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We theoretically investigate high-order-harmonic generation (HHG) in Rydberg atoms driven by spatially
inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser
intensity should exceed a certain threshold in order to stimulate HHG when noble gas atoms in their ground state
are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator
is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a
low-intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low
damage threshold of the materials employed in the nanostructure engineering. In this work we propose the use of
Rydberg atoms, driven by spatially inhomogeneous, plasmon-enhanced laser fields, for HHG. We exhaustively
discuss the behavior and efficiency of these systems in the generation of coherent harmonic emission. Toward this
aim we numerically solve the time-dependent Schrödinger equation for an atom, with an electron initially in a
highly excited nth Rydberg state, located in the vicinity of a metallic nanostructure. In this zone the electric field
changes spatially on scales relevant for the dynamics of the laser-ionized electron. We first use a one-dimensional
model to investigate systematically the phenomena. We then employ a more realistic situation, in which the
interaction of a plasmon-enhanced laser field with a three-dimensional hydrogen atom is modeled. We discuss
the scaling of the relevant input parameters with the principal quantum number n of the Rydberg state in question
and demonstrate that harmonic emission can be achieved from Rydberg atoms well below the damage threshold,
thus without deterioration of the geometry and properties of the metallic nanostructure.
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I. INTRODUCTION

High-order-harmonic generation (HHG) has been exten-
sively studied, both theoretically and experimentally, con-
sidering its potential for synthesizing bright isolated XUV
pulses, which are the workhorse to understand ultrafast
electron dynamics, on the subfemtosecond and subangstrom
spatiotemporal scale [1,2]. The dynamics of HHG is trans-
parently described by the so-called three-step model [3,4].
We summarize the sequence as follows: (i) a bound electron
tunnels out from the Coulomb barrier, suppressed by the
incident laser electric field; (ii) this laser-ionized electron
accelerates in the continuum under the sole influence of the
electric field; and (iii) the electron is driven back towards
the parent ion and converts its kinetic energy in energetic
and coherent photons upon recombination. The maximum
photon energy achievable from the HHG process is deter-
mined by the classical cutoff law ωcutoff = Ip + 3.17Up [3,4],
where the ponderomotive potential Up is ∼ Iλ2 (I and λ

being the peak intensity and wavelength of the incident laser
field, respectively) and Ip is the ionization potential of the
target atom of interest.

The relationship ωcutoff ∝ Iλ2 suggests two main routes
to obtaining high-energetic coherent photons, namely, (i) to
increase the laser intensity I and (ii) to use laser sources
with longer wavelengths. Several limitations in both schemes
are in order. On one hand, ionization clearly rises for higher
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laser intensities, which, already at the level of the single-atom
response, dramatically decreases the probability of electron
recombination responsible for emission of photons of a high
frequency: in effect there is no HHG above the, so-called,
saturation intensity Isat (cf. [5]). Moreover, other instrumental
control parameters needed to obtain an appreciable photon
flux, such as phase matching between the atomic emitters
(for details see, e.g., [6] and [7]), are affected by higher
ionization levels. The other pathway, the utilization of longer
wavelengths, suffers from disadvantages as well. For instance,
it is demonstrated that the HHG yield scales as λ−(5∼6), and
as a consequence, it appears to be challenging to obtain a
measurable signal as λ increases due to this poor conversion
efficiency [8].

In an ordinary HHG experiment, a supersonic jet of noble-
gas atoms, all in their ground states (Ip ∼ 15–30 eV), is used
as a target. When near-infrared lasers (λ ∼ 700–2000 nm)
lasers are employed, the minimum laser intensity to observe
the HHG phenomenon lies in the range of ∼1012 − 1013

W/cm2, which often requires a second-stage amplification
at the output of a conventional femtosecond laser oscillator
(with typical output intensities in the range of ∼1010 − 1011

W/cm2). Considering the large infrastructure needed for this
amplification phase, many alternative schemes have been
proposed to amplify the incident field so as to permit an
efficient strong field-matter interaction [9,10]. One that has
received great interest recently is the so-called plasmon-
enhanced HHG [11–16]. This approach takes advantage of the
field enhancement generated when a laser field of moderated
intensity is focused on an array of metallic nanostructures [17].
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With this arrangement it is then possible to boost the input
laser power by several orders of magnitude [12]. Here, special
attention should be paid to the geometry of the nanostructure,
typically a metallic bow tie of nanometric dimensions with
a gap between the apexes (for details see, e.g., [12]). By
fine-tuning the spatial metal geometry or the gap distance of
the nanostructure elements, which act like point sources, it is
possible to amplify an incident field with a moderate intensity
(∼1011 W/cm2) up to the intensities needed to produce XUV
emission from atomic gas targets [12,16].

Due to the confinement of the incoming field in a nanovol-
ume, the resulting plasmon-enhanced field typically presents
spatial variation on a nanometer scale. For instance, within
a gap of roughly 20 nm, the intensity of the input field
is enhanced a few orders of magnitude at the gap center,
drastically increases, and culminates in a maximum near
the metal surface [12]. Due to this field gradient and the
electron confinement in a small volume, the conventional
Keldysh picture of strong-field physics—in which the spatial
dependence of the laser field and the Coulomb potential
influence is ignored—is incapable of fully explaining the
underlying physics [18–20]. As a result, there has been an
intense effort both to comprehend the fundamental physics
at the microscopic level and to numerically simulate the
processes at a multiscale level [16,20–30]. Elucidating the
mechanisms behind plasmon-enhanced HHG is thus essential
due its potential technological applications (e.g., see [31]).

