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Preparing attosecond coherences by strong-field ionization
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Strong-field ionization (SFI) has been shown to prepare wave packets with few-femtosecond periods. Here,
we explore whether this technique can be extended to the attosecond time scale. We introduce an intuitive model,
which is based on the Fourier transform of the subcycle SFI rate, for predicting the bandwidth of ionic states
that can be coherently prepared by SFI. The coherent bandwidth decreases considerably with increasing central
wavelength of the ionizing pulse but it is much less sensitive to its intensity. Many-body calculations based
on time-dependent configuration-interaction singles support these results. The influence of channel interactions
and laser-induced dynamics within the ion is discussed. Our results further predict that multicycle femtosecond
pulses can coherently prepare subfemtosecond wave packets with higher selectivity and versatility compared to
single-cycle pulses with an additional sensitivity to the mutual parity of the prepared states.
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I. INTRODUCTION

The measurement of electronic wave packets has recently
attracted widespread interest. Time-domain studies of elec-
trons in atoms, molecules, and the condensed phase offer
new approaches to understanding electronic structure and
electronic correlations (see, e.g., [1–6]). Electronic wave
packets have been measured in the valence shell of atomic ions
using transient absorption [7,8] or sequential double ionization
[9,10] and in the valence shell of neutral molecules using
high-harmonic spectroscopy [11–13].

One necessary condition for creating electronic motion
is the population of multiple electronic states. Strong-field
ionization is well known to fulfill this condition [14–18]. The
second requirement, which has received much less attention,
is the coherent preparation of these electronic states. Since
ionization is inherently an open-system quantum process with
respect to the cation, the coherence between the quantum states
of the cation is always imperfect. In other words, strong-field
ionization (SFI) leaves the ion in a mixed state which may dis-
play no time dependence at all. Hence, a method for predicting
the degree of coherence created by SFI is urgently needed.

The partial coherence of electronic states generated by SFI
has been studied in rare-gas ions, both theoretically [19,20] and
experimentally [7,8]. These studies showed that the degree of
coherence decreases with increasing duration of the ionizing
pulse and suggested that the optical cycle sets a natural lower
bound to the period of wave packets accessible through SFI.

The subject of this article is particularly relevant for
applying SFI to initiate charge migration [1,21,22] which is
usually discussed in the context of single-photon ionization in
the sudden limit. A recent study of single-photon ionization by
attosecond pulses has shown that a necessary condition for the
coherent population of cationic states is that the bandwidth of
the ionizing radiation exceeds their energetic separation [23].
In contrast, the existence of a similar condition for SFI in
the nonperturbative regime is not obvious and has not, to our
knowledge, been discussed previously. In the case of perturba-

tive, nonresonant SFI by n photons, the coherence bandwidth
should be given by the Fourier transform of the nth power of the
time-dependent electric field. This pronounced dependence on
the number of photons should disappear in the nonperturbative
regime. Alternatively, in analogy to single-photon ionization,
the spectral width of the created photoelectron wave packet
(two times the ponderomotive potential) could be the key
quantity in determining the coherence. We show that it is
in fact a third quantity, namely, the temporal confinement of
SFI, that is the key to defining the coherent bandwidth. This
result suggests a surprisingly simple and general method for
predicting the potential of SFI to prepare attosecond dynamics
in a specific system.

In this article, we introduce the concept of a “coherence
window” which represents the bandwidth of ionic states
that can be coherently prepared by SFI. The coherence
window is obtained by Fourier transforming the subcycle
time dependence of the SFI rate. We derive this conceptually
intuitive model from the strong-field approximation (SFA) and
validate it using the time-dependent configuration-interaction
singles (TDCIS) method [24,25], an ab initio many-body
approach. Our model predicts a pronounced decrease of the
coherence window with increasing central wavelength. The
TDCIS results reveal substantial changes in the presence
of laser-driven transitions in the ion and a reduction of the
coherence caused by channel interactions. Most importantly,
all results agree in displaying energy-domain recurrences of
the coherence that enable highly coherent attosecond wave
packets to be selectively prepared by multicycle femtosecond
pulses. This property is particularly valuable for preparing only
selected electronic coherences in molecules where SFI would
usually prepare highly complex wave packets.

