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Many-electron effects on x-ray Rayleigh scattering by highly charged He-like ions
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The Rayleigh scattering of x rays by many-electron highly charged ions is studied theoretically. The
many-electron perturbation theory, based on a rigorous quantum electrodynamics approach, is developed and
implemented for the case of the elastic scattering of (high-energetic) photons by heliumlike ions. Using this
elaborate approach, we here investigate the many-electron effects beyond the independent-particle approximation
(IPA) as conventionally employed for describing the Rayleigh scattering. The total and angle-differential cross
sections are evaluated for the x-ray scattering by heliumlike Ni26+, Xe52+, and Au77+ ions in their ground state.
The obtained results show that, for high-energetic photons, the effects beyond the IPA do not exceed 2% for the
scattering by a closed K shell.
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I. INTRODUCTION

The elastic scattering of a light by bound electrons is
commonly known as Rayleigh scattering. It has been found to
be a powerful and versatile tool for investigating the structure
and dynamics of bound electrons as well as for probing the
atomic environment. Apart from the fundamental interest, a
quantitative understanding of the Rayleigh scattering is needed
in various fields, including the study of the solid-state, complex
molecules or even nano-objects [1–4], astrophysics [5,6], as
well as in medical diagnostics [7].

Experimentally, recent progress in exploring the Rayleigh
scattering of hard x rays by atomic or solid-state targets
has been achieved by a major improvement of the detection
techniques as well as the quality of light sources. Indeed, novel
solid-state photon detectors [8,9] together with advances in the
available synchrotron sources [10] have paved the way towards
new generations of experiments. For example, a measurement
of the linear polarization of the Rayleigh scattered light has
been recently performed with the help of the segmented solid-
state detectors at the PETRA III synchrotron at DESY [11].
The advances in the Rayleigh scattering experiments nowadays
also demand further and accurate predictions at the side of
theory.

The theoretical investigations on the elastic scattering of
photon by bound electrons dates back to the mid-1930s [12].
While initially quite simple approximations were applied,
based on the atomic form factors, the rigorous quantum
electrodynamical (QED) approach has later been developed
by using the relativistic second-order S-matrix amplitude; we
refer the reader to Ref. [13] for a comprehensive historical
overview. This latter approach has now become the standard
for treating the Rayleigh scattering. These developments were
triggered specially by the pioneering work of Brown, Peierls,
and Woodward [14], who developed the method for the
calculation of the second-order transition amplitudes. Within
this QED approach, quite a number of calculations were
carried out for different atoms and photon energies [15–21];
we refer the reader to Ref. [22] for a comprehensive review

on this approach. In recent years [23–27] the angular and
polarization correlation between the incident and outgoing
photons have also been investigated. Unfortunately, however,
the formalism of the second-order S-matrix theory does not
enable one to investigate systematically the many-electron
effects on the Rayleigh scattering. This is caused by the
electron-electron interaction that is treated only approximately
in this formalism by means of a central screening potential, and
which is known as screening potential or independent-particle
approximation (IPA). Until the present, many-electron effects
beyond the IPA were only investigated for the helium atom
in Ref. [28]. It was found that the interelectronic-interaction
corrections beyond the IPA significantly modify the Rayleigh
cross section for the low-energy photons and disappear
for higher energies. The main aim of the present study is
to investigate the many-electron effects for highly charged
ions.

In this paper, we present a rigorous QED treatment of the
Rayleigh scattering of light by highly charged heliumlike
ions. The QED perturbation expansion with regard to the
interelectronic interaction is applied up to the first order for
the Rayleigh scattering as an important light-matter interaction
process at medium and high photon energies. In particular,
formulas have been derived for the zeroth- and first-order
interelectronic-interaction corrections to the scattering ampli-
tude. This framework enables one to systematically investigate
the many-electron effects beyond the IPA. In Sec. II, the details
of this formalism are presented, while the computational
techniques and methods are discussed in Sec. III. The total
and angle-differential cross sections are evaluated for the
scattering of x rays on the ground state of heliumlike Ni26+,
Xe52+, and Au77+ ions. We shall here consider especially
two experimental scenarios in which the incoming light is
either unpolarized or completely linearly polarized. In Sec. IV,
the obtained numerical results are presented and discussed.
Attention is paid to the comparison between the IPA and the
many-electron description. For the Rayleigh scattering of x
rays by heliumlike ions in their ground state, we find that the
many-electron effects beyond the IPA treatment do not exceed
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2%. In Sec. V, we briefly summarize our results and give a
brief outlook.

Relativistic units (� = 1, c = 1,m = 1) and the Heaviside
charge unit [α = e2/(4π ), e < 0] are used throughout the
paper.

II. THEORETICAL BACKGROUND

The process of elastic photon scattering is characterized by
the energy conservation of the incident and outgoing photons
in the center-of-mass frame of the overall scattering system.
This means that no energy transfer is possible between the
photon and the target with its internal degree of freedom.
However, since the energy of the scattered photon is typically
much smaller than the atom’s rest-mass energy, we therefore
consider in the following the scattering of a photon in the
rest frame of the atom, so that the incoming and outgoing
photon energies simply remain the same. For the theoretical
description of (quite) heavy atoms, moreover, it is naturally
to utilize the Furry picture, in which the (infinitely heavy)
nucleus is taken as the source of the classical Coulomb field
and where the interaction of electrons with this field is then
treated exactly by just solving the Dirac equation in the nuclear
Coulomb potential.