Since the first realization of HHG from plasmon-enhanced
fields by bow-tie-shaped nano-antennas, a few alternative
nanosystems have been explored in order to optimize as well
as to modify the phenomenon through the synergy between
experiments and theory. Among these systems we could cite
coupled ellipsoids [32], tapered nanocones [13,33], metal
nano-particles [34], and nanocomposites [35,36]. However,
despite its initial meteoric success and promise, the plasmon-
enhanced harmonic emission process still suffers in many
aspects, such as the melting of the metallic nanostructures
caused by the high buildup intensities near the metal surface
and the impossibility of disentangling the emission of coherent
and incoherent light [14,37]. Additionally, the low conversion
efficiency, due to the low target-gas density contributing
to the photoemission, makes it challenging to increase the
signal-to-noise ratio and to unravel the emission from the
noble-gas atoms from that coming directly from the metallic
nanoantenna [15,33]. On the other hand, there are apparent
discrepancies between the intensity enhancements predicted
through finite-element simulations and those that are necessary
for efficient HHG as estimated by the conventional three-step
model [38]. Because of these circumstances, the feasibility of
using metallic nanostructures to drive HHG is actively debated
in the literature [14,37,39]. Having these complications in
mind, our main purpose is to address an alternative way
to obtain efficient HHG while avoiding the damage to the
nanostructure elements caused by the high-intensity plasmon-
enhanced fields.

One way to decrease the intensity needed for efficient
HHG is to prepare atoms in their excited states, which are
characterized by smaller values of Ip. The price one has to pay,
however, is that the HHG cutoff will decrease, in accordance
with the classical law ωcutoff = Ip + 3.17Up, where both Up

and the associated saturation intensity Isat must necessarily
be lower. Alternatively, this obstacle can be circumvented and
an enhanced cutoff obtained by considering HHG originating
from the superposition of an excited and a ground state in atoms
[40,41] or excited vibrational states in molecules [42]; for
more recent developments of these ideas see [43–45]. Another,
and much easier pathway, is to scale the laser intensity and
wavelength (frequency) in accordance with Ip. We adopt the
latter strategy in this paper.

Owing to their loosely bound valence electrons, Rydberg
atoms are highly sensitive to external influences which can
easily cause them to ionize [46]. In other words, while high-
intensity fields are required to ionize an atom in its ground
state, where the principal quantum number n = 1, the intensity
required to ionize a Rydberg atom, n � 1, is considerably
lower. Here, the scaling of Rydberg atoms with n offers insights
into their peculiar features [46]. As shown in many studies, the
relevant parameters here, e.g., the ionization potential Ip, the
radius of the nth Rydberg orbit rR , the electric-field strength
ER felt by an electron at the nth Rydberg orbit, and the energy
level spacing �ER , the latter leading to even more closely
spaced levels as n increases (see below), scale with n as

Ip = n−2Ĩp, (1)

rR = n2r̃ , (2)

ER = n−4Ẽ0, (3)

and

�ER = n−3�̃E0, (4)

where the quantities with tildes correspond to the values for
n = 1.

Thus, if one applies an intense laser field to Rydberg atoms
and attempts to study the atomic response as a function of n,
it is natural to consider the n scaling of the relevant electron
dynamics parameters based on the above equations. According
to this approach, if the ionization potential scales as in Eq. (1),
the laser electric field as we consider higher n values should
scale as

E0 = n−4Ẽ0 (5)

and the laser frequency as

ω0 = n−3ω̃0, (6)

where the quantities with tildes correspond now to character-
istic values of the laser field and frequency used for n = 1.
In such a situation, for instance, the ponderomotive potential
Up = E2

0/4ω2
0 scales as n−2, and thus the cutoff frequency (or

maximum photon energy) ωcutoff and cutoff harmonic order
qcut = ωcutoff/ω0 scale as n−2 and n, respectively. Interestingly,
the Keldysh parameter γ = √

Ip/2Up, which separates the
tunneling (for γ � 1) and multiphoton (for γ � 1) dynamical
regimes, remains unscaled with n [47]. Finally, the classical
quiver radius of the laser ionized electron α0 = E0/ω

2
0 scales

as n2, i.e., like the Rydberg radius rR [see Eq. (2)].
In this paper, we address and demonstrate the behavior

and the usefulness of Rydberg atoms in the plasmon-enhanced
HHG process. Considering the fact that the tunnel ionization
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is instrumental in the HHG process [3,6], the Rydberg atoms
could be advantageous for HHG driven by plasmon-enhanced
fields generated by metallic nanostructures, since relatively
low intensities are required to detach Rydberg electrons via
the tunneling processes. This fact could—potentially—prevent
the damage and melting of the employed nanostructures during
the HHG process.

In the experiments performed in plasmon-enhanced HHG,
the target atoms—mostly in their ground states—are directly
injected onto the nanostructure through a gas jet [12,16]. If we
want to drive atoms in an excited n state, on the other hand,
an extra preinjection or preparatory scheme or mechanism is
needed, which could potentially be a dye laser with a high
repetition (MHz) rate, but one should stress that in a general
context several schemes of this sort were discussed in the
literature recently (for schemes based on adiabatic passage see
[48–51] and for pump-probe schemes see, e.g., [45]). After the
injection, the survival of the atoms in their excited states is an
issue that should be considered. However, typically the lifetime
of Rydberg atoms due to spontaneous decay or background
microwave ionization is in the microsecond (10−6 s) range
[46], i.e., much longer than the strong-field ultrashort processes
considered here, typically developed on the subfemtosecond
(10−15 s) time scale. Moreover, Bleda et al. [47] have shown
that the field-effect ionization rate dramatically decreases with
increasing n. Thus, the strongest contribution to the ionization
and HHG process comes directly from the initially prepared
excited n-state atoms. Accordingly, we could anticipate that
the Rydberg atoms, injected into the nanogap region, can
largely survive during the strong-field interaction process.

