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Recent breakthroughs in the experimental manipulation of strongly interacting atomic Rydberg gases in lattice
potentials have opened an avenue for the study of many-body phenomena. Considerable efforts are currently
being undertaken to achieve clean experimental settings that show a minimal amount of noise and disorder
and are close to zero temperature. A complementary direction investigates the interplay between coherent and
dissipative processes. Recent experiments have revealed a glimpse into the emergence of a rich nonequilibrium
behavior stemming from the competition of laser excitation, strong interactions, and radiative decay of Rydberg
atoms. The aim of the present theoretical work is to show that local incoherent loss and gain of atoms can in fact
be the source of interesting out-of-equilibrium dynamics. This perspective opens up paths for the exploration of
nonequilibrium critical phenomena and, more generally, phase transitions, some of which so far have been rather
difficult to study. To demonstrate the richness of the encountered dynamical behavior we consider here three
examples. The first two feature local atom loss and gain together with an incoherent excitation of Rydberg states.
In this setting either a continuous or a discontinuous phase transition emerges with the former being reminiscent
of genuine nonequilibrium transitions of stochastic processes with multiple absorbing states. The third example
considers the regime of coherent laser excitation. Here the many-body dynamics is dominated by an equilibrium
transition of the “model A” universality class.
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I. INTRODUCTION

Identifying, classifying, and understanding the emergence
of collective phenomena and other many-body effects is a
central objective of physics. In the past decades the refinement
of experimental techniques for preparing, addressing, and
measuring atomic ensembles [1] opened entirely new possibil-
ities for investigating not only stationary, but also dynamical
properties of quantum many-body systems. Rich nonequilib-
rium physics often stems from the presence of competing
dynamical processes and strong interactions. Amidst different
platforms, gases of atoms excited to high-lying Rydberg
states are currently receiving increasing attention [2–6] as
they feature considerable interactions via dipole-dipole or van
der Waals forces. Their interplay with the laser excitation
process—inducing coherent Rabi oscillations on the atomic
populations—has been shown to be the source of intricate be-
haviors, such as the formation of crystalline ground-state struc-
tures [7–9], collectively enhanced Rabi oscillations [10–12],
or the emergence of correlated equilibrium states [13–17].

Since very recently, there has been considerable interest in
understanding the many-body physics of interacting ensembles
of Rydberg atoms in the presence of noise. While previously
perceived as a detrimental feature, dissipation—caused by
fluctuating atomic level shifts or radiative decay—can be
in fact a source of an intriguingly rich dynamics. Examples
include the occurrence of slow or glassy dynamics [18–21],
the relaxation into stationary states with spatial correlations
[22–24], the observation of intermittency and bistabilities
[24–27], and the emergence of equilibrium [27–31] and
out-of-equilibrium universal behavior [32].

In this work we introduce a scenario for the study of
out-of-equilibrium phases and phase transitions with Rydberg
atoms. The setting we have in mind consists of a background
gas—acting as a large reservoir—from which Rydberg states

are only excited at given spatial positions which are arranged in
a regular lattice, as produced, e.g., by employing spatial light
modulators [33]. Atoms from the background dynamically
enter and leave these excitation spots. In conjunction with
the laser excitation and the strong interatomic interactions
this local loss and gain dynamics leads to the emergence
of nontrivial many-body dynamics. More specifically, as
presented in Sec. III, in the presence of strong decoherence
the loss and gain dynamics creates an absorbing space, rather
than a single absorbing state. Remarkably, this leads to a partial
loss of universality [34].

This scenario could be implemented in two rather different
settings: in the first, a lattice of optical traps is immersed in
a cold cloud of atoms and the traps are continuously filled
and depleted [35]. Current experiments aim at progressively
slowing down this local dynamics by, for example, reducing
the pressure of the background gas or increasing the strength
of the optical confinement [36–38]. These attempts could be
reversed and, in principle, the setup could be “worsened” to
the point that the time scale of the loss-and-gain dynamics
becomes comparable with the other relevant dynamical pro-
cesses. The second experimental setting consists of hot atomic
gases confined in thermal vapor cells. Recently it has been
shown that they indeed allow the observation of correlated
many-body dynamics [20,27] when Rydberg states are excited.
Our envisioned setup is then realized by restricting the laser
excitation to a regular array of addressed spots. Thermal
motion would move atoms in and out of these laser-illuminated
regions, yielding the desired loss or gain dynamics.

Beyond introducing an additional dynamical process the
consideration of local atom loss and gain might actually
relax a number of challenges that are currently faced by
experimentalists when studying collective many-body behav-
ior in dissipative Rydberg lattices. It might also simplify the
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FIG. 1. Schematic representation of the system: (a),(b) an optical lattice is realized within a background cloud of atoms. Atoms within the
sites undergo laser-induced coherent transitions between their ground state |↓〉 and a high-lying (Rydberg) state |↑〉. The corresponding Rabi
frequency and laser detuning are � and �, respectively. A third state, |0〉, describes an empty or “inactive” site. Atoms are captured in and
released from the sites with rates γB↓ (capturing a ground-state atom), γD↓ (losing a ground-state atom), and γD↑ (losing an excited atom). The
atomic states are furthermore subject to dephasing at a rate �. (c) Rydberg atoms interact with a van der Waals potential Vkq , whose value
for nearest neighbors is denoted by VNN. The corresponding energy shift of the Rydberg state in the vicinity of an excited atom is sketched.
(d) Emergent branching processes in the limit of strong dephasing: in the case analyzed in Sec. III (square lattice) a single excitation has the
potential for branching (with rate λ) which enables the production of larger clusters. In the case discussed in Sec. IV (triangular lattice) the
system parameters are chosen such that two nearby excitations are required for a cluster to grow.

modeling of Rydberg gases in which typically radiative decay
is accounted for as a dominant decoherence mechanism:

(i) It is not necessary to have (uniformly) deterministically
loaded lattices, equal lattice confinement of ground state and
Rydberg atoms, or very low-temperature states.