According to the basic principles of QED [29], the
differential cross section for the scattering of a photon by
an atom is given by

dσ (kf ,εf ,A′; ki,εi ,A)

= (2π )4|τγf ,A′;γi ,A|2δ(EA′ + k0
f − EA − k0

i

)
dkf , (1)

where the initial and final state of the photon are characterized
by the four-momentum k

μ

i and k
μ

f and polarization vectors εi

and εf , respectively. Here, the zero and spatial components
of the four-vector define the photon frequency k0 ≡ ω and the
photon wave vector k. Moreover, the total energy of the bound
electrons are EA and EA′ for the initial and final state of the
atom. The shorthand notations A and A′ stand for a unique
specification of the bound-electron states A = αAJAMA and
A′ = αA′JA′MA′ , where JA and JA′ are the total angular
momenta, MA and MA′ their corresponding projections, and
where αA and αA′ denote all additional quantum numbers
that are needed for a unique specification of the states. The
energy conservation EA = EA′ clearly shows that no energy
transfer occurs to the atom and that the moduli of the wave
vectors are the same for the incoming and outgoing photons,
k0
i = k0

f . Thus, the angle-differential cross section for the
elastic scattering in a solid angle d	f takes the form,

dσ (kf ; ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA,MA′

∑
εf

|τγf ,A′;γi ,A|2 d	f .

(2)

The scattering amplitude τγf ,A′;γi ,A can be related to the
scattering S-matrix element by the following expression:

Sscat
γf ,A′;γi ,A

= 〈kf ,εf ,A′|(Ŝ − Î )|ki,εi ,A〉
= 2πi τγf ,A′;γi ,A δ

(
k0
f − k0

i

)
, (3)

and where Ŝ and Î denote the scattering and identity operators.
The scattering S-matrix element Sscat

γf ,A′;γi ,A
contains two types

of processes: the scattering by the Coulomb potential of the
nucleus as well as the scattering by the bound electrons. The
first type corresponds to the Delbrück scattering amplitude,
while the second one is usually defined as the Rayleigh
scattering by the bound electrons. Here, we restrict ourselves
to the Rayleigh scattering only. In order to evaluate the
corresponding Rayleigh S-matrix element, which we denote
as SR

γf ,A′;γi ,A
, one has to employ the bound-electron QED

perturbation theory. For this purpose, we here utilize the
(so-called) two-time Green-function method as developed in
Refs. [30–32], where the perturbation theory is formulated for
the two-time Green functions. The Rayleigh S-matrix element
can be generally related to the two-time Green functions by
the equation [32],

SR
γf ,A′;γi ,A

= Z−1
3 δ

(
k0
f − k0

i

) ∮

A

dE′
∮


A

dE gγf ,A′;γi ,A

(
E′,E,k0

i

)

×
[

1

2πi

∮

A

dE gA′A′(E)

]−1/2

×
[

1

2πi

∮

A

dE gAA(E)

]−1/2

, (4)

where the contour 
A encloses the pole corresponding to
the bound-electron states with the energy EA. This contour
also excludes all further singularities of the Green functions
gγf ,A′;γi ,A, gAA, and gA′A′ , which are defined in a similar
way as in Ref. [32]. The factor Z3 is a renormalization
constant for the absorbed and emitted photon lines. The
Green function gγf ,A′;γi ,A(E′,E,k0

i ) describes the scattering of
a photon by bound electrons, while the Green functions gAA(E)
and gA′A′(E) characterize the initial and final bound-electron
states. Since the Rayleigh S-matrix element SR

γf ,A′;γi ,A
is

expressed in terms of the Green functions, it can be calculated
order-by-order by applying the QED perturbation theory with
regard to the radiation-matter interaction.

In the following, we shall consider in further detail the
nonresonant Rayleigh scattering of light by heliumlike ions,
i.e., for photon energies which are not close to possible ex-
citations of any quasistationary bound state. The zeroth-order
two-electron wave functions uA and uA′ are constructed as
linear combinations of Slater determinants, A = (a1,a2)JAMA

and A′ = (a1,a2)JA′MA′ as

uA(r1,r2) = FA

1√
2

∣∣∣∣ua1 (r1) ua2 (r1)
ua1 (r2) ua2 (r2)

∣∣∣∣
= FA

1√
2

∑
P

(−1)P |Pa1Pa2〉, (5)

where FA is a shorthand notation for the summation over the
Clebsch-Gordan coefficients,

FA|a1a2〉 =
∑

ma1 ,ma2

C
JAMA

ja1 ma1 ja2 ma2
|a1a2〉 ×

{
1, a1 �= a2

1/
√

2 , a1 = a2
,

(6)
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ja the one-electron total angular momentum and ma its
projection, P is the permutation operator, giving rise to the sign
(−1)P of the permutation for any permutation of the electron
coordinates. The same notations hold for the final state A′. The
one-electron wave functions ua1 and ua2 are found by solving
the Dirac equation with the Coulomb potential of the nucleus.

