitudes,
their combined sum is equal to 1.0 within computational precision.
[Reprinted with permission from Ref. [24]. Copyright (2004), AIP
Publishing LLC.]

climbs of the landscape. Although this conclusion explains
the observed rather featureless structure of the landscape,
the result rests on specified approximations, such that some
exceptions to the conclusion may be expected to arise, as
found in the numerical results in the text. Importantly, the
exceptions to monotonicty still reveal a very modest landscape
structure. Finally, the analysis below utilizes the interaction
representation at the final time U (T ) = U0(T )U(T ), which at
most introduces a basis set change from the numerical studies
in the text. This basis set change is not significant, as the target
goals in the text were all chosen arbitrarily.

3. Landscape structure assessment

The assessment in this section separately considers the three
cases of Pi→f , Tr (ρO), and ‖W − U‖2.

a. Pi→ f ,i �= f

We have that

Pi→f = |Uif |2. (A7)

It is convenient for our purposes here to rewrite Eq. (A5) as

Uif = δif +
∞∑

n=1

vn
∣∣Un

if

∣∣exp
(
iφn

if

)
(A8)

=
∞∑

n=1

vn
∣∣Un

if

∣∣exp
(
iφn

if

)
, (A9)

whereUn
if = |Un

if |exp(iφn
if ) and the last step is based on i 
= f .

Combining Eqs. (A7) and (A9) gives

Pi→f =
∞∑

n=1

∞∑
n′=1

vn+n′ ∣∣Un
if

∣∣∣∣Un′
if

∣∣exp
[
i
(
φn

if − φn′
if

)]
. (A10)

Under the assumption that a significant number of terms enter
into Eq. (A10), with {exp(iφn

if )} rather uniformly spread over
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2π radians in the complex plane, along with the moduli {|Un
if |}

being slowly varying with respect to n, we may make a random
phase approximation in Eq. (A10) to arrive at

Pi→f �
∞∑

n=1

v2n
∣∣Un

if

∣∣2
. (A11)

As we have v satisfying 0 � v � 1, along with |Un
if |2 being

positive, it follows that the climb of the landscape should be
monotonic, which is evident upon differentiating Eq. (A11) to
produce

dPi→f

dv
=

∞∑
n=1

2nv2n−1
∣∣Un

if

∣∣2 � 0. (A12)

b. J = Tr(ρ(T )O)

The objective, in the section title, may be rewritten as

J = Tr [U(T )ρU†(T )O], (A13)

which becomes

J =
∑
if

|Uif |2ρiOf . (A14)

Here, ρi and Of are the eigenvalues of the respective initial
density matrix ρ and observable operator O with an appro-
priate basis {|i〉} and {|f 〉} consistent with that circumstance.
We may consider all of the eigenvalues of O as positive for
convenience by adding an appropriate constant C to O as
needed (i.e., this operation, if necessary, simply makes the
shift J → J + C). Upon substituting Eq. (A8) in Eq. (A14),
we obtain

J =
∑
if

∣∣∣∣∣δif +
∞∑

n=1

vn
∣∣Un

if

∣∣exp
(
iφn

if

)∣∣∣∣∣
2

ρiOf (A15)

=
∑

i

ρiOi + 2
∑

i

( ∞∑
n=1

vn
∣∣Un

ii

∣∣ cos
(
φn

ii

))
ρiOi (A16)

+
∑
i,f

∞∑
n=1

∞∑
n′=1

vn+n′ ∣∣Un
if

∣∣∣∣Un′
if

∣∣exp
[
i
(
φn

if − φn′
if

)]
ρiOf .

(A17)

Here, the lead term
∑

i ρiOi is just the initial value of J

determined at v = 0. Upon making the same assumptions
that were introduced regarding the behavior of the Dyson
expansion in Appendix 3 a, we expect that the second term in
Eq. (A15) may be neglected due to the cosine fluctuating rather
uniformly over positive and negative values, finally resulting
in the approximation

J �
∑

i

ρiOi +
∑
i,f

∞∑
n=1

v2n
∣∣Un

if

∣∣2
ρiOf . (A18)

Differentiation of this expression gives the result

∂J

∂v
=

∑
i,f

∞∑
n=1

2nv2n−1
∣∣Un

if

∣∣2
ρiOf � 0, (A19)

which implies that we generally expect a monotonic climb of
an observable landscape, as verified in numerical simulations

in the text. The expression in Eq. (A19) also reduces to that of
Eq. (A12) upon making a pure state transition with ρ = |i〉〈i|
and O = |f 〉〈f |, i 
= f .

c. J = ‖W − U‖2

The objective in this section reduces to J = 2N −
2ReTr (W †U ), and hereafter we neglect the constant 2N . Thus
the objective function becomes

J = −2Re
∑
i,f

(|W †
f i |Uif )exp(−iχf i), (A20)

where we have defined an element of the objective unitary
transformation as W

†
f i = |W †

f i |exp(−iχf i). Equation (A20) is
assumed to be subject to minimization whether seeking W or
some saddle as a target. In the present context, it is convenient
to rewrite the expression in Eq. (A8) in the following form:

Uif = δif +
∞∑

n=1

vn
∣∣Un

if

∣∣exp
[
i
(
δφn

if + χf i

)]
. (A21)

Substitution of Eq. (A21) into Eq. (A20) results in

J = −2
∑

i

|W †
ii | cos(χii)−2

∑
i,f

|W †
f i |

∞∑
n=1

vn
∣∣Un

if

∣∣ cos
(
δφn

if

)
.

(A22)
Here we note that the first term in Eq. (22) is independent

of v, and δφn
if is similarly independent of v. Thus, upon

differentiation of Eq. (22), we obtain

∂J

∂v
= −2

∑
i,f

|W †
f i

∣∣ ∞∑
n=1

nvn−1
∣∣Un

if | cos
(
δφn

if

)
. (A23)

The analysis of this case follows a different argument than
those arising in Appendixes 3 a and 3 b. However, we expect
that the phase δφn

if will likely satisfy |δφn
if | � 1 for the case of

U → W or approaching a saddle of J , as each of the elements
of U must appropriately match those of W , which motivated
the choice of Un

if = |Un
if |exp[i(δn

if + χf i)] in Eq. (A21). These
arguments lead to the conclusion of expecting the approximate
result ∂J

∂v
� 0 with cos(δφn

if ) > 0 likely satisfied. Thus, we
generally expect the trajectories of J (v) to follow a monotonic
path towards minimization of J , as overwhelmingly found in
the simulations in the text.

4. General comments

In summary, the cases of Pi→f and Tr (ρO), in
Appendixes 3 a and 3 b, respectively, are expected to exhibit
monotonic optimization behavior for sufficiently rich or
multiterm control mechanisms. The case of J = ‖W − U‖2

in Appendix 3 c is analyzed on a different basis but still
leading to the same conclusion of expecting monotonic
minimization of the objective over the landscape. As all of
the arguments involve approximations, exceptions could arise,
but the evidence in the text shows that exceptions are rare.
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