We employ the numerical solution of the time-dependent
Schrödinger equation (TDSE), in both one dimension and
three dimensions, to compute the HHG spectra of an atom
in a plasmon-enhanced linearly polarized laser field. To
avoid any misunderstanding we stress that this paper is
not about the determination of the plasmon-enhanced fields,
which is another important and challenging problem. Here we
assume a certain spatial form and strength for the plasmon-
enhanced fields and they are treated as a given external field.
Still these fields can and are controlled in experiments by
changing the laser intensity, wavelength, or polarization or
by fine-tuning the properties and geometry of the metallic
nanostructure.

In this contribution we systematically study the atomic
response when we alter the initial target-atom bound state. We
increase the principal quantum number of the initial Rydberg
state n and n-scale the relevant field parameters accordingly.
In our simulations, we assume a bow-tie-shaped nanoantenna
as our plasmon-enhanced field source, since this particular
case has been extensively investigated [11–16]. However, our
approach could, in principle, be extended to any nanostructure
element whose spatiotemporal profile is analogous to the
bow-tie nanoantenna one. At the same time we stress that
in the explicit calculations we use a ”caricature” of the true
spatial dependence of the plasmon-enhanced field, assuming
that locally, in the vicinity of the considered atom, it depends
linearly on the space coordinates. It should be noted, however,
that this simple approximation grabs the main effects of
the electric-field inhomogeneity in space; for a more careful
description of plasmon-enhanced fields see, for instance,

Refs. [52] and [53], where finite-difference time-dependent
codes were used to solve the Maxwell equations to determine
the accurate shape and form of the spatially inhomogeneous
fields.

We also emphasize that here the calculations are restricted
to n ≤ 8 since the span of the electron wave packet (quiver
radius) is of the order of the gap size (∼ 20 nm) for typical
laser parameters. For n > 8, on the other hand, the continuum
electron could reach the metal surfaces and be absorbed.
Finally, we assume that the field-enhancement factor is kept
constant as the field intensity and laser frequency are n-scaled.

The paper is organized as follows. In Sec. II, we describe
our theoretical methodologies for simulating the HHG process
from Rydberg atoms driven by plasmon-enhanced fields. First,
in Sec. II A, the one-dimensional (1D) model, based on the
1D TDSE, is presented. Next, in Sec. II B, a more realistic
approach, based on the solution of a three-dimensional (3D)
TDSE, is introduced. In Sec. III we present results using our 1D
model atom. On the one hand, in Sec. III A, we simulate the
electron wave-packet dynamics and obtain plasmonic HHG
from Rydberg atoms with fixed laser-field parameters (i.e.,
unscaled field amplitude E0 and frequency ω0). On the other
hand, in Sec. III B, the simulations are performed for n-scaled
E0 and ω0. Finally, in Sec. III C, we compare the HHG yields
obtained in both Sec. III A and Sec. III B and discuss their main
features, similarities, and differences. Section IV is focused on
the TDSE simulations in three dimensions. Here, we model an
H atom interacting with a plasmon-enhanced laser field and
compute the HHG spectra for different laser parameters and
excited states. In order to complete the analysis, in Sec. V
we perform semiclassical simulations, based on the three-step
model. We conclude our contribution in Sec. VI.

II. METHODOLOGY

We investigate the mechanism of plasmonic HHG from
Rydberg atoms through the numerical solution of the TDSE.
The interaction of a target atom with a plasmon-enhanced
linearly polarized laser field is modeled via two approaches; a
1D model atom and a real hydrogen atom in three dimensions.
Below we provide the details of these two methodologies.

A. Model hydrogen in one dimension

Since the dynamics of the atomic electron in a strong laser
field is mainly along the direction of the field (in a linearly
polarized laser pulse), it is reasonable to model the HHG
in a 1D spatial dimension [54]. The TDSE describing the
interaction of a 1D model atom with a laser field is written
as follows (atomic units are used throughout the article unless
otherwise stated):

i
∂

∂t
ψ(x,t) =

[
− 1

2

∂2

∂x2
+ V (x) + xE(x,t)

]
ψ(x,t). (7)

Here the model soft-core potential is taken as V (x) =
−1/

√
2 + x2. From the field-free solutions ψn(x) of the

Schrödinger equation for the 1D model atom, one can find
that the ionization potential of the ground state is Ip = 0.5 a.u.
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and the energy levels follow

En = −a

(n + b)2
, (8)

where the parameters a and b can be found by fitting the time-
independent solutions of Eq. (7). Although only the ground-
state energy matches that of a real hydrogen atom, the Rydberg-
like character of the bound-state energies for high n values (i.e.,
En ∼ n−2 for n � 1) implies that the scaling rules discussed
in Sec. I are still valid for this 1D model atom [55]. Taking
the center of the nanovolume as the coordinate origin, the
spatiotemporal profile of the laser field, represented by E(x,t),
is assumed to be in the form [21–23]