(ii) It is not necessary to construct lattice potentials that
equally trap ground state and Rydberg atoms. In fact it is not
necessary to keep atoms trapped over an entire experimental
run.

(iii) One can employ very strongly interacting and high-
lying Rydberg states that are typically long-lived. For such
states the corresponding decay rate might simply be too small.
In other words, it might be difficult to reach a regime in
which the decay dynamics is able to properly compete with
the laser excitation and interatomic interactions, which thus
almost entirely characterize the evolution.

(iv) Even when acting on time scales that set it in competi-
tion with the driving, radiative decay is inevitably accompanied
by momentum kicks from photon recoil. Even when a Rydberg
atom eventually decays to the desired electronic ground the
resultant heating might lead to loss of the atoms which can be
accounted for in our description.

For the sake of simplicity and in order to focus on the
behaviors introduced by the loss or gain dynamics we will
not consider radiative decay processes in this work. The
underlying assumption is that the loss or gain dynamics is faster
than that of the decay and/or that decay effectively induces a
loss process via the mechanism described in point (iv) above.

The paper is organized as follows: after defining the model
in Sec. II we introduce two scenarios that respectively feature
a continuous (Sec. III) and discontinuous (Sec. IV) dynamical
phase transition to an effective absorbing subspace of states.
Here we focus on a setting where the laser excitation of
Rydberg states is described by a classical rate equation [39] due
to the presence of strong dephasing noise. In Sec. V we discuss
the case of a coherent laser in the framework of a mean-field
approach. Here we show that the dynamics is described by
the so-called “model A” universality class, similar to what has
recently been found in dissipative Rydberg gases with radiative
decay [28,29,31]. Concluding remarks are provided in Sec. VI.

II. MODEL

We employ the standard description of a Rydberg lattice gas
where each atom is modeled in terms of an effective two-level
system. The ground state |↓〉 is coupled to a Rydberg nS state
|↑〉 through a laser with Rabi frequency � and a detuning �

with respect to the atomic transition [see Fig. 1(a) for a visual
representation]. Within the rotating wave approximation the
many-body Hamiltonian is then given by

H = �
∑

k

σ x
k + �

∑
k

nk + 1

2

∑
k �=p

Vkpnknp, (1)

where Vkp = C6/|rk − rp|6 represents the van der Waals
(vdW) potential between pairs of excited atoms at positions
rk and rp, and the sum runs over all lattice sites k = 1 . . . L.
Interactions among ground-state atoms or between ground-
state and Rydberg atoms are significantly weaker and will
therefore be neglected. The operators σ

x/y/z

k refer to the Pauli
matrices in the |↑〉, |↓〉 subspace, i.e.,

σx
k = ∣∣↑k

〉〈↓k

∣∣ + ∣∣↓k

〉〈↑k

∣∣,
σ

y

k = −i
∣∣↑k

〉〈↓k

∣∣ + i
∣∣↓k

〉〈↑k

∣∣,
σ z

k = ∣∣↑k

〉〈↑k

∣∣ − ∣∣↓k

〉〈↓k

∣∣.
(2)

Furthermore, the local density of excitations is defined as
nk = |↑k〉〈↑k| and the density of ground-state atoms as pk =
|↓k〉〈↓k|.

In order to account for atom gain or loss in the lattice
sites we add an effective third state |0〉, denoting an empty
(or “inactive”) site. We also introduce the corresponding local
densities of active sites ek = nk + pk = |↑k〉〈↑k| + |↓k〉〈↓k|.
This local loss and gain takes place with atoms from a
background gas which is assumed to act as a bath. In other
words, the surrounding cloud contains a much higher number
of atoms than can be accommodated in the lattice and the
recapture of a lost one is an unlikely event. First of all, this
suppresses correlations between loss and gain processes and
allows us to treat them as being independent. Second, since
atoms are constantly exchanged with new ones no correlations
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can be produced in the system via these processes. Third,
their occurrence probabilities are not appreciably affected by
the history of occupation of a given site, and can thus be
considered Markovian.

The relevant processes are schematically displayed in Fig. 1
and summarized below:

|↑〉 γD↑−→ |0〉, |↓〉 γD↓−→ |0〉, |0〉 γB↓−→ |↓〉, (3)

with γD↑, γD↓, and γB↓ being the corresponding rates. The first
two processes describe the loss of a Rydberg and ground-state
atom, respectively. The third process corresponds to the
capture of a ground-state atom from the background gas.
Note that we do not consider the eventuality of Rydberg
atoms being captured. The reason is that laser excitation to
Rydberg states is restricted to local sites and consequently
Rydberg atoms are not produced in the background gas.
Hence, the transition |0〉 → |↑〉 could only occur if a Rydberg
atom is captured which had been previously expelled from
another site, which is unlikely. Overall, this setting can also
be described in terms of thermodynamic contact with baths
at fixed chemical potentials, such that the ground-state atoms
would be pushed to an equilibrium density γB↓/(γB↓ + γD↓), in
contrast to the tendency towards depletion experienced by the
excitations. Note that we are also neglecting processes which
lead to the occupation of a given site with multiple atoms. In
fact, in experiments with microtraps such multioccupancies
are suppressed due to the collisional blockade [40,41]. In
circumstances where such suppression is not taking place the
so-called dipole or Rydberg blockade [38,42,43] is ensuring
that each site can only feature a single Rydberg excitation.
This also limits the local site dynamics to a restricted space
at the expense of a possibly varying local (density-dependent)
Rabi frequency [44]. For the sake of simplicity we will not
consider such situations in this work.