A. Zeroth-order approximation

In order to calculate the S-matrix element SR
γf ,A′;γi ,A

of
the Rayleigh scattering according to Eq. (4), we decompose
the two-time Green functions in a perturbation series with an
expansion parameter α and group the terms of the same order
together. In zeroth-order approximation, the corresponding
Feynman diagrams are depicted in Fig. 1. Then, by employing
Eqs. (3) and (4) we obtain the zeroth-order Rayleigh scattering
amplitude τ

(0)
γf ,A′;γi ,A

in the following form:

τ
(0)
γf ,A′;γi ,A

= 1

2πi

∮

A

dE′
∮


A

dE g
(0)
γf ,A′;γi ,A

(
E′,E,k0

i

)
, (7)

FIG. 1. Feynman diagrams of the Rayleigh scattering in zeroth-
order approximation. The double line indicates the electron propaga-
tors in the Coulomb field of the nucleus, while the photon absorption
and emission are depicted by the wavy line with incoming and
outgoing arrows, respectively.

where the superscript “(0)” indicates the order of the per-
turbation expansion. According to the Feynman rules, the
zeroth-order Green function g

(0)
γf ,A′;γi ,A

can be written as

g
(0)
γf ,A′;γi ,A

(
E′,E,k0

i

)
δ
(
E′ + k0

f − k0
i − E

)
= FAFA′

∑
P, Q

(−1)P+Q

∫ ∞

−∞
dp0

1dp
0
2dp

′0
1 dp′0

2 dq0 δ
(
E − p0

1 − p0
2

)
δ
(
E′ − p′0

1 − p′0
2

)

×
{

〈Pa′
1|

i

2π

∑
n1

|n1〉〈n1|
p′0

1 − uεn1

2π

i
R∗

f δ
(
p′0

1 + k0
f − q0

) i

2π

∑
n2

|n2〉〈n2|
q0 − uεn2

2π

i
Riδ

(
q0 − k0

i − p0
1

)

× i

2π

∑
n3

|n3〉〈n3|
p0

1 − uεn3

|Qa1〉〈Pa′
2|

i

2π

∑
n4

|n4〉〈n4|
p0

2 − uεn4

|Qa2〉δ
(
p′0

2 − p0
2

)

+〈Pa′
1|

i

2π

∑
n1

|n1〉〈n1|
p′0

1 − uεn1

2π

i
Riδ

(
p′0

1 − k0
i − q0

) i

2π

∑
n2

|n2〉〈n2|
q0 − uεn2

2π

i
R∗

f δ
(
q0 + k0

f − p0
1

)

× i

2π

∑
n3

|n3〉〈n3|
p0

1 − uεn3

|Qa1〉〈Pa′
2|

i

2π

∑
n4

|n4〉〈n4|
p0

2 − uεn4

|Qa2〉δ
(
p′0

2 − p0
2

)}

= i

2π

δ
(
E′ + k0

f − k0
i − E

)
(
E′ − E

(0)
A

)(
E − E

(0)
A

)FAFA′
∑
P,Q

(−1)P+Q
∑

n

{ 〈Pa′
1|R∗

f |n〉〈n|Ri |Qa1〉δPa′
2Qa2

E − εQa2 + k0
i − uεn

+ 〈Pa′
1|Ri |n〉〈n|R∗

f |Qa1〉δPa′
2Qa2

E′ − εPa2 − k0
i − uεn

}
.

(8)

R∗
f (r) = e α ε∗

f e−ikf r/
√

2k0
f (2π)3 and Ri(r) = e α εi e

ikir/√
2k0

i (2π)3 are the emission and absorption operators, α is the
vector of the Dirac α matrices, and where the zeroth-order
energy of the bound electrons E

(0)
A is equal to the sum of the

one-electron Dirac energies E
(0)
A = εa1 + εa2 . Furthermore,

the factor u = 1 − i0 in expression (8) preserves the proper

treatment of poles of the electron propagators. In the case
of the nonresonant scattering, the expressions in the curly
brackets of Eq. (8) are regular functions of E and E′ as
long as E ≈ E

(0)
A and E′ ≈ E

(0)
A . By substituting Eq. (8) into

Eq. (7) and by integrating over E and E′, one thus easily
obtains

τ
(0)
γf ,A′;γi ,A

= −FAFA′
∑
P, Q

(−1)P+QδPa′
2Qa2

∑
n

{ 〈Pa′
1|R∗

f |n〉〈n|Ri |Qa1〉
εQa1 + k0

i − uεn

+ 〈Pa′
1|Ri |n〉〈n|R∗

f |Qa1〉
εPa1 − k0

i − uεn

}

= −FAFA′
∑

n

{( 〈a′
1|R∗

f |n〉〈n|Ri |a1〉
εa1 + k0

i − uεn

+ 〈a′
1|Ri |n〉〈n|R∗

f |a1〉
εa1 − k0

i − uεn

)
δma′

2
ma2

+
( 〈a′

2|R∗
f |n〉〈n|Ri |a2〉

εa2 + k0
i − uεn

+ 〈a′
2|Ri |n〉〈n|R∗

f |a2〉
εa2 − k0

i − uεn

)
δma′

1
ma1

}
. (9)
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Before we shall proceed further, let us discuss this ex-
pression for the zeroth-order Rayleigh scattering amplitude
τ

(0)
γf ,A′;γi ,A

. Obviously, this amplitude splits into two pieces as
indicated by the round brackets. These pieces correspond to
either the scattering by just the a1 (first round brackets) or a2

(second round brackets) electrons. In the zeroth-order approx-
imation, hence, the obtained Rayleigh scattering amplitude
corresponds to the IPA formulas as they are widely used for
the theoretical description of the Rayleigh scattering; see, e.g.,
Ref. [22].

Using the (zeroth-order) Rayleigh scattering amplitude
from above, the angle-differential Rayleigh scattering cross
section defined by Eq. (2) is given in zeroth-order approxima-
tion by

dσ (0)(kf ; ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA, MA′

∑
εf

∣∣τ (0)
γf ,A′;γi ,A

∣∣2
d	f ,

(10)
while the corresponding zeroth-order total cross section gives
rise to

σ (0)(ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA, MA′

∑
εf

∫ ∣∣τ (0)
γf ,A′;γi ,A

∣∣2
d	f .