E(x,t) � E(t)[1 + h(x)], (9)

where the space-free portion of the electric field is E(t) =
E0f (t) cos(ω0t). E0 and ω0 are the peak amplitude [E0 =√

I/I0 (a.u.) with I0 = 35.1 PW/cm2] and the frequency of
the driving laser electric field, respectively. f (t) defines the
pulse envelope and is taken as a flat-top shape 20 cycles long
with 1-cycle ramp-up and -down. In Eq. (9) h(x) represents
the functional form of the plasmon-enhanced field. One of
the main advantages of the 1D model is that it allows us to
include any functional form for h(x) (for different examples
see, e.g., [22], [34], and [52]). Nevertheless, it is often sufficient
to approximate h(x) by a linear dependence, i.e., h(x) � βx,
where β defines the region of spatial inhomogeneity of the
field. Therefore, β has the units of inverse length. Results
have shown that β is an instrumental parameter for controlling
the laser-induced dynamics of the ionized electrons and,
consequently, the modifications observed in the spectral profile
of plasmonic HHG [21–23].

B. Real hydrogen in three dimensions

We also employ the numerical solution of the TDSE of a
hydrogen atom in three dimensions interacting with a linearly
polarized, in the z axis, plasmon-enhanced laser field. The
TDSE in the length gauge can be written as

i
∂ψ(r,t)

∂t
=

[
− ∇2

2
+ V (r) + zE(z,t)

]
ψ(r,t), (10)

where V (r) = −1/r is the atomic potential for the H atom.
Here, the spatiotemporal profile of the laser field is taken to be
similar to the one we used for the 1D model atom, i.e., E(z,t) =
E0f (t)(1 + βz) cos(ω0t). However, this time we use a sin2-
shaped pulse with a total duration of four cycles. The details
of the 3D TDSE numerical solution for a H atom in a plasmon-
enhanced laser field can be found in Refs. [20] and [23]. In
addition, the 3D TDSE is able to model with precision any
atom within the single-active-electron (SAE) approximation
(see, e.g., [24] for the He atom) by adequately tuning the atomic
potential V (r). Mention of two disadvantages of the 3D TDSE
model is in order, namely, (i) the high computational cost
and (ii) the complications of modeling a general spatial shape
for the plasmon-enhanced field (to the best of our knowledge,
only the linear case has been modeled). Since the energy levels
of the H atom scales as n−2, the scaling laws provided in Sec. I
exactly apply.

For both the 1D and the 3D simulations, boundary reflection
mask functions of the form cos1/8 multiply the electron wave
function at each time step in order to avoid spurious reflections
[56]. The harmonic yield is then calculated from the modulus
square of the Fourier transform a(ω) of the dipole acceleration
a(t) [57], i.e.,

D(ω) = |a(ω)|2 (11)

=
∣∣∣∣ 1

Tp

1

ω2

∫ ∞

−∞
dte−iωta(t)

∣∣∣∣2

, (12)

where Tp is the total duration of the laser pulse (for more
details see, e.g., [22]).

Furthermore, the spatial dependence of the field enhance-
ment in Eq. (9) is known to be an approximate expression,
versus the realistic field enhancement [21,34,52]. However,
in many theoretical studies, Eq. (9) has been shown to be
sufficient to elucidate the underlying physics of the problem
of interest [16,20–30].

III. PLASMONIC HHG FROM RYDBERG STATES OF A 1D
MODEL ATOM

A. Plasmonic HHG with unscaled field parameters

In this section, we examine plasmonic HHG from the
Rydberg series of a 1D model atom. We employ n = 1 − 8
for an unscaled laser intensity I and frequency ω0. Here we
take I = 20 TW/cm2 (1 TW/cm2 = 1 × 1012 W/cm2) and
λ = 800 nm, i.e., ω0 = 0.057 a.u. (photon energy, 1.55 eV).
The field inhomogeneity parameter β is taken as 0.016 a.u.,
corresponding to a factor of ∼ 15 intensity enhancement near
the metallic surface, i.e., 10 nm away from the gap center,
which is similar to that reported by Kim et al. [12] (note
that this is an additional enhancement on top of the increase
generated by the surface plasmon polaritons).

For demonstration purposes, Figs. 1(a)–1(c) show results
only for n = 1, 4, and 8, respectively. First, for β = 0, i.e.,
for the spatially homogeneous case, the cutoff position for the
n = 1 state is found to be qcut = 11 (which corresponds to an
ωcutoff = 17.4 eV) using the three-step model [3,4]. As shown
in Fig. 1(a), the HHG cutoff is extended by a factor of roughly 2
to qcut = 23 (corresponding to an ωcutoff = 35.6 eV), when the
field inhomogeneity parameter is β = 0.016 a.u. The increase
in the HHG cutoff with β �= 0 is consistent with previous
theoretical studies [16,20–30].

The increase in the HHG cutoff originates from the further
acceleration of the ionized electron moving in the plasmon-
enhanced laser field. This results in a ponderomotive potential
boost, due to the increase in the field strength as a function of
the increasing spatial coordinate x [21,23]. Since the highest
harmonic photon energy depends on Ip and Up [3], the larger
is Up, the higher the ωcutoff that will be reached. One can also
see the appearance of both odd and even harmonics up to the
HHG cutoff and below, which is attributed to the breaking of
inversion symmetry owing to the spatial inhomogeneity of the
plasmon-enhanced field [21,22]. Beyond n = 1 we find that the
profiles of the harmonic spectra are very similar for n = 2–8,
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FIG. 1. Plasmonic-HHG harmonic yield vs harmonic order
(ω/ω0) from n states obtained with a 1D model atom. Here, the
n = 1, 4, and 8 states are presented. I = 20 TW/cm2 (1 TW/cm2 =
1 × 1012 W/cm2) and λ = 800 nm are used in all cases. The parameter
β is chosen as 0.016 a.u.

namely, they appear to be independent of the n state [the n = 4
and 8 cases are shown in Figs. 1(b) and 1(c), respectively].