II. RESULTS

A. Simple model

Our approach is motivated by the Fourier principle. The
more a physical event is confined in time, the larger is the
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FIG. 1. (a) Electric field of a 6.3 fs pulse centered at 800 nm and nonadiabatic SFI rate for a peak intensity of 1014 W/cm2, ionization
energy of 12.1 eV, and angular momentum quantum numbers � = 1 and m = 0. (b) Fourier-transform amplitude of the full SFI rate (solid blue
line) or the SFI rate restricted to the window shown in (a) (green dashed line). The dotted blue line shows the degree of coherence C between
the ground state and an excited state with Ip = 12.1 eV + �E as a function of �E, calculated according to Eqs. (3) and (4).

associated energy bandwidth. Applied to SFI, we conjecture
that the subcycle evolution of the strong-field ionization
rate �(t) := �[E(t)] is the key quantity in determining the
bandwidth of states that can be coherently prepared, where
E(t) is the instantaneous electric-field strength. The highly
nonlinear dependence of � on E results in a wide coherence
window that can span several electron volts. We first illustrate
this result numerically, then derive it from the SFA and finally
test it against ab initio multielectron (TDCIS) calculations.

Figure 1(a) shows a linearly polarized few-cycle pulse and
the associated nonadiabatic SFI rate [26] for a hydrogen-like
atom. Figure 1(b) shows the absolute value of the Fourier
transform of both the complete SFI rate (full blue line)
and its restriction to the central half cycle (green dashed
line). This latter curve represents the coherence window
associated with a single half cycle, whereas the former
represents the coherence window associated with the complete
pulse.

The following conclusions can be drawn from Fig. 1,
which shows results for 800 nm central wavelength and
1014 W/cm2 peak intensity. These pulse parameters give rise
to a half width at half maximum of 3.9 eV, corresponding
to a temporal period of 1.06 fs. The shortest accessible
period thus lies far below the optical-cycle period of 2.67
fs, which is a consequence of the nonlinearity of SFI. A
single-cycle pulse can thus coherently prepare any pair of
levels lying within the single-cycle coherence window [dashed
green line in Fig. 1(b)], whereas a multicycle pulse can only
coherently prepare levels lying within the narrower maxima of
the multicycle coherence window (full blue line). In the case of
an inversion symmetric medium these maxima are spaced by
2nω (with n integer) because the SFI rate does not distinguish
between positive and negative extrema of the electric field and
thus possesses twice the angular frequency ω of the electric

field. The case of non-inversion-symmetric systems and the
role of parity are discussed below.

B. Derivation from the strong-field approximation

We now provide an analytical derivation of the coherence
window from the SFA. The SFA [27–32] has been widely
used to calculate photoelectron momentum distributions. It has
explained properties of SFI such as above-threshold ionization
peaks and their ponderomotive shift, intracycle interference
[33,34], and the lateral width of momentum distributions [35].
The SFA has not previously been used to investigate coherence
in ions. Here we use the SFA to derive the density matrix of ions
created by SFI. An atom or a molecule, initially in its ground
state �0, is ionized by a linearly polarized pulse with electric
field E(t)ez. In length-gauge SFA, the complex amplitude for
creating an ion in the state J accompanied by an electron with
momentum k, taken at the final time tf and in atomic units, is

MJ (k) = i

∫ tf

−∞
dt DJ (vk(t))E(t)eiSJ (k,t)e−iEJ tf . (1)

Here DJ (v) = 〈v,J |Dz|�0〉 is the transition dipole to the
product state |v,J 〉 of a plane wave with momentum v and
the ionic state J with energy EJ relative to the neutral-atom
ground state. The electron kinetic momentum is vk(t)=
k+A(t) with A(t) = A(t)ez = − ∫ tE(t ′)ez dt ′, and the action
is given by SJ (k,t) = EJ t − 1

2

∫ tf
t

vk(t ′)2 dt ′.
Tracing out the degrees of freedom of the unobserved

photoelectron produces the reduced density matrix of the ion,

ρJK =
∫

d3k MJ (k)MK (k)∗. (2)

We evaluate the time integral in Eq. (1) by a saddle-point
approximation. In the tunneling regime, the complex saddle-
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point times given by ∂
∂t

SJ (k,t) = 0 are near the classical
ionization times defined by kz+A(t) = 0. For simplicity, we
assume that the transition dipoles do not have a singularity
at the saddle point, which is true for bound states of limited
spatial extension. Electron wave packets contributing to the
same final momentum, but emitted at different times, have
small overlap because of rapid wave-packet spreading in the
continuum. Hence, we determine the coherence by neglecting
terms where two ionic states are populated at different classical
times. We restrict the kz integration to the classically allowed
range and rewrite it as a time integral by substitution. For
tf →∞, small EJ and small k2