In addition to the loss or gain dynamics we consider
the presence of noise, which dephases local superpositions
between the states |↑〉 and | ↓〉 at a rate �. The origin of
this noise can be fluctuating background fields that result in
random atomic level shifts, the broadening of atomic lines due
to Doppler [20] or interaction effects [45], or a spectrally broad
excitation laser [2].

In the presence of the described coherent and dissipative
processes the evolution of the density matrix ρ of the system
is governed by a quantum master equation in Lindblad
form [46,47],

∂tρ = −i[H,ρ] +
∑
i,k

γi

[
Li,kρL

†
i,k − 1

2

{
L
†
i,kLi,k,ρ

}]

+
∑

k

�

[
nkρnk − 1

2
{nk,ρ}

]
. (4)

Here the index i runs over the three different sources of
noise introduced in Eq. (3), while k over all lattice sites
and {A,B} = AB + BA, is shorthand for an anticommutator.
LD↓,k = |0k〉〈↓k |, LD↑,k = |0k〉〈↑k|, and LB↓,k = | ↓k〉〈0k|
are the corresponding local jump operators; the last term ac-
counts for dephasing, implemented via the jump operators nk .

III. CONTINUOUS TRANSITION FROM/TO
AN ABSORBING STATE

We start by considering a situation in which the dephasing
amplitude � is much larger than the Rabi frequency and
the other dissipative rates (� � �,γi). In this regime, the
dynamics is effectively described by means of a classical
stochastic equation [18,39,48,49]: the underlying separation
of time scales permits the adiabatic elimination of the portion
of the phase space subject to dephasing. Correspondingly, the
evolution of the density matrix ρ of the system is projected
onto the dissipation-free subspace [50–52], which in this case
corresponds to the sole diagonal components in the σ z basis
(i.e., a basis of classical spin configurations) [39]. At the
leading order in a perturbative expansion in powers of γi/�

and �/� the truncated density matrix μ evolves according to

∂tμ =
∑

k


k

(
σx

k μσx
k − ekμ

)

+
∑
i,k

γi

[
Li,kρL

†
i,k − 1

2

{
L
†
i,kLi,k,ρ

}]
, (5)

where


k = �2�

⎡
⎢⎣

(
�

2

)2

+
⎛
⎝� +

∑
q �=k

Vkqnq

⎞
⎠

2
⎤
⎥⎦

−1

(6)

is a configuration-dependent rate. We emphasize here that this
effective dynamics takes place within the subspace of classical
configurations, therefore, it is entirely determined by loss or
gain processes and the laser driving, while the dephasing—by
construction—plays no role at this level. This corresponds
to the fact that there is no 0th-order term in the perturbative
expansion above, i.e., for � = γi = 0 the effective dynamics
is completely trivial.

Defining the diagonal part of the Hamiltonian (H |�=0) as
the “classical” component, the second term in the brackets
of Eq. (6) corresponds to the square of the classical energy
change accompanying a spin flip at site k. Spin flips that result
in a significant increase or decrease in energy are therefore
strongly suppressed. In the scenario investigated in this section
we choose the detuning � such that it is opposite to the
interaction energy VNN between neighboring excited atoms
(� = −VNN) [see Fig. 1(c)]. Hence, exciting an atom right next
to an isolated already excited one incurs no energy difference
and therefore occurs at the maximal rate 


(max)
k ≡ λ = 4�2/�

[see Fig. 1(d)]. We further assume to be working in a regime
where −� = VNN � �, i.e., the interaction surpasses the
dephasing strength. In this regime any atom that has more
than 1 excitation in its neighborhood (or none at all), can only
change its internal state at a rate of order 
k ∝ �2�/�2. This
rate is significantly smaller than 


(max)
k and thus such processes

are strongly suppressed. For brevity, we shall refer to all of
them as “off-resonant” processes. Among them, we emphasize
that the creation of excitations in an empty neighborhood,
occurring at a rate 
k ≈ �2�/�2, is also strongly suppressed.

In order to gain some insight into the expected many-body
dynamics we assume for a moment that all off-resonant pro-
cesses can be neglected. In this regime Eqs. (5) and (6) display
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features that characterize a class of stochastic processes [34],
such as the contact process and other branching-annihilating
ones, which are known to undergo genuine nonequilibrium
phase transitions [53,54]. By this, we mean that these system
have no equilibrium counterpart whatsoever within their
universality class; for instance, there is no thermal system
which displays the same scaling behaviors. This is due to
the breaking of a subtle symmetry, generally referred to
as microreversibility [55–58], which for stochastic processes
corresponds to detailed balance [59]. Proper nonequilibrium
criticality thus emerges when this symmetry is not present nor
recovered upon rescaling, i.e., if the out-of-equilibrium per-
turbation is not irrelevant in the renormalization-group sense.

The branching-annihilating processes mentioned above
feature an absorbing phase with strictly zero density n =∑

k 〈nk〉/L, i.e., in the absence of excitations no new ones can
be created. Furthermore, the production of excitations can only
proceed via nucleation of clusters and is, in this sense, local (it
cannot occur arbitrarily far from pre-existing excitations). It is
important to note that in the present case the absorbing phase
does not consist of a unique state, but rather an absorbing space
that is spanned by the entire set of configurations of sites which
are either in state 0 or state ↓. In general there is dynamics
taking place within the absorbing manifold as all the absorbing
configurations can be visited via the interplay of the local loss
and gain processes with rates γD↓ and γB↓. This requires us to
consider also the density of active sites η = ∑

k 〈ek〉/L when
analyzing the dynamics of the system.