In Fig. 2 we depict the maximum photon energy (ωcutoff) by
varying the n state for both spatially homogeneous (β = 0)
and spatially inhomogeneous (β = 0.016 a.u.) fields; the
ωcutoff drops significantly with n for β = 0 and converges
at an ωcutoff = 3.8 eV, which corresponds to 3.17Up (Up =
1.19 eV). In contrast, beyond the n = 1 state, ωcutoff oscillates
with a narrow energy band around 5ω0 above the conventional
case for β = 0.016 a.u. The modest dependence of ωcutoff ,
as well as the conversion efficiency of the n state (n > 1)
for β �= 0, could be attributed to the ionization dynamics
and electron confinement during propagation, which strongly
correlate with the maximum photon energy and harmonic
efficiency [3].

The threshold intensity for the barrier-suppression ioniza-
tion (BSI), IBSI, for a classical electron of a hydrogen-like

FIG. 2. Variation of the ωcutoff of plasmonic HHG (β =
0.016 a.u.) with n for fixed values of E0 and ω0. The dashed line
shows the predictions of the three-step model [3,4].

FIG. 3. Ionization probability as a function of the n state for
unscaled field parameters, E0 and ω0. Note that the ionization
saturates beyond n = 2 for both cases. Due to the possibility of
electron confinement via repulsive forces (towards the nucleus) the
ionization is largely suppressed in all n cases with β = 0.016 a.u.

atom in a circular orbit, is defined by

IBSI = 6.02 × 103|En [a.u.]|3 TW/cm2. (13)

IBSI defines a critical point at which the Coulomb barrier is
suppressed below the bound state n with energy En [58,59].

The intensity value I = 20 TW/cm2 we use for n = 1 and
β = 0 is much lower than IBSI (IBSI = 750 TW/cm2), but it is
higher than that for other n states since the IBSI condition in
Eq. (13) scales as n−6. Figure 3 clearly supports this argument.
We observe that the ionization saturates beyond n = 1 (with
almost-full ionization) for β = 0. Hence, one should not expect
an efficient HHG from n � 2 states with homogeneous fields,
because of the likelihood of no electron rescattering.

However, note that the condition given in Eq. (13) is valid
only for spatially homogeneous fields, i.e., for the case of β =
0. Through numerical simulations we find that when the atom
is placed in a plasmon-enhanced field, the ionization proba-
bilities are suppressed by roughly four orders of magnitude
(see Fig. 3), owing to the electron confinement via repulsive
forces (towards the nucleus). Thus, the confined continuum
electrons—which are likely to escape and never return close
to the parent ion in the case of homogeneous fields—could be
driven back, resulting in an efficient recombination with the
nucleus, leading to an ultimate coherent photoemission.

Although our results appear to be promising, namely, one
could attain more energetic and efficient photons through a
Rydberg-series atom driven by a plasmon-enhanced laser field,
the laser-field intensity increases in such a way as to exceed the
damage threshold of the metallic nanostructure, and thus this
procedure is not very beneficial (see Sec. I). In order to give
a clearer picture, in the next section, we investigate plasmonic
HHG from a Rydberg-series atom for a set of scaled laser-field
parameters.

B. Plasmonic HHG with n-scaled field parameters

Here we study plasmonic HHG by Rydberg atoms by
systematically n-scaling the input laser parameters. As n

increases, the laser-field intensity I and frequency ω0 are
scaled as 20n−8 TW/cm2 and 1.55n−3 eV, respectively. We
assume that the spatial dependence of the plasmon-enhanced
field is fixed, independent of the value of n. Although the field
frequency critically affects the plasmonic-field enhancement,
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FIG. 4. Plasmonic-HHG harmonic yield vs harmonic order
(ω/ω0) for n states obtained with a 1D model atom. Field parameters
are scaled as I = 20/n8 TW/cm2 and λ = 800n3 nm for each n state.
The field inhomogeneity β is chosen as 0.016 a.u.

we assume that as we n-scale ω0, the degree of field
enhancement through surface plasmon resonances is also
fixed. Nonetheless, this condition could potentially be fulfilled
by systematically tweaking the configuration and geometry of
the nanostructure element so as to maintain the degree of field
enhancement at different field laser wavelengths [60–62].

Thus, for higher values of n, the intensity enhancement in
the nanostructure volume would be much lower, and as a result,
reaching the nanostructure damage threshold would be highly
unlikely. It has been shown that 100–1000 TW/cm2 peak
intensities are harmful to nanostructures [12–15], therefore
alternatives to diminish these values would be highly desirable.
These values are also valid for our set of I and β parameters,
since the intensity is enhanced up to 300 TW/cm2 near the
metal’s surfaces. However, we could use, for instance, I = 0.3
GW/cm2 for n = 4. In addition, the intensity I near the
metal surfaces is 4.5 GW/cm2, which is still considerably
below the damage threshold. Note that this maximum value
depends on the spatiotemporal shape of the plasmon-enhanced
electric-field function and the field inhomogeneity parameter
β we use. In Fig. 4, we present results for n = 1, 4, and 8. As
shown, more harmonics ω/ω0 are covered with increasing n.