(11)
In the following, we shall go beyond the zeroth-order

approximation and investigate the effects due to the electron-
electron correlations. To do so, we need to account for the
interelectronic-interaction correction to the Rayleigh scat-
tering amplitude. In the next subsection we now present
the corresponding formulas for the first-order interelectronic-
interaction effects.

B. First-order interelectronic-interaction correction

In order to obtain the expression for the first-order
interelectronic-interaction correction to the Rayleigh S-
matrix element, we have to collect all first-order terms
in Eq. (4) as they arise from the perturbation expansion
of the Green functions. Using Eq. (3), the corresponding

interelectronic-interaction correction to the scattering ampli-
tude �τ

(1)
γf ,A′;γi ,A

is given by

�τ
(1)
γf ,A′;γi ,A

= 1

2πi

[∮

A

dE′
∮


A

dE �g
(1)
γf ,A′;γi ,A

(
E′,E,k0

i

)

− 1

2

∮

A

dE′
∮


A

dE g
(0)
γf ,A′;γi ,A

(
E′,E,k0

i

)

×
(

1

2πi

∮

A

dE �g
(1)
A′A′(E)

+ 1

2πi

∮

A

dE �g
(1)
AA(E)

)]
, (12)

where the first-order interelectronic-interaction correction to
the scattering Green function �g

(1)
γf ,A′;γi ,A

can be represented
by Feynman diagrams as displayed in Fig. 2. The cor-
responding corrections to the Green functions �g

(1)
A′A′ and

�g
(1)
AA are defined by the first-order interelectronic-interaction

diagram shown in Fig. 3. In addition, by making use of
the Feynman rules for the two-time Green functions one
can derive the final expressions for the scattering amplitude
correction �τ

(1)
γf ,A′;γi ,A

. This derivation is technically very
similar to those as performed in Refs. [33,34], where the
interelectronic-interaction effects were investigated for one-
and two-photon bound-bound transitions in heliumlike ions.
For the sake of brevity, we therefore omit here the cumbersome
expressions and go on to the final form of the first-order
interelectronic-interaction correction �τ

(1)
γf ,A′;γi ,A

which can be
written as the following sum:

�τ
(1)
γf ,A′;γi ,A

= �τ
(1A)
γf ,A′;γi ,A

+ �τ
(1B)
γf ,A′;γi ,A

+ �τ
(1C)
γf ,A′;γi ,A

+�τ
(1D)
γf ,A′;γi ,A

+ �τ
(1R)
γf ,A′;γi ,A

. (13)

Here, the different contributions are distinguished by the
superscripts (1A), (1B), (1C), and (1D) and correspond to
the so-called irreducible parts of the diagrams as shown in
Figs. 2 (a), 2(b), 2(c), and 2(d), respectively. These terms are
given by the following expressions:

�τ
(1A)
γf ,A′;γi ,A

= −FAFA′
∑
P, Q

(−1)P+Q

εn2 �=εPa1∑
n1,n2

{ 〈Pa′
1|R∗

f |n1〉〈n1|Ri |n2〉〈n2Pa′
2|I

(
εPa2 − εQa2

)|Qa1Qa2〉(
εPa1 + k0

i − uεn1

)(
εPa1 − εn2

)

+ 〈Pa′
1|Ri |n1〉〈n1|R∗

f |n2〉〈n2Pa′
2|I

(
εPa2 − εQa2

)|Qa1Qa2〉(
εPa1 − k0

i − uεn1

)(
εPa1 − εn2

)
}

. (14)

�τ
(1B)
γf ,A′;γi ,A

= −FAFA′
∑
P, Q

(−1)P+Q
∑
n1,n2

{ 〈Pa′
1|R∗

f |n1〉〈n1Pa′
2|I

(
εPa2 − εQa2

)|n2Qa2〉〈n2|Ri |Qa1〉(
εPa1 + k0

i − uεn1

)(
εQa1 + k0

i − uεn2

)

+ 〈Pa′
1|Ri |n1〉〈n1Pa′

2|I
(
εPa2 − εQa2

)|n2Qa2〉〈n2|R∗
f |Qa1〉(

εPa1 − k0
i − uεn1

)(
εQa1 − k0

i − uεn2

)
}

, (15)

�τ
(1C)
γf ,A′;γi ,A

= −FAFA′
∑
P, Q

(−1)P+Q

εn1 �=εQa1∑
n1,n2

{ 〈Pa′
1Pa′

2|I
(
εPa2 − εQa2

)|n1Qa2〉〈n1|R∗
f |n2〉〈n2|Ri |Qa1〉(

εQa1 − εn1

)(
εQa1 + k0

i − uεn2

)
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(a) (b) (c)

(d)

FIG. 2. Feynman diagrams to represent the first-order interelectronic-interaction corrections to the Rayleigh scattering process. The internal
wavy line stands for the photon propagator. The rest notations are the same as in Fig. 1.