⊥ = k2
x + k2

y , we thus find

ρJK =
∫ ∞

−∞
dt

√
�J �K sgn[E(t)](2−PJ −PK )/2ei(EJ−EK )t . (3)

To reach this result, we have approximated DJ =
cJ D(k⊥)fJ (sgn[E(t)]) with a constant cJ and a
state-independent function D. The function fJ (x) =
x(1−PJ )/2|fJ (x)| with PJ = ±1 describes inversion
symmetry: for states with defined electronic parity, we
have fJ (x) = x(1−PJ )/2; for polar molecules, fJ accounts for
the asymmetry of ionization. The instantaneous ionization rate

is given by �J (t) = exp(− 2
√

2EJ
3

3|E(t)| )|cJ fJ |2 �⊥(t) with �⊥(t)
capturing the state-independent integral over the transverse
momentum. The ionization rates can be quantitatively
calculated by improved methods that include the Coulomb
potential, nonadiabatic effects, or molecular electronic
structure [26,31,36,37]. These results enable us to calculate
the coherence between states J and K as follows:

C = |ρJK |√
ρJJ ρKK

. (4)

The limit C = 1 represents a pure state, whereas C = 0
represents a mixed state which displays no time dependence
at all.

The results obtained from this derivation are compared
to the simple model in Fig. 1. The dotted curve in Fig. 1
shows the degree of coherence C between the ground state
and an excited state as a function of their energy separation,
calculated according to Eqs. (3) and (4) using the nonadiabatic
tunneling rate [26]. The close agreement between the two
blue curves in Fig. 1 shows that the Fourier-transform-based
coherence window (full curve) is a good predictor of the
coherence (dotted curve) derived from the SFA. These results
thus confirm our conjecture and Eq. (3) simultaneously
introduces two important refinements. First, the coherence
window depends on the SFI rates to both final states, the
ground and the excited state. Indeed, Eq. (3) represents the
Fourier transform of the geometric mean of the two ionization
rates evaluated at the difference of the ionization energies
�E=EK −EJ . The comparison of the full and dotted lines in
Fig. 1(b) shows that this effect is only important at high internal
energies of the cation. Second, the shape of the coherence
window is sensitive to the parity of the final states. If the states
J and K have the same parity (PJ PK = 1), the coherence will
peak at �E = 0. For a long pulse, the integrand is nearly a
periodic function leading to peaks of the coherence when �E

is an even multiple of ω. If, on the other hand, J and K differ
in parity (PJ PK = −1) the integrand changes sign every half

EΔ

EΔ

5s5s1/2

5p3/2

5p1/2

12.1 eV

5p

23.4 eV

12.1 eV

(a) same parity (b) opposite parity

FIG. 2. Level structure of the artificial xenon atom used in the
TDCIS calculations to represent the case of initial states of the (a)
same parity and (b) opposite parities.

cycle and the coherence peaks at odd multiples of ω. For polar
molecules, electronic parity is not defined and, consequently,
the coherence peaks appear at all integer multiples of ω.

C. TDCIS calculations

We now validate these predictions beyond the framework
of the SFA and additionally analyze the roles played by
laser-induced transitions and channel interactions by turning
to TDCIS calculations [38,39]. All TDCIS calculations in this
article use an artificial Xe atom with tunable energy-level
separations as illustrated in Fig. 2. Figure 3 illustrates the
role of parity through the coherence C between two ionic
states of (a) the same and (b) opposite parities as a function
of their energy separation �E. The lowest ionization energy
(12.1 eV) is kept constant in all cases. We illustrate the case
of equal parity, using the 5p−1

1/2 and 5p−1
3/2 fine-structure states

(mJ = 1/2) of Xe+. The 5s−1 and 5p−1 states with spin-orbit
coupling artificially set to zero serve as an illustration for the
case of final states with opposite parities.