There are clear cutoffs at the 23rd, 138th, and 193rd
harmonics for n = 1, 4, and 8, respectively. Note also that
more regular and clear harmonic peaks for n = 4 and 8 are
obtained, as opposed to the irregular ones shown in Fig. 1.
Although the harmonic order of the cutoff position increases,
the maximum photon energies decrease at values of 35.6, 3.3,
and 0.6 eV, for n = 1, 4, and 8, respectively. This is so since
the photon energies are given by ω = qω0 and ω0 scales as
n−3 [see Eq. (6)].

The variation of ωcutoff with n (for n = 1–8) for both
spatially homogeneous and spatially inhomogeneous laser
fields is shown in Fig. 5. As can be inferred, the ωcutoff

for spatially homogeneous—i.e., conventional—laser fields
decreases with n. This decline scales as n−2 since Ip ∼ n−2

for higher values of n in our 1D model atom. Our ωcutoff results

FIG. 5. Variation of the ωcutoff of conventional (β = 0) and
plasmonic (β = 0.016 a.u.) HHG with n for n-scaled E0 and ω0.
The dashed line shows the predictions of the three-step model [3,4].
Inset: ωcutoff enhancement, computed as the ratio ω

plasm
cutoff/ω

conv
cutoff , as a

function of n.

for conventional laser fields match exactly the predictions of
the three-step model, i.e., ωcutoff = Ip + 3.17Up [3,4].

We also show in Fig. 5 the variation of ωcutoff with
n for an atom exposed to a plasmon-enhanced field with
β = 0.016 a.u. We see from Eq. (9) that the spatial intensity
enhancement becomes effective once the electron wave packet
is released and pushed away from the nucleus. In other
words, (1 + βx) → 1 for x → 0. Therefore, to a first-order
approximation, we can employ the conventional quasistatic
ionization rate expressions to understand the influence of n

on ionization. Quasistatic ADK ionization rates are defined by
[63]


 ∼ exp[−2(2Ip)3/2/(3E0)], (14)

therefore, it is clear that the [(2Ip)3/2/(3E0)] term scales as n.
As a result, the tunnel ionization probability drops drastically
with increasing n. We can then conclude that the enhancement
in ωcutoff with n, caused by the field inhomogeneity, would
decrease for n � 1. Figure 5 shows that there is a dramatic
increase in ωcutoff for n = 1 and n = 2, and a small increase
for n = 3, over those of the conventional laser-field case.
However, in agreement with our previous statements, the
influence of the field inhomogeneity drops considerably for
n > 3.

For practical reasons, we examine the n-scaling of the HHG
cutoff position qcut with respect to the bound-states n = 1–8
of our 1D model atom. Using the three-step model for the
Rydberg-like series, with the n−2 bound-state scaling, we
observe that ωcutoff scales as n−2, therefore the HHG cutoff
position is qcut = ωcutoff/ω0 ∼ n [47]. Then we can deduce
that the scaled HHG cutoff position can be written as

qcut

n
= const, (15)

which should exactly be satisfied for En ∼ n−2 [47]. Figure 6
shows the variation of the scaled cutoff (qcut/n ratio) for
spatially homogeneous (β = 0) and inhomogeneous (β =
0.016 a.u.) fields. As shown, the scaled HHG cutoff for
β = 0 increases with n and converges to a constant value in
accordance with Eq. (15). In our simulations we find that, in
agreement with the three-step model, qcut/n → 32 for n � 1.
For β = 0.016 a.u., however, the condition provided in Eq. (15)
is not fulfilled, due to the nonponderomotive character of the
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FIG. 6. Variation of the scaled cutoff position qcut/n with n.
The dashed line with diamonds represents the three-step model’s
predictions; the solid line with squares, our TDSE results for
the spatial homogeneous field, β = 0, respectively. Open circles
represent the qcut/n ratio for plasmon-enhanced HHG with β =
0.016 a.u. Symbols are connected by lines as a guide for the eye.

electron acceleration [64]. On the other hand, although for
β = 0.016 a.u. we stated that the influence of the nanostructure
element diminishes for higher values of n, we can clearly see
here that beyond n = 5 the cutoff position is close, but it begins
to deviate slightly from those predicted by the three-step model
and/or our TDSE simulations for β = 0. This behavior arises
because the initial width of the wave packet approaches the
metal’s surfaces for higher values of n, increasing the chances
of surface absorption of energetic electrons with a high linear
momentum [21,23,26].

C. n-scaling of the plasmonic-HHG yield

So far we have demonstrated HHG from a Rydberg atom in
spatially inhomogeneous laser fields for constant or n-scaled
laser-field parameters (E0 and ω0). However, one can ask the
question, Which of these two procedures is more beneficial
in terms of conversion efficiency? This is investigated in
terms of the interplay among the maximum photon energies,
their yields, and the probability of reaching the nanostructure
material damage threshold.