A. Mean-field approach

The mean-field approximation discards correlations be-
tween different sites—i.e., for every local observable Ok we
substitute 〈OkOp〉 → 〈Ok〉〈Op〉 if k �= p—and permits the
formulation of closed equations of motion for the expectation
values of the densities of excitations n and of active sites η:

∂tn = −γD↑n +
z∑

j=0

(
z

j

)
λjn

j (η − 2n)(1 − n)z−j , (7a)

∂tη = γB↓ − (γB↓ + γD↓)η + (γD↓ − γD↑)n. (7b)

Here, z is the lattice coordination number (number of nearest
neighbors per site) and λj is shorthand for the rate of a flipping
process occurring in the presence of j excited neighbors. This
means that λ1 characterizes the resonant processes introduced
above (and λ1 = λ = 4�2/�), whereas the remaining values
refer to the off-resonant processes and read

λj �=1 = �2�(
�
2

)2 + �2(j − 1)2
≈ �2�

�2(j − 1)2 � λ. (8)

In a first approximation we neglect them altogether and
Eq. (7a) becomes

∂tn = −γD↑n + λzn(η − 2n)(1 − n)z−1. (9)

This equation together with Eq. (7b) predicts a transition from
the region λ < λc = γD↑(γB↓ + γD↓)/(zγB↓) which admits
only the absorbing solution n = 0 to the region λ > λc in
which the system displays a finite density n > 0 in the
long-time limit. In Fig. 2 we report the corresponding phase

FIG. 2. Stationary density of excitations n extracted from the
mean-field equations (9) and (7b) for −� = VNN = 64�, γB↓ =
0.01�, and γD↑ = γD↓. The data are shown as a function of the
branching rate λ for resonant processes and the density of active
sites η̄ = γB↓/(γB↓ + γD↓). The color scale is bounded by nmax = 0.5.
The red dashed line corresponds to the values taken by the critical
rate λc for different values of η̄. A cross section is displayed in the
inset for η̄ = 0.8 (along the cyan horizontal line in the main figure),
which highlights the mean-field scaling behavior n ∼ λ − λc. The
green, dashed line corresponds to the same curve calculated including
the leading off-resonant processes relevant in a Rydberg gas. As
expected, the introduction of the latter makes the transition smoother,
but deviations are only visible in close vicinity to the critical point λc.

diagram for the choice � = −64�, γD↑ = γD↓ ≡ γD in the
λ − η̄ plane, where the symbol η̄ denotes the stationary density
of active sites. The threshold value λc identifies the critical
point of a continuous transition between the two phases. To
its right, the density scales linearly (n ∼ λ − λc), while at
the critical point its value decays to 0 in time according to the
power law n(t) ∼ 1/t . The density of active sites relaxes to the
finite value γB↓/(γB↓ + γD↓). Consequently, at the mean-field
level, this system undergoes a transition which shows some
of the characteristic features of directed-percolation (DP)
universality [34].

Let us now discuss the role of the off-resonant terms. Those
with j > 1 in Eq. (7a) do not affect the fundamental properties
of the transition, as they vanish for n → 0. Therefore, they
can only shift the position of the critical point according to the
relative statistical weights λj . The j = 0 term, on the other
hand, constitutes a relevant—albeit small—perturbation that
brings the system away from the critical point. The reason
is that it accounts for production of excitations in an empty
neighborhood and thus prevents the aforementioned subspace
of configurations devoid of excitations from being strictly
absorbing. This term smooths the transition into a crossover,
as highlighted in the inset of Fig. 2. The magnitude of this
effect can be suppressed by increasing the detuning �. When
sufficiently small it allows the observation of the mean-field
scaling behavior for values of λ � λc.

B. Numerical analysis

In order to investigate the effect of fluctuations which
are not captured by the mean-field treatment we perform
numerical Monte Carlo simulations, using a state in which
all sites are occupied with a Rydberg atom as the initial
condition. We set the rates γD↓ = γD↑ ≡ γD, γB↓ = 0.01�,
VNN = 64� = −� and collect data for several values of the
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FIG. 3. Phase diagrams of the pure and the Rydberg process (see text) in the η̄-λ plane for a 1D chain of 100 sites and a 2D square lattice of
20 × 20 sites. The parameters are chosen as −� = VNN = 64�, γB↓ = 0.01�, and γD↓ = γD↑ ≡ γD. The color scale is set with respect to the
maximal value the density can take, i.e., nmax = 1 for the pure process and 1/2 for the Rydberg one. Numerically computed exponents β (static)
and δ (dynamic) are displayed in the panels. The selected parameter ranges are shown as a cyan and a green line on the main plot. For the
1D pure process we also show (in log-log scale) the critical profiles of the stationary density n as a function of �λ = λ − λc (lower-left inset)
and of its evolution in time (upper-right inset) to highlight the scaling behavior. For comparison we provide the known DP exponents [34]:
β1D = 0.276, β2D = 0.584, δ1D = 0.159, and δ2D = 0.451.

parameters γD and �. For this particular choice of parameters
the loss and gain dynamics decouples from the excitation
dynamics. This can be seen directly in Eq. (7b) which is valid
beyond mean field. Consequently, the density of active sites η

reaches exponentially fast [on a time scale (γB↓ + γD)−1] the
steady-state value η̄ = γB↓/(γB↓ + γD).