+ 〈Pa′
1Pa′

2|I
(
εPa2 − εQa2

)|n1Qa2〉〈n1|Ri |n2〉〈n2|R∗
f |Qa1〉(

εQa1 − εn1

)(
εQa1 − k0

i − uεn2

)
}

, (16)

�τ
(1D)
γf ,A′;γi ,A

= −FAFA′
∑
P, Q

(−1)P+Q
∑
n1,n2

{ 〈Pa′
1|Ri |n1〉〈Pa′

2|R∗
f |n2〉〈n1n2|I

(
k0
i − εPa1 + εQa1

)|Qa1Qa2〉(
εPa1 − k0

i − uεn1

)(
εPa2 + k0

i − uεn2

)

+ 〈Pa′
1n2|I

(
k0
i − εPa1 + εQa1

)|n1Qa2〉〈Pa′
2|R∗

f |n2〉〈n1|Ri |Qa1〉(
εQa1 + k0

i − uεn1

)(
εPa2 + k0

i − uεn2

)

+ 〈Pa′
1n2|I

(
k0
i + εPa1 − εQa1

)|n1Qa2〉〈Pa′
2|Ri |n2〉〈n1|R∗

f |Qa1〉(
εQa1 − k0

i − uεn1

)(
εPa2 − k0

i − uεn2

)

+ 〈Pa′
1Pa′

2|I
(
k0
i − εPa1 + εQa1

)|n1n2〉〈n1|Ri |Qa1〉〈n2|R∗
f |Qa2〉(

εQa1 + k0
i − uεn1

)(
εQa2 − k0

i − uεn2

)
}

, (17)

and where I (ω) = e2αμανDμν(ω) refers to the interelectronic-interaction operator with the photon propagator Dμν(ω). The
diagrams displayed in Figs. 2(a) and 2(c) contain also the so-called reducible parts, while this is not the case for the diagrams
shown in Figs. 2(b) and 2(d). Thus, the last term in Eq. (13) �τ

(1R)
γf ,A′;γi ,A

is the total reducible contribution, which arises from
the second term in the square brackets of Eq. (12) and from the reducible parts of the diagrams Figs. 2(a) and 2(c). The total
reducible term can be written as

�τ
(1R)
γf ,A′;γi ,A

= FAFA′
∑
P, Q

(−1)P+QδPa′
2Qa2

∑
n

{( 〈Pa′
1|R∗

f |n〉〈n|Ri |Qa1〉(
εQa1 + k0

i − uεn

)2 + 〈Pa′
1|Ri |n〉〈n|R∗

f |Qa1〉(
εPa1 − k0

i − uεn

)2

)
�E

(1)
A

+
( 〈Pa′

1|R∗
f |n〉〈n|Ri |Qa1〉

εQa1 + k0
i − uεn

+ 〈Pa′
1|Ri |n〉〈n|R∗

f |Qa1〉
εPa1 − k0

i − uεn

)
�E

′(1)
A

}
, (18)

where

�E
(1)
A = FAFÃ

∑
P

(−1)P 〈P ã1P ã2|I (εP ã1 − εa1 )|a1a2〉

(19)

is the one-photon exchange correction and

�E
′(1)
A = FAFÃ

∑
P

(−1)P 〈P ã1P ã2|dI (x)

dx

∣∣∣
�=εP ã1 −εa1

|a1a2〉

(20)
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FIG. 3. One-photon exchange Feynman diagram. Notations are
the same as in Figs. 1 and 2.

is the first-order derivative of the one-photon exchange
correction.

Finally, the angle-differential Rayleigh scattering cross
section up to the first order in the interelectronic interaction is
given by

dσ (1)(kf ; ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA,MA′

∑
εf

∣∣τ (0)
γf ,A′;γi ,A

+�τ
(1)
γf ,A′;γi ,A

∣∣2
d	f , (21)

while the corresponding total cross section takes the form,

σ (1)(ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA,MA′

∑
εf

∫ ∣∣τ (0)
γf ,A′;γi ,A

+�τ
(1)
γf ,A′;γi ,A

∣∣2
d	f . (22)

These Rayleigh scattering cross sections take rigorously
into account the many-electron effects on a level of the
one-photon exchange. These calculations enable us to analyze
systematically the importance of the many-electron effects
upon the elastic scattering cross sections. However, before we
continue with this analysis let us consider a different approach
for including the many-electron effects in the next subsection.

C. Screening potential approximation

Apart from the rigorous approach above, the zeroth-order or
independent-particle approximation of Eq. (9) also facilitates
a partial account of the interelectronic-interaction effects in
the Rayleigh cross sections. To this end, we shall start from an
extended Furry picture in which a central screening potential
is incorporated into the zeroth-order Hamiltonian. In this
case, the formula (9) for the zeroth-order Rayleigh amplitude
remains formally the same, while the initial, intermediate,
and final one-electron wave functions are now generated
within a mean-field potential by including, in addition to the
Coulomb field, also some screening potential. In practice,
however, this approach only includes some (major) parts of
the many-electron effects for highly charged ions. Here, we
shall separate this part from the complete first-order result in
Eq. (13) by restricting ourselves to the static Coulomb part
in the photon propagator Dμν as well as to the spherical
terms in its multipole expansion. Below, we shall refer to
this approximation by the superscript “scr” in the Rayleigh
scattering amplitude,

�τ
(1)scr
γf ,A′;γi ,A

= �τ
(1A)scr
γf ,A′;γi ,A

+ �τ
(1B)scr
γf ,A′;γi ,A

+ �τ
(1C)scr
γf ,A′;γi ,A

+�τ
(1R)scr
γf ,A′;γi ,A

. (23)

Let us mention here that the contribution of the diagrams in
Fig. 2(d) should also be excluded in this case since these dia-
grams are of inherent many-electron character. In the leading
order this approximation is equivalent to the IPA with the
Dirac-Hartree-Fock potential. The difference arisen from the
higher-order terms can be neglected for highly charged ions.