It has been noted that, for conventional (spatially homoge-
neous) strong-field interactions, the efficiency of harmonics in
HHG is inversely proportional to the degree of the electron
wave-packet transverse spread at the time of recombination
with the parent ion [4,65,66]:

σx ∝ E
1/2
0

I
1/4
p ω0

. (16)

As n increases, the wave-packet spread scales as

σx = n3/2σ̃x (17)

for fixed E0 and ω0 and as

σx = n1/2σ̃x (18)

for n-scaled E0 and ω0. We can see that the electron
wave-packet spread increases, and thus the efficiency of
harmonics for conventional laser fields decreases, with n

for both constant and scaled field parameters. However, the
decay is relatively faster for the scaled ones. In Fig. 7, the
same asseveration applies for plasmon-enhanced laser fields,
although the variation in harmonic efficiency of qcut is not very

FIG. 7. n scaling of the qcut harmonic efficiency for β =
0.016 a.u. The values of E0 and ω0 are those presented in Figs. 2
and 5 for constant and scaled field parameters, respectively.

regular. For constant laser-field parameters, the harmonic yield
drops, then saturates after n = 3, in accordance with what is
shown in Fig. 3. On the other hand, for scaled parameters, the
decrease in yield is even more dramatic as n grows.

There is clearly no benefit in using very-high-n states, for
plasmonic HHG near the metallic nanostructure, in terms of
the maximum photon energies and their yields (see also Figs. 2
and 5). For the n = 2–8 series with constant E0 and ω0, the
harmonic yields are relatively high compared with those for
scaled E0 and ω0 (see Fig. 7). As previously stated, however,
the plasmon-enhanced fields employed for these n states are
self-detrimental. We note that plasmonic HHG from n = 2
with scaled field parameters appears to be the best option
among the whole studied series.

IV. PLASMONIC HHG FROM A REAL H ATOM IN
THREE DIMENSIONS

In this section, we address whether some of the assessments
of plasmonic HHG in a 1D model atom apply in more realistic
situations. For this, we perform simulations for the plasmonic
HHG from a real H atom in three dimensions. To this end we
restrict our calculations to the ground (1s) and first excited
(2s) states, since, as shown in the Sec. III, there might be no
benefit in going beyond n = 2 in terms of the plasmonic-HHG
efficiency and maximum photon energy.

Figures 8(a)–8(c) show the results of our simulations. We
first use I = 20 TW/cm2 and λ = 800 nm for an H atom in a
1s state [Fig. 8(a)] and scale these parameters with n−8 and n3

for the 2s-state case, respectively. Thus, the field parameters
become I = 20 × 2−8 = 0.078 TW/cm2 and λ = 800 × 23 =
6400 nm, respectively [Fig. 8(b)]. For these two cases we use
β = 0.016 a.u. and the laser intensities are enhanced up to
300 and 1.2 TW/cm2 near the metal surfaces, respectively.
For the selected laser-field parameters, the maximum photon
energies predicted by the three-step model, for the 1s and 2s

states, are 17 and 4.35 eV, respectively. However, as shown in
Fig. 8(a), when the H atom in the ground state is exposed to
a plasmon-enhanced field with β = 0.016 a.u., the plateau is
extended up to ∼ 23 eV. This value is slightly smaller than that
for the 1D model atom in the ground state (see Fig. 5). This
can be attributed to the limitations of the 1D model’s ability to
describe the transversal spreading of the electron wave packet.
Note that the binding energy (and also the Ip) of the 1D model
atom in the ground state is the same as that of the real H atom
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FIG. 8. Plasmonic-HHG harmonic yield vs harmonic order
(ω/ω0) for different n states obtained from a real H atom in three
dimensions. (a) Ground-state (1s) H exposed to a plasmon-enhanced
field with a field inhomogeneity parameter β = 0.016 a.u., intensity
I = 20 TW/cm2, and λ = 800 nm. (b) Plasmonic HHG from a H
atom in the 2s state, again with β = 0.016 a.u. For the 2s state,
the plasmonic field parameters are scaled to those in (a); i.e., I is
multiplied by 2−8 (I = 0.078 TW/cm2), and λ by 23 (λ = 6400
nm). (c) Plasmonic HHG from a 2s state with I ′ = 2 TW/cm2 and
λ = 6400 nm. The three-step model with β = 0 predicts an HHG
cutoff at 17 eV (a), 4.3 eV (b), and 28 eV (c) [3,4].

in three dimensions. For the 2s state, shown in Fig. 8(b), we
observe a plasmonic HHG extending from the theoretically
predicted value of 4.35 eV (for β = 0) to 30 eV. However,
compared with the 1s-state case, the efficiency of the plateau
drops almost seven orders of magnitude. This decrease is a
consequence of the increase in the transversal spreading of the
electron wave packet in the continuum upon going from the
1s to the 2s state [see Eqs. (16)–(18)].

Finally, we demonstrate plasmonic HHG from a 2s state
using a laser field whose intensity is stronger than I = 0.078
TW/cm2 but still well below the damage threshold. Here we
use I ′ = 2 TW/cm2 for an H atom in a 2s state with a laser
wavelength λ = 6400 nm (6.4 μm; the corresponding ω0 =
0.194 eV) [Fig. 8(c)]. The three-step model predicts a value of
ωcutoff = 26 eV for a spatially homogeneous laser field [3,4].
As shown in Fig. 8(c), a 25-fold increase in intensity results in a
roughly 4-fold extension of the plateau region for this 2s state.
Moreover, the efficiency of the plasmonic-HHG approaches
that for the 1s state [see Fig. 8(a)]. This example clearly shows
the benefit of employing Rydberg atoms in plasmonic HHG.
However, in general, the interplay between the propagation
time and the spatial extension of the electron wave packet,
together with the possibility of absorption of the continuum
electron at metal surfaces during its excursion, should to be
considered. Furthermore, techniques for preventing damage
to the nanostructure element are among the most crucial
phenomena to exploit the maximum efficiency of plasmonic
HHG by Rydberg atoms.