For Rydberg gases one needs to account for the fact that
the off-resonant production of excitations and the long-range
tails of the vdW potential affect the emergence of the phase
transition. As we discuss further below, these features actually
constitute a source of additional noise which to some extent
may obscure the anticipated scaling behaviors. In order to shed
light on the fundamental critical properties of the transition we
have therefore also simulated a dynamical process in which we
replace the first term of the right-hand side of Eq. (5) by

∑
k,i∈{k}

λ

2d
ni(σ

+
k μσ−

k − pkμ), (10)

with {k} denoting the set of nearest-neighboring sites of site k

and d being the dimension. After this replacement we have a
pure branching process (as found, e.g., in the contact process
mentioned above [34]) producing excitations from nearby ones
at a rate λ/(2d). The normalization by the quantity 2d—which
corresponds to z for square lattices—is meant to compensate
for the fact that in this case multiple excitations enhance
the rate. We emphasize that, although different, the two

processes we consider share the same fundamental properties:
the absorbing subspace is the same and, apart from off-resonant
events, branching is the only way to increase the number of
excitations. Furthermore, in the presence of low densities—as
happens in the proximity of the critical point—the action of
the branching terms in Eqs. (5) and (10) is analogous up to
multiplicative factors. For brevity, in the following we shall
refer to the new stochastic process as the “pure” instance and
to the original process [Eq. (5)] as the “Rydberg” one.

In Fig. 3 we show the stationary value (obtained from Monte
Carlo simulations) of the density of excitations n in the η̄-λ
plane for one-dimensional (1D) (100 sites) and 2D (20 × 20
sites) square lattices in both cases. The pure and the Rydberg
processes display qualitatively the same behavior. As expected,
in the pure case the transition from the absorbing to the active
phase is significantly sharper. Beyond that, two interesting
features can be observed. First, the simulations seem to suggest
that the critical point λc diverges as the stationary density of
active sites η̄ decreases and that below a certain threshold η̄c

the transition disappears entirely. Second, there is a qualitative
difference in the static and dynamic scaling behavior when
varying η̄. The stationary properties remain unaffected and
always display, within numerical accuracy, a scaling behavior
n ∼ (λ − λc)β with a critical exponent β compatible with the
DP one for both one- and two-dimensional processes (see
Fig. 3). In contrast, the dynamical approach to stationarity
changes continuously. This means that when approaching the
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threshold value η̄c, the critical exponent of the algebraic decay
n(t) ∼ t−δ smoothly decreases to 0 from a value which, in
one dimension, is comparable with the one of pure DP. We
have verified in one dimension that this behavior is only
weakly affected by finite-size effects conducting simulations
on lattices with 1000 and 10 000 sites.

The presence of a varying exponent is strongly reminiscent
of the behavior of stochastic processes with multiple absorbing
states as reported in Refs. [34,60], which provide a qualitative
explanation of our observations. Even though in our case
the absorbing space is not made of individually absorbing
states, the excitation dynamics effectively perceives them as
such, since it stops completely as soon as the first absorbing
configuration is reached. In other words, once the evolution
ends within this subspace the excitation density—our order
parameter—remains at 0. Moreover, in the cases discussed
in Refs. [34,60] the dynamic exponent is also not constant
but instead varies continuously as a function of the initial
conditions, e.g., the initial density. This relates to the fact that
the initial condition can ultimately determine the properties of
the absorbing state one ends up with. The initial condition
thus seems to act as a purely marginal parameter under
renormalization-group flows [61]; consequently, fixing the
dynamical rates at criticality and tuning its value implies
moving along a line of critical points with continuously
varying exponents, which matches the numerical observa-
tions. Furthermore, not all the properties of the initial state
survive coarse graining: for example, if the density does
not rescale and remains unmodified, the initial correlation
length progressively shrinks towards 0, implying that the order
parameter density is the only “relevant” property to account
for, as highlighted in Ref. [60]. Analogous features have
been identified in non-Markovian systems [34]. Moreover,
in Ref. [62] it is argued that in many models with multiple
absorbing states the emerging nonuniversal features are due to
an effective memory encoded in the dynamics.

In our simulations we start from a fixed initial condition
(all atoms present and excited). However, the fast loss or gain
dynamics rapidly constructs an “effective initial condition”
with an active site density η̄ determined by the rates γB↓
and γD. On average, the value of η̄ remains subsequently
constant in the evolution and thus characterizes the properties
of the stationary state as well. Following the same reasoning
applied to the idealized models mentioned above, if we
imagine η̄ to be a marginal parameter which does not flow
under renormalization-group transformations, we can relate
the continuous variation of the dynamical exponents we
observe to the same underlying structure, i.e., to the movement
along a line of critical points in a marginal direction.

The Rydberg case features off-resonant processes and thus
displays a smoothed transition, as shown in the right-hand
column of Fig. 3: more specifically, as mentioned above, there
is a small, but finite probability of exciting ground-state atoms
even far away from any excitation; as a consequence, the
absorbing property of the pure case is broken and there can
be rare jumps outside of the (quasi)absorbing subspace. This
constitutes a relevant perturbation out of the critical region and
implies the impossibility of observing a sharp transition. The
low amplitude of these terms, however, makes the two distinct
phases still emerge, as can be seen in the right-hand panels.