With these “screening” corrections to the Rayleigh scatter-
ing amplitude, the angle differential and total cross sections
take now the form,

dσ scr(kf ; ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA,MA′

∑
εf

∣∣∣τ (0)
γf ,A′;γi ,A

+�τ
(1)scr
γf ,A′;γi ,A

∣∣∣2
d	f , (24)

and

σ scr(ki ,εi) = (2π )4
(
k0
i

)2

2JA + 1

∑
MA,MA′

∑
εf

∫ ∣∣∣τ (0)
γf ,A′;γi ,A

+�τ
(1)scr
γf ,A′;γi ,A

∣∣∣2
d	f , (25)

respectively. Since this approximation can be obtained from
Eq. (9) by just making use of a screening potential in solving
the Dirac equation, we shall refer to it as the IPA. In the
next section, we now discuss the numerical procedure and the
methods employed in the computation of the cross sections.

III. COMPUTATIONS

The formulas (9), (13), and (23) for the transition am-
plitudes, as obtained in the previous section, require further
simplifications to make detailed computations feasible. For
instance, in order to perform the angular integrations in the
one- and two-electron matrix elements, we utilize the well-
known multipole expansion technique. Indeed, this angular
integration can be carried out analytically by expanding the
transition operators R∗

f and Ri as well as the photon propagator
Dμν in multipole series. For the sake of brevity, we do not
recall the corresponding expressions here and just refer the
reader to the literature for further details [35]. The infinite
multipole summations over the incoming and outgoing photon
multipoles are further restricted by analyzing the convergence
and more often than not we summed up to 10 multipoles.

Numerically most demanding in the computations is the
infinite summation over the complete Dirac spectrum n1 and
n2, which not only contain the bound states but also the
positive- and negative-energy Dirac continuum. In order to
perform such a summation several independent approaches
were employed previously in the consideration of the Rayleigh
scattering. One method formulated in Ref. [14] is based on a
solution of an inhomogeneous Dirac equation, a method that
was found quite successful and was utilized in a good number
of calculations of the elastic scattering cross sections [15–21].
Another approach is known as the finite basis-set method.
This technique enables one to replace an infinite summation
in the spectral representation of the electron propagator by
a summation over a finite basis set and was utilized for
calculating the Rayleigh scattering in Refs. [24,27]. Still
another approach is based on the exact Dirac-Coulomb Green’s
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function which can be represented in a closed form as a
superposition of the regular and irregular solutions of the Dirac
equation. In the case of a pointlike Coulomb potential, for
example, it can be expressed analytically [36]. In Refs. [25,26]
this method was also utilized in the calculation of the Rayleigh
scattering cross sections.

In the present work, we made use of the two latter
approaches: the finite basis-set method and the Dirac-Coulomb
Green’s function. The finite basis set was constructed from
B splines [37] by employing the dual-kinetic-balance ap-
proach [38]. In addition, the analytic Dirac-Coulomb Green’s
function for a pointlike Coulomb potential was employed in
terms of the Whittaker functions [39]. The finite basis set
method enables us to considerably reduce the numerical effort
in the calculations. The reason for this is the separation of the
radial variables and the subsequent integrations of the single
radial integrals. However, when the energies of the incident
photons are larger than the ionization threshold, the application
of the finite basis-set technique is critically hampered in some
of the terms (diagrams). For example, this is the case for the
first term of Eq. (9) with the denominator (εQa1 + k0

i − uεn).
This term has a pole in the energy continuum (spectrum) at
εn = εQa1 + k0

i + i0 that cannot be treated accurately in any
finite basis-set method due to the discretized spectrum and
the summation over just a finite number of basis functions.
In contrast, the use of the Dirac-Coulomb Green’s function
is free of such difficulties as it represents the exact elec-
tron propagator. Therefore, all the electron propagators with
energies εa1 + k0

i or εa2 + k0
i were treated by means of the

Dirac-Coulomb Green’s function Gκn
:

∑
n

|n〉〈n|
εa + k0

i − uεn

≡
∑
nr , κn

unrκn
(r1)u†

nrκn
(r2)

εa + k0
i − uεnrκn

=
∑
κn

Gκn
(εa + k0

i ,r1,r2), (26)

and where nr and κn denote the principal and Dirac angular
quantum numbers, respectively. For all other propagators, the
finite basis set representation was employed. This combination
of different (numerical) techniques enables us to substantially
reduce the computational time, while we still obtain (very)
accurate results.

Still, a quite serious problem occurs for those terms
where two Dirac-Coulomb Green’s functions appear in the
calculations. For example, such a term is the first contribution
in Eq. (15) which can be rewritten by means of the Dirac-
Coulomb Green’s functions as

τ
(1B)
γf ,A′;γi ,A

= −FAFA′
∑
P, Q

(−1)P+Q
∑

κn1 , κn2

×
∫

dr1dr2dr3dr4 u
†
Pa′

1
(r1)u†

Pa′
2
(r4)R∗

f (r1)

×Gκn1

(
εPa1 + k0

i ,r1,r2
)
I (εPa2 − εQa2 ,r2,r4)

×Gκn2
(εQa1 + k0

i ,r2,r3)Ri(r3)uQa1 (r3)uQa1 (r4)

+ second term. (27)

Here, the integration over the r2 coordinate involves the two
Dirac-Coulomb Green’s functions Gκn1