FIG. 9. Semiclassical simulations for an electron in a plasmonic
field. The graph shows the electron kinetic energy at recombination
as a function of the release ti and recombination tr times in scaled
units (fs/n3). It is assumed that the electron is released from n = 1
(top) and n = 2 (bottom) states. For n = 1, β = 0.016 a.u., intensity
I = 20 TW/cm2, and λ = 800 nm. For n = 2, again β = 0.016 a.u.
and the plasmonic field parameters are correspondingly scaled to
those in the top panel, i.e., I by 2−8 and λ by 23. The three-step
model with β = 0 predicts cutoffs at 17 and 4.3 eV for n = 1 and 2,
respectively.

V. SEMICLASSICAL PLASMONIC HHG

In this section, we perform semiclassical simulations
extended to atoms in a plasmon-enhanced field [21–23,67].
In order to simulate Rydberg atoms we consider two cases; the
electron is released either from an n = 1 state or from an n = 2
state. For n = 2, the laser parameters and the energy levels are
scaled to those of n = 1. The motion of the semiclassical
electron under the influence of a plasmonic laser field is
described by

ẍ(t) = (1 + 2βx)E(t), (19)

where E(t) is defined in Sec. II. The semiclassical equation
is numerically solved by the velocity Verlet algorithm. The
electron is released at time ti and position xn(ti) = 3n2/2
with zero kinetic energy and travels under the influence of
the laser electric field. Here, xn is the expectation value of the
semiclassical electron bound to the nth state of a H atom. On
the other hand, due to the possibility of electron absorptions
at metal surfaces, we make sure that the trajectories that reach
the metallic surfaces are neglected [21]. For those electrons
which return and recombine with the parent ion at time tr , the
total energy is then |En| + Ek(tr ), where En = −0.5/n2 is the
potential energy of the nth level of the H atom and Ek(tr ) is
the kinetic energy of the recombined electron.

Figure 9 shows the electron kinetic energy at the recom-
bination, i.e., the harmonic photon energy, in terms of the
harmonic order, as a function of the release (ionization) ti and
recombination tr scaled times (i.e., in units of fs/n3), for both
n = 1 and n = 2. For n = 1, the maximum energy is 21 eV,
which is in very good agreement with that predicted by the
3D TDSE [see Fig. 8(a)] and marginally lower than the energy
obtained with the 1D model atom. For n = 2, on the other
hand, semiclassical simulations predict a maximum photon
energy of 31.3 eV. This value agrees well with the 3D TDSE
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prediction (∼ 30 eV) and, again, is slightly lower than in the
1D TDSE case (∼ 35 eV). As already mentioned, we inferred
that the disagreement between the 1D and the 3D quantum
models is due to the lateral spreading of the electron wave
packet, which is apparently missing or underestimated in the
1D case.

Although they are not shown here, we also find that the
maximum photon energies decrease dramatically for n > 2
states. This is consistent with the conclusions we have reached
for the 1D TDSE case (see Fig. 5).

VI. CONCLUDING REMARKS

In conclusion, we have presented a complete theoretical
investigation of the behavior of Rydberg atoms in plasmon-
enhanced laser fields producing so-called plasmonic HHG.
Since scaling is crucial in this context, as we increase the
principal quantum number of the initial Rydberg state n,
we systematically n-scale the laser input parameters, such as
the incident field strength and frequency. We have simulated
plasmonic HHG based on the numerical solution of the TDSE
for a 1D model atom and a real H atom in three dimensions.

We have first simulated plasmonic HHG from Rydberg
atoms with a fixed laser-field intensity and frequency.
We have found that in the case of spatially homogeneous
(conventional) laser fields the dynamics of ionization is
governed by the mechanism of barrier suppression (BSI)
for n > 1. However, when we place the Rydberg atoms in a
spatially inhomogeneous plasmon-enhanced field, we observe
that ionization rates decrease by several orders of magnitude.
This is caused by the electron confinement in a nano-volume;

recombination of the laser-ionized electron is then possible,
and therefore HHG plausible. This contrasts with the case of
Rydberg atoms in conventional fields, where recombination
is strongly suppressed.

We have then n-scaled both the field intensity and the
frequency of the driving laser field as n increases. We have
observed a maximum cutoff enhancement by the n = 2 state.
Beyond that point, the influence of the plasmon-enhanced field
is no longer substantial.

Finally, in order to complement our assessments, we have
also employed the TDSE in three dimensions for a H atom
in a spatially inhomogeneous plasmon-enhanced field and
simulated plasmonic HHG from the ground (1s) and the first
excited (2s) states. We have verified that the length of the
plateau is of the same order for both 1s and 2s states, where
the field parameters are n-scaled over those of the 1s state.
Semiclassical simulations have revealed that the maximum
photon energies for both the n = 1 and the n = 2 states agree
very well with the 3D simulations and are marginally lower
than those of the 1D approach, thus suggesting that lateral
spreading of the electron wave packet appears to be critical in
this process.
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C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D.
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[32] S. L. Stebbings, F. Süßmann, Y. Y. Yang, A. Scrinzi, M. Durach,

A. Rusina, M. I. Stockman, and M. F. Kling, New J. Phys. 13,
073010 (2011).

[33] M. Sivis and C. Ropers, Phys. Rev. Lett. 111, 085001 (2013).
[34] T. Shaaran, M. F. Ciappina, R. Guichard, J. A. Pérez-Hernández,
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