Second, it requires stronger driving for the active phase
to appear. This can be understood by noting how clusters of
excitations actually hinder their own growth. For instance, if
we consider a pair of nearby excitations, elongating it to a
three-excitation segment (↑↑↓ → ↑↑↑) faces the presence of
next-nearest-neighbor interactions. Because of them, the rate
at which this process occurs is no longer λ but instead given
by



(NNN)
k = �2�(

�
2

)2 + V 2
NNN

. (11)

Our choice of parameters, VNNN = VNN/26 = �, implies

NNN

k = λ/5 and hence the branching rate is effectively
reduced. Further growth along the same direction experiences
much smaller corrections and thus continues approximately
at a rate λ/5. The situation worsens if we consider branching
orthogonally with respect to the two original excitations, since
in this case the distance between next-nearest neighbors is
reduced to

√
2 times the lattice spacing, implying VNNN =

VNN/(
√

2)6 = 8� and yielding an effective rate 
NNN
k =

λ/257. This explains the suppression of the stationary density
in the 2D case with respect to the 1D one. The relevance of this
effect can be drastically reduced by partially removing the tails
of the vdW interactions using a microwave dressing scheme
(see Refs. [32,63–65]). In other words, by coupling two
Rydberg levels with a strong microwave field one can obtain
a hybridization of the relative interactions. For appropriate
choices, the latter features a crossover threshold separating a
short-distance regime displaying the usual vdW decay from
a long-distance one which is instead suppressed with respect
to the previous one and can be considered approximately flat.
This length scale thus acts as a cutoff for the potential tails.

IV. DISCONTINUOUS ABSORBING-STATE
PHASE TRANSITION

The continuous phase transition discussed above is not
merely due to the competition between system-filling and
system-emptying processes. It also strongly relies on the res-
onance condition requiring the presence of a single excitation
nearby, which constitutes a fundamental connection with other
classical branching processes [34].

To demonstrate this we consider a 2D triangular lattice
(z = 6) of Rydberg atoms which is irradiated by a laser with
detuning −� = 2VNN. This implies that atoms now require
exactly two excited neighbors to be effectively brought in
resonance with the laser [see Fig. 1(d)]. With this constraint,
the geometrical structure of the lattice becomes relevant:
for instance, clusters cannot grow on a square lattice, since
neighboring sites do not share common neighbors.

A. Mean-field approach

The density of active sites is evolving according to Eq. (7b)
in this case as well. The evolution equation for the excitation
density n can be cast in the form (7a), but with λj redefined as
λ2 = λ and

λj �=2 = �2�(
�
2

)2 + �2(j − 2)2
≈ �2�

�2(j − 2)2 � λ. (12)
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FIG. 4. Stationary density of excitations n (we select the stable
solution with highest value) extracted from the mean-field equa-
tions (13) and (7b). The data are shown as a function of λ (branching
rate) and η̄ (stationary density of active sites) for −� = 2VNN = 64�,
γB↓ = 0.01�, and γD↑ = γD↓. Here nmax = 0.5. The dashed line
corresponds to the critical rate λc for different values of η̄. In the
inset we plot the profiles of the three stationary solutions of Eq. (13)
for η̄ ≈ 0.65 in a parameter interval indicated by the cyan horizontal
line in the main figure. The absorbing solution is displayed as a solid,
cyan line which never leaves 0. The upper solid orange line represents
the stable solution with finite density which only occurs for λ > λc.
The dashed green line corresponds to the third, unstable solution.

Hence, the dominant contribution is now given by the j = 2
term, i.e.,

∂tn ≈ −γD↑n + 2z(z − 1)�2

�
n2(η − 2n)(1 − n)z−2. (13)

Introducing the parameter χ = 2z(z − 1)�2/�γD↑ = λz(z −
1)/2γD↑, these mean-field equations predict a discontinuous
transition from a phase χ < χc in which the only acceptable
stationary solution is n = 0 to an active phase (χ > χc) in
which two further solutions appear (constituting a saddle-node
bifurcation [66]; see inset of Fig. 4). These correspond to
additional real roots of the right-hand side of Eq. (13) and are
identified by the equality χn(η̄ − 2n) = (1 − n)2−z. Thus, the
threshold value for χ corresponds to

χc = min
n∈[0,1/2]

1

n(η̄ − 2n)(1 − n)z−2
. (14)

Branching off from a common point [the value n yielding
the minimum in Eq. (14)], one of these solutions is unstable
(dashed green line in the inset of Fig. 4) under small
perturbations and decreases asymptotically to 0, whereas the
other one (solid blue line) is stable and increases up to η̄/2. The
absorbing solution remains always stable. A phase diagram for
this case is shown in the main panel of Fig. 4, where we display,
for various choices of λ and η̄, the largest stable mean-field
solution, in order to highlight the finite jump experienced
by this value when the boundary λc = 2γD↑ χc/[z(z − 1)] is
crossed. The quantitative effect of the off-resonant terms is
again barely noticeable at the mean-field level and we thus
do not display it. We recall, however, that the subspace of
configurations with n = 0 is not perfectly absorbing and thus
the lower branch is slightly lifted from 0.

B. Numerical analysis

To study the system beyond mean field we employ Monte
Carlo simulations. The parameters are identical to the previous
simulations with the exception that VNN = −�/2 = 32�.
Again, we set γD↓ = γD↑ ≡ γD and use a completely filled
initial state from which the fast site dynamics will generate an
effectively random initial configuration. In Fig. 5 we display
the stationary density n in the �-γD plane. Note that for the
sake of clarity we do not include interactions beyond nearest
neighbors, i.e., we assume that the tails of the vdW potential are
modified for example by the previously mentioned microwave
dressing [32,63–65]. Their inclusion does not qualitatively
change the phase diagram, although it makes it more difficult
to highlight the discontinuous nature of the transition. As
predicted by the mean-field study we observe the presence of
both an absorbing phase and an active one. At a first glance the
data suggest the presence of a continuous crossover instead of
a discontinuous jump. This can be reconciled with the previous
Subsection’s conclusions by considering that in the presence
of two stable stationary solutions, different realizations of the
stochastic process end up in either one or the other. However,
this information is lost once the average is taken.