(εPa1 + k0
i ,r1,r2) and

Gκn2
(εQa1 + k0

i ,r2,r3), and together with the photon propaga-
tor I (εPa2 − εQa2 ,r2,r4). In contrast to the integrations over the
coordinates r1, r3, and r4, no bound-electron wave function
is involved here. Therefore, the integral over r2 converges
only very slowly for large values of r2, and this makes a
straightforward numerical integration extremely cumbersome.
For this reason, we here applied the method of the complex-
plane rotation of the coordinate integration contour and which
was previously used in studying bremsstrahlung [40] and
double photoionization processes [41]. We have introduced
the radius of the atom R, i.e., a radius outside of which all the
bound-state electron wave functions vanish. In the integrals
over r1, r3, and r4 we then set the upper bound to R and split the
remaining over r2 into two domains [0,R] and [R,R − i∞).
With these rearrangements in the integration procedure, the
integral over the second domain decays exponentially and does
no longer cause any (numerical) problem.

In order to check the consistency of our numerical results
we have performed calculations in different gauges, namely
in length and velocity gauge for the photon wave functions
and in Coulomb and Feynman gauge of the photon propa-
gator. The obtained results were found in perfect agreement,
independently of the chosen gauge form.

IV. RESULTS AND DISCUSSION

Although the formulas in Sec. II apply generally for
heliumlike ions, independent of their particular state, detailed
calculations have been performed here only for the Rayleigh
scattering by such ions in their 1s2 1S0 ground state. In
particular, we here aim to investigate the “many-electron”
effects beyond the IPA, for which two sets of calculations were
carried out: a first one, in which the zeroth-order approximation
with the Coulomb wave functions were applied in Eqs. (10)
and (11) and to which we refer below as the Coulomb results.
A second IPA computation was carried out by using the
screening potential approximation and Eqs. (24) and (25);
these computations are referred to as the screening results.
Both of these IPA calculations are compared with the complete
zeroth- and first-order results as obtained by means of Eqs. (21)
and (22), called the many-electron treatment below.

Figure 4 displays the total cross section for the Rayleigh
scattering of light by heliumlike Ni26+ (Z = 28), Xe52+ (Z =
54), and Au77+ (Z = 79) ions and as function of the photon
energy. Results are shown for photon energies well above the
ionization threshold and for the three computations above:
Coulomb σ (0), screening σ scr, and many-electron σ (1). To make
the differences in the theoretical predictions more explicit, the
relative deviations (in %) with regard to the many-electron
data are also shown in the lower panel of this figure: �(0)

σ =
(σ (0) − σ (1))/σ (1) and �scr

σ = (σ scr − σ (1))/σ (1). As seen from
this figure, all three computations give quite similar results
with slightly larger deviations near the ionization threshold. At
the threshold, the Rayleigh scattering cross sections appear to
be very sensitive due to differences in the calculated threshold
energies in the three approximations. For the scattering on
heliumlike Au77+ ions, for example, the calculated threshold
energies are 93.411 keV, 91.857 keV, and 91.656 keV for
the Coulomb, screening, and the many-electron computations,
respectively. While, in the Coulomb approximation, the
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FIG. 4. Total cross section for the Rayleigh scattering of x rays by heliumlike Ni26+ (Z = 28), Xe52+ (Z = 54), and Au77+ (Z = 79) ions
in their 1S0 ground state and as function of the photon energy. Predictions are compared for three different approximations in the evaluation of
the scattering amplitudes: a pure Coulomb potential σ (0) (red dashed line), use of a screening potential σ scr (blue dash-dotted line), as well as
by applying the full many-electron procedure in σ (1) (black solid line). The lower panel displays the differences (in %) between the Coulomb
�(0)

σ (red dashed line) and the screening cross sections �scr
σ (blue dash-dotted line), each relative to the many-electron computations.

ionization threshold is completely determined by the one-
electron Dirac binding energy, the interelectronic interactions
modify this value in the screening and many-electron cal-
culations. The difference between the ionization energies in
the screening and many-electron approximation is due to the
contribution of the Breit interaction to the ground-state energy.
Thus, the behavior of the differences �(0)

σ and �scr
σ near the

ionization threshold as a function of the nuclear charge can
be understood from the ratio of the one-photon exchange
and Breit interaction contribution to the threshold energy,
respectively. The first ratio decreases while the second one
increases with increasing nuclear charge. For large photon
energies, all approximations slowly converge each other. This
behavior was expected at high energies [22] since the binding
effects become less and less important with increasing of
the energy of scattered photon. The similar finding was also
obtained for the case of the helium atom in Ref. [28].

In addition to the total cross sections, we shall now
investigate the angular distribution of the scattered photons
and for which we need to fix a geometry for describing
the scattering process [cf. Fig. 5]. In the Furry picture, as
mentioned above, we can treat the photon scattering in the rest
frame of the nucleus, taken as the origin of the coordinates.
Moreover, we can choose the z axis along the wave vector
ki of the incident radiation. Than the scattered photon wave
vector kf is completely described by the two angles: azimuthal
θ and polar φ. What concerns the polarization of the incident
photon, we consider here two scenarios. In the first scenario
the incoming light is completely unpolarized, and the angular

distribution is independent on the polar angle φ. In the second
scenario the incoming light is completely linearly polarized
along the x axis; then one observes a dependence of the
scattering cross section on the polar angle φ as well. Here, we
restrict ourselves to the geometry when the photon is observed
at the angle φ = 0, thus, defining the reaction plane to be the
xz plane.