III. DISCUSSION

Figure 3 compares the TDCIS results (red line) with
the model [Eq. (4)] based on the nonadiabatic tunneling
rates. Both theories agree in predicting the local maxima of
the coherence at �E = 2nω for the same-parity case and
�E = (2n + 1)ω for the opposite-parity case. In the case
of equal parities [Fig. 3(a)], a very good general agreement
between the model and the TDCIS calculations is obtained.
This result shows that the model accurately captures the
physical processes behind the creation of coherence. In the
case of opposite parities [Fig. 3(b)], the model and TDCIS
calculations still agree very well, except for the 1ω peak which
is unexpectedly small in the TDCIS calculations. Panel (c)
shows that this suppression is a consequence of laser-driven
transitions between the dipole-coupled 5p−1 and 5s−1 states
of Xe+. When the corresponding transition dipole moment is
set to zero in the TDCIS calculations, the normal situation of
monotonically decreasing coherence peaks is recovered.
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FIG. 3. Coherence between two ionic states prepared by SFI with
the same (a) or opposite [(b),(c)] parities as a function of their
separation �E. The states in (a) are the 5p−1

1/2 and 5p−1
3/2 of Xe+

(mJ = 1/2), and in (b) the states 5s−1 and 5p−1
0 with spin-orbit

interactions turned off. Results are shown for TDCIS (solid red) and
Eq. (4) using nonadiabatic tunneling rates [26] (dotted blue). (c) same
as (b) comparing the full TDCIS calculation with the result obtained
by setting the 5s−1 ↔ 5p−1

0 transition dipole moment to zero. In
all panels the ionizing pulse is 12.7 fs (FWHM) long, has a peak
intensity of 1014 W/cm2, and a central wavelength of 1900 nm. The
vertical dashed lines mark energy splittings corresponding to 2nω

and (2n + 1)ω, respectively.

Figure 4 shows the dependence of the coherence on the
intensity [(a),(b)] and wavelength (c) of the driving pulse.
The influence of the intensity is generally rather weak. In
the case of equal parities (a), higher intensities suppress the
coherence for high-lying excited states. This is explained
by the broadening of the temporal ionization window with
increasing intensity. In the case of opposite parities (b),
an increase of the intensity leads to a suppression of the
first peak, which supports the interpretation of Figs. 3(b)
and 3(c) that laser-induced transitions reduce this coherence.
A complementary behavior is observed in the 3ω peak which
is found to increase with the intensity.

The effect of the wavelength is studied in Fig. 4(c) by
displaying the coherence between the 5p−1

1/2 and 5p−1
3/2 states

of Xe+ (mJ = 1/2), using a single-cycle laser pulse at all
wavelengths. We compare the results of the model using
nonadiabatic tunneling rates (blue dashed line) with the model
using quasistatic rates (green dotted line). We find that the
two models agree at long wavelengths, but the quasistatic
rates overestimate the coherence at wavelengths ranging from
800 to 2000 nm. The additional comparison with TDCIS
calculations (red line) shows that the interaction between
ionization channels, present in TDCIS but absent in both model
calculations, additionally suppresses the degree of coherence
at all wavelengths.

FIG. 4. (a) Effect of the intensity on the coherence between the
5p−1

1/2 and 5p−1
3/2 states of Xe+ (mJ = 1/2) as a function of their energy

separation from TDCIS calculations. (b) Same as (a) for the 5s−1 and
5p−1

0 states. All other pulse parameters are the same as in Fig. 3.
(c) Effect of the wavelength on the coherence between 5p−1

1/2 and
5p−1

3/2 using an energy-level separation of 1.3 eV, a peak intensity of
1014 W/cm2, and a single-cycle pulse at each wavelength.

IV. CONCLUSION

In conclusion, we have introduced an intuitive approach
to predicting the degree of coherence between multiple states
of a cation prepared by SFI. We showed that laser-induced
transitions, nonadiabatic effects in tunneling, and channel
interactions generally tend to decrease the degree of coherence
predicted by our simple model. We have further shown how
coherent hole wave packets can be selectively created with
multicycle strong-field pulses that may be much longer than the
period of the prepared dynamics itself. This property alleviates
the need for single-cycle IR pulses that are challenging to
create. In inversion-symmetric systems, the hole coherence
maximizes at �E = 2nω, with n integer, for ionic states of
the same parities and at �E = (2n + 1)ω for states of opposite
parities. In systems lacking inversion symmetry, such as polar
molecules, local maxima of the coherence are in contrast
expected for �E = nω. The described approach finally also
offers a way to selectively create coherent wave packets
involving specific hole states that could not be generated
with short “delta-like” strong-field or attosecond XUV pulses.
A generalization to multicolor pulses opens the path to an
even higher selectivity in creating attosecond electronic wave
packets involving multiple ionic states.
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