We have therefore computed the counting statistics—
or probability distribution—of the excitation density n at
the maximal time of our simulations, �tmax = 15 000. It is
displayed in Fig. 5(b) and clearly highlights the discontinuous

FIG. 5. (a) Stationary density profile in the λ-η̄ plane for the branching process defined on a 25 × 25 triangular lattice. The color scale
extends up to nmax = 0.5. As in the mean-field treatment in Fig. 4, we fix −� = 2VNN = 64�, γB↓ = 0.01�, and γD↑ = γD↓ ≡ γD. For a
sufficiently large population of trapped atoms (sufficiently small loss rate γD) and large enough λ (∝�2), the process becomes clearly capable
of maintaining a finite density of excitations for long times. (b) Counting statistics p(n) of the final density n(tmax) at fixed � = 0.125� and
�tmax = 25 000 as a function of η̄. Bimodality is a signature of the discontinuity of the phase transition and becomes clearly visible in the inset
section taken along a section at η̄ ≈ 0.7194.
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first-order nature of the transition showing that indeed, for a
certain range of parameters, the distribution becomes bimodal.
This confirms that some initial conditions decay into empty
configurations, whereas other ones maintain a finite density
n > 0 for long times.

V. MODEL A UNIVERSALITY

For completeness we now briefly discuss the situation in
which dephasing is not strong enough in order to warrant
a description of the dynamics of the system in terms of
effectively classical evolution equations. In this situation the
full quantum master equation (4) needs to be solved which
can be done numerically only for systems consisting of a few
sites. To nevertheless gain a qualitative understanding of the
emerging phase structure we employ a mean-field treatment.
The single-site expectation values 〈nk〉 = n, 〈pk〉 = p, 〈σx

k 〉 =
Sx and 〈σy

k 〉 = Sy evolve according to equations

ṅ = �Sy − γD↑n, (15a)

ṗ = −�Sy − γD↓p + γB↓(1 − n − p), (15b)

Ṡx = −(� + V n)Sy − � + γD↑ + γD↓
2

Sx, (15c)

Ṡy = 2�(p − n) + (� + V n)Sx − � + γD↑ + γD↓
2

Sy,

(15d)

where V = ∑
q Vkq(1 − δkq).

First, we focus on investigating the stationary properties.
Setting the time derivatives to zero one can relate all steady-
state expectation values to the excitation density n, i.e.,

Sy = γD↑
�

n, (16a)

p = −γD↑n + γB↓(1 − n)

γB↓ + γD↓
, (16b)

Sx = −2
� + V n

� + γD↑ + γD↓

γD↑
�

n. (16c)

This leads to a closed polynomial equation for the excitation
density in the stationary state which reads

n[a + b(c + n)2] = 1, (17)

where we have introduced the parameters

a = 2γB↓ + γD↑ + γD↓
γB↓

+ (� + γD↑ + γD↓)γD↑(γB↓ + γD↓)

4�2γB↓
,

b =
(

V

�

)2
γD↑(γB↓ + γD↓)

γB↓(� + γD↑ + γD↓)
, and c = �

V
. (18)

Similar mean-field equations have been obtained in a num-
ber of recent works [24,27,28,67,68] which investigate the
dynamics of Rydberg gases in the presence of radiative
decay. A known feature of Eq. (17) is that it describes a
bistable behavior, not fundamentally different from the one
encountered in the previous section, i.e., for certain values of
the physical parameters the mean-field equations of motion
admit two, instead of one, stable stationary solutions.

FIG. 6. Stationary phase diagram of the mean-field equations
of motion (15a)–(15d) for three different detunings � in the plane
spanned by �/V and γD↓/V = γD↑/V ≡ γD/V . The shaded areas
correspond to the bistable regions for � = 0.01V and γB↓ = γD.
Points lying outside represent choices for which there is only one
physical solution. From top to bottom, the detuning is fixed at
−0.255V , −0.22V , and −0.15V . The boundaries of each shaded
region meet with vanishing net angle at the corresponding critical
point (red disk). The solid black line displays the path taken by the
critical point as � is varied. The dashed lines show how the profile
of this path shrinks when the dephasing rate � is increased. From the
outermost to the innermost, the values correspond to � = 0.001V ,
0.01V (solid line), 0.04V , and 0.08V . The transition disappears when
�/V � γB↓/4(γB↓ + γD) = 0.125. The bistable region is also absent
when �/V lies outside the interval [−9γB↓/[16(γB↓ + γD)],0] =
[−9/32,0].

Figure 6 provides a representative example of the phase
diagram’s structure in the γD − � plane, obtained in the plot
for the specific choice γD↑ = γD↓ = γB↓ = γD. The bistable
regions are shown as shaded areas. In general, the lines
delimiting these domains meet with vanishing angle in a
critical point (see also the discussion in Ref. [28]) which for
fixed parameter c is located at ac = −9/8c, bc = −27/8c3.
This identifies a unique direction, which in the parameter
space spanned by a, b, and c reads δa = −δb c2/9 where
δa = a − ac and δb = b − bc. Varying the parameters in such
a way to follow this path, the profile of the stationary density
displays a branching at the critical point which can be related to
the spontaneous breaking of aZ2 symmetry [28]. The solutions
for the stationary density of excitations take here the form
n = nc + δn, with the critical density nc = −2c/3 and

δn =
⎧⎨
⎩

0 (δb < 0),

± 2c
3

√
δb

δb+bc
∼ ±δb1/2 (δb > 0).

(19)

Crossing the critical point along any other direction yields
instead a behavior δn ∼ δb1/3, which relates to an explicit
breaking of the symmetry. This is identical to the situation that
is encountered in the thermodynamics of a ferromagnet in the
presence of a finite magnetic field.