In Figs. 6 and 7, we display the angle-differential cross
sections for the Rayleigh scattering of unpolarized and linearly
polarized incoming light, if scattered by heliumlike Ni26+ ions

FIG. 5. Geometry for describing the Rayleigh scattering of
photons at a nucleus which is taken as the origin of the coordinates.
The z axis is chosen along the direction of the incoming light, while
the reaction plane is defined by the xz plane. The scattering angle θ

then uniquely defines the direction of the scattered photon within the
reaction plane.
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FIG. 6. Angle-differential cross section for the Rayleigh scattering of unpolarized incoming photons with energies k0
i = 6 keV (left column),

k0
i = 12 keV (middle column), and k0

i = 18 keV (right column) by heliumlike Ni26+ ions in their ground state. Theoretical results are shown for
the three approximations in this work: Coulomb dσ (0) (red dashed line), screening dσ scr (blue dash-dotted line), as well as the many-electron
computations dσ (1) (black solid line). In the lower panel, again the differences (in %) between the Coulomb �

(0)
dσ (red dashed line) and screening

�scr
dσ results (blue dash-dotted line) are shown, just relative to the many-electron computations.

FIG. 7. The same as Fig. 6 but for linearly polarized incoming photons.
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FIG. 8. The same as Fig. 6 but for the Rayleigh scattering by heliumlike Xe52+ ions and for incident photon energies k0
i = 20 keV (left

column), k0
i = 45 keV (middle column), and k0

i = 60 keV (right column), respectively.

in their ground state. Analog computations were performed
also for heliumlike Xe26+ and Au77+ ions and are given in
Figs. 8–11, respectively. These angular distributions of the
Rayleigh-scattered photons are shown for three energies of
the incoming photons, namely for about half of the ionization

threshold as well as for photon energies that are 10% and
50% larger that this threshold. A different behavior of the
angular distributions for a different polarization of the incident
light can be expected already from the nonrelativistic electric-
dipole approximation which predicts a 1 + cos2θ shape for

FIG. 9. The same as Fig. 8 but for linearly polarized incoming photons.
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FIG. 10. The same as Fig. 6 but for the Rayleigh scattering by heliumlike Au77+ ions and for incident photon energies k0
i = 50 keV (left

column), k0
i = 100 keV (middle column), and k0

i = 150 keV (right column), respectively.

unpolarized (incoming) light and a cos2θ shape for completely
polarized radiation, respectively. For large photon energies,
however, nondipole effects become also important and lead
to (more or less) strong deviations from this electric-dipole
behavior above [13].

Similar as for the total Rayleigh cross sections, we have
analyzed and compare in Figs. 6–11 the angle-differential
cross sections in the three approximations above: Coulomb
dσ (0), screening dσ scr, and many-electron dσ (1). Since the
deviations between the different computations are typically

FIG. 11. The same as Fig. 10 but for linearly polarized incoming photons.
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small over a wide range of angle, we also display the
relative differences, �

(0)
dσ = (dσ (0) − dσ (1))/dσ (1) and �scr

dσ =
(dσ scr − dσ (1))/dσ (1), i.e., normalized to the many-electron
data as our best approximation. These relative differences
are shown in the lower panels of these figures. While these
differences are typically small for energies well above the
ionization threshold (in the right columns of these figures),
sizable deviations arise below this threshold, and especially
for the Coulomb results. The relative differences are large
at low Z and clearly demonstrate the importance of the
interelectronic-interaction effects. The deviations are, how-
ever, less significant between the screening and many-electron
computations, i.e., less than 2% for all the cases considered
here. This demonstrates that the interelectronic-interaction
effects can be treated quite efficiently within the IPA with
a screening potential for the case of the Rayleigh scattering of
photons on heliumlike ions in their ground state.

V. SUMMARY AND OUTLOOK

In summary, a systematic QED treatment has been pre-
sented for the first-order corrections of the interelectronic
interaction to the Rayleigh scattering of photons by heliumlike
ions. By applying and comparing three different theoretical
and computational approaches, we rigorously explore the role
of the many-electron effects beyond the IPA to the Rayleigh
scattering by highly charged ions. Detailed calculations for the
total and angle-differential cross sections were evaluated for
the scattering by heliumlike Ni26+, Xe52+, and Au77+ ions in
their 1s2 1S0 ground state and, especially, for unpolarized and
completely polarized incident radiation. We here found that
the interelectronic-interaction effects are more important for
photon energies below and just above the ionization threshold.

However, the major part of these many-electron contributions
can be taken into account by IPA calculations with a screening
potential.

For photon energies well above the valence and subvalence
binding energies, this conclusion can be generalized also
towards more complex atoms. For such atoms and ions, the
Rayleigh scattering is typically dominated by the scattering
from the inner-shell electrons. However, for photon energies
compared with the valence and subvalence binding energies,
the Rayleigh scattering cross sections are strongly affected by
the scattering from the outer-shell electrons and further care
has to be taken in employing the IPA. This can be proven
for forward emissions (θ = 0), where the Rayleigh scattering
cross section can be related to the photoionization cross section
via the dispersion relation and the optical theorem [42]. In
complex atoms the photoionization cross section near the
ionization threshold often shows various structures, such as the
Cooper minima and resonances due to inner-shell excitations,
which appear to be very sensitive to many-electron effects.
These electronic-structure phenomena will likely affect also
the Rayleigh scattering cross sections, especially, for the
cases of the scattering by the open-shell electrons [43]. The
theoretical formalism above can be applied to such open-shell
atoms, although (much) further effort will be needed for its
efficient numerical implementation.
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