To understand the dynamical behavior near the critical point
we first note that for our choice of parameters γD↓ = γD↑ = γD

023409-8



ATOMIC LOSS AND GAIN AS A RESOURCE FOR . . . PHYSICAL REVIEW A 93, 023409 (2016)

the site dynamics decouples. The corresponding equation is

∂t (n + p) = η̇ = γB↓ − (γB↓ + γD)η. (20)

Linearizing the remaining equations in the proximity of the
critical point, we find two attractive modes and a vanishing
one, signaling the presence of a critical slowing down of the
dynamics, i.e., an algebraic relaxation towards the stationary
value n(t) − nc ∼ t−1.

Recent experiments in Rydberg gases suggest that a mean-
field treatment such as the one presented here can correctly
capture qualitative dynamical and static features [27,31].
A recently developed variational method [29,30], which
improves on the mean field, showed in this context that the
bistable region is in fact “replaced” by a first-order-transition
line terminating in a critical point. The latter is related to an
emerging universality belonging to the so-called model A (or
Ising-Glauber) class [69]. The lines separating the bistable
and stable regions can consequently be interpreted as spinodal
lines, resulting in the appearance of long-lived metastable
states which have been observed experimentally [27] and
whose properties relate to the mean-field predictions [28].

Hence, the results in this section indicate that the interplay
between the coherent laser excitation, the interaction and
the loss or gain dynamics can drive the system towards a
classical equilibrium critical point. Finally, we remark that
here—contrary to the cases presented in Secs. III and IV—
the presence of dephasing is inessential for the emergence
of criticality. Moreover, the transition disappears when the
dephasing rate exceeds

�c = 1

2

γB↓
2γB↓ + γD↓ + γD↑

V − γD↑ − γD↓

as indicated in Fig. 6. From a physical point of view, this can
be understood by the fact that the various cases reported here
rely on facilitation effects induced by the blue detuning of the
laser with respect to the atomic transition. As discussed above,
this means that the presence of excited atoms enhances the
production of new ones (at a certain distance). This happens
due to the fact that the interactions effectively shift the atomic
levels. Therefore, if the broadening of the latter induced by
dissipation becomes comparable with the shift itself (e.g.,
�≈V ), the facilitation effect disappears and so does the critical
behavior.

VI. CONCLUSIONS

In this work we have illustrated a number of nonequilibrium
phenomena that can be explored within lattice gases of
Rydberg atoms in the presence of local loss and gain processes.
As a matter of fact, the latter, which are often regarded as
unwanted sources of noise to overcome, turned out to be key for
the emergence of the collective dynamics reported above. We
remark that their presence constitutes a fundamental element

in our frame of thought. In the coarse-grained description
employed here for the classical subspace, it is their interplay
with the laser driving that determines the dynamical features
highlighted.

In the limit of strong dephasing the Rydberg gas realizes
several instances of transitions from and to absorbing states.
Facilitating the flipping of atoms which possess a single
excited neighbor yields a continuous transition whose dynamic
properties vary smoothly depending on the average density of
active sites, while the static ones remain unchanged. This is
strongly reminiscent of the behavior of stochastic processes
with multiple absorbing states. On the other hand, on a
triangular lattice and with a resonance condition asking for two
neighbors to be excited, the system undergoes a discontinuous
phase transition, highlighted by the bimodal structure of the
stationary density of excitations.

In the limit where the coherent laser excitation dominates
the dephasing processes the static and dynamical properties of
the system are determined by an equilibrium critical point
belonging to the model A universality class. This hints at
the possibility of investigating these collective behaviors in a
setting complementary to the ones in which these phenomena
were previously studied, all of which relied on the presence of
radiative decay.

A particularly appealing aspect of the present study is
the prospect to explore nonequilibrium phase transitions
with absorbing states. Although the underlying universality
classes—all of which relate, to a certain degree, to directed
percolation—have been thoroughly investigated in the past,
there are not many condensed-matter systems which are
known to display the corresponding critical behaviors [70–72].
Rydberg gases in the presence of local loss and gain permit the
detailed exploration of directed percolation universality in all
three dimensions [32] and also in the presence of a manifold of
absorbing states. Peculiar features such as the dependence of
the critical dynamics on the initial state, which have been stud-
ied in the framework of idealized model systems, can now be
in principle explored experimentally. Additionally, this setting
opens the possibility to experimentally study the influence of
quantum effects on the stochastic nonequilibrium processes.
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H. P. Büchler, and T. Pfau, An experimental and theoretical guide

to strongly interacting Rydberg gases, J. Phys. B 45, 113001
(2012).

[3] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
New York, 1984).

023409-9

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1088/0953-4075/45/11/113001
http://dx.doi.org/10.1088/0953-4075/45/11/113001
http://dx.doi.org/10.1088/0953-4075/45/11/113001
http://dx.doi.org/10.1088/0953-4075/45/11/113001


B. EVEREST, M. MARCUZZI, AND I. LESANOVSKY PHYSICAL REVIEW A 93, 023409 (2016)

[4] A. W. Carr and M. Saffman, Preparation of Entangled and
Antiferromagnetic States by Dissipative Rydberg Pumping,
Phys. Rev. Lett. 111, 033607 (2013).

[5] M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, Coherence
and Rydberg Blockade of Atomic Ensemble Qubits, Phys. Rev.
Lett. 115, 093601 (2015).

[6] K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz,
A. W. Carr, L. Isenhower, and M. Saffman, A Rydberg blockade
CNOT gate and entanglement in a 2D array of neutral atom
qubits, Phys. Rev. A 92, 022336 (2015).
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