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Electric-field effects on the closed orbits of the diamagnetic Kepler problem
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The nonrelativistic closed orbits of an electron interacting with a unit positive charge in the presence of
homogeneous magnetic and electric fields are investigated. A simplified theoretical model is proposed utilizing
appropriate initial conditions in semiparabolic coordinates for arbitrary magnetic- and electric-field alignments.
The evolution of both the angular spectrum of orbits and the shape and duration of individual orbits, as the
electric-field intensity and scaled energy are increased, is shown for the cases of both parallel and crossed fields.
Orbit mixing in the high-field regime is investigated in the case of parallel fields, giving an indication of the
system moving from the quasi-Landau chaotic regime to the electric-field-induced (Stark effect) regular regime.
For crossed fields, it is shown that the Garton-Tomkins orbits lead to a pair of orbits that have opposite behaviors
as a function of the electric-field intensity.
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I. INTRODUCTION

The study of the hydrogen atom, and other atomic species,
in external fields as experimentally accessible quantum sys-
tems whose classical analog displays chaotic properties has
been pursued extensively for many decades [1–4]. In a static
magnetic field, the system is known to be chaotic at energies
around the ionization point. This chaotic behavior manifests
itself in experimental measurements as oscillations in the
spectrum whose periods correspond to the periods of closed
orbits in the classical Hamiltonian [5].

The addition of a static electric field parallel to the magnetic
field provides another system which is both experimentally
accessible and able to be solved analytically in the classical
case [6–8]. In this configuration, the symmetry of the system
is preserved with the z component of the angular momentum
of the system remaining conserved. Therefore, calculations
are relatively simple when compared to the general case. The
integrals of motion of hydrogenic atoms in the presence of
parallel magnetic and electric fields has been investigated by
Beims and Gallas [9]. The chaotic ionization of the same
system has been studied by Topçu and Robicheaux [10]. In
the extreme case of a pure electric field, there exists an exact
quantum solution due to the separability of the Schrödinger
equation. Therefore, the classical motion in this system is
regular everywhere [11–13]. By applying both fields at varying
comparable strengths we are able to observe the system
evolving from regular to chaotic dynamics [6,8].

By rotating the electric field away from parallel to the
crossed-fields geometry, the conservation of the z component
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of the angular momentum of the system is broken and
calculations become more complicated. The closed orbits of
an electron in a hydrogen atom in crossed fields have been
studied by several authors [14–19]. In particular, the graphs of
a set of orbits with a negative energy value have been reported
by Rao et al. [20,21]. To remove the Coulomb singularity,
they combined the Kustaanheimo-Stiefel transformation with
a time-dilation variable in the four-dimensional representation.

Much of the work dedicated to these three cases has
been concentrated on energies less than or at the ionization
threshold as this is convenient for experimental data gathered
in hydrogen and other atomic systems. Recently, however,
the diamagnetic Kepler problem was first detected in the
semiconductor environment of silicon in a static magnetic
field [22]. The oscillations in the spectrum were observed
well above the ionization threshold corresponding to positive
scaled energies of the order of 1 [23]. These measurements
also provided an observation of this effect in an anisotropic
medium which subsequently led to a comprehensive study on
the effects of an anisotropic mass on the classical electron
orbits and their periods [23]. A numerical investigation into
the experimental conditions needed to observe such an effect in
a range of widely-utilized semiconductors was also completed
[24].

In the present work, the effect of an electric field which is
either parallel or perpendicular to the magnetic field applied to
a hydrogenic atom is further investigated. Section II provides
the classical theoretical framework for a three-dimensional
(3D) hydrogenic atom in both magnetic and electric fields at
arbitrary orientation. The singularity at the nucleus is softened
using scaled semiparabolic coordinates and the choosing
of appropriate initial conditions. Such a choice allows us
to deal with a more general configuration than previous
works restricted to the 2D hydrogen atom [25–27]. Relevant
equations of motion for the special cases of parallel and crossed
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fields are presented. Section III outlines the numerical results
for parallel and crossed fields. In each case, a systematic
investigation is detailed on both the angular spectrum of orbits,
as well as the shapes and periods of the most important
closed orbits as the scaled field is increased. In the case of
parallel fields, two further investigations are presented. The
first focuses on orbit mixing in the high-field regime between
orbits associated with quasi-Landau oscillations and the single
electric-field-induced orbit associated with the Stark effect.
This describes how the system shifts from the chaotic quasi-
Landau regime to the regular electric-field-induced orbits
regime, and how this mixing of orbits can create large regions
of the angular spectrum where closed orbits are abundant. Such
a large region of closed orbits may lead to strong oscillations in
the spectrum related to those specific orbit periods. The second
considers the effects of small positive integer values of the
scaled energy on both the angular spectrum of orbits, as well as
the shapes and periods of the most important closed orbits. This
is of particular interest when moving into the semiconductor
environment where experimental work has shown oscillations
in the spectrum well above the ionization energy [22–24].
For crossed fields, it is shown how the electric field breaks
the rotational symmetry, splitting the shortest pure magnetic
orbits into new ones which evolve quite differently as the field
strength is increased. The evolution of other orbits is discussed
as well. Section IV provides a summary of the important results
and conclusions.

II. THEORETICAL FRAMEWORK

The diamagnetic Kepler problem deals with an electron
of mass m and charge −e interacting with a positive charge
e in the presence of a magnetic field B. The frequency of
the cyclotron motion of the electron in such a field is given
by ωc = eB/m. When an electric field F is also applied, the
classical and nonrelativistic motion equation reads

m
d2r
dt2

= −eF − e
d r
dt

× B − ke2r
r3

, (1)

where k = 1/(4πε0) is Coulomb’s constant. This is a conser-
vative system and the electron energy is given by

m

2

(
d r
dt

)2

+ eF · r − ke2

r
= E. (2)

In the present work the focus is on the orbits described
by the electron after it launches from the close vicinity of
the positive charge. The aim is to investigate the trajectories
that return to the same vicinity. This is because they lead to the
so-called quasi-Landau resonances [28] in the optical spectrum
of atoms, where the initial state of the transitions is a highly
localized state.

The motion equation is numerically solved for the positive
charge at the origin of coordinates. In order to soften the
singularity in the Coulomb term, semiparabolic coordinates
u and v and a scaled time τ are introduced [29,30]. These
coordinates are given by

x = λuv cos(φ), y = λuv sin(φ),

z = λ

2
(u2 − v2), (3)

where φ is the azimuth and

λ = 3

√
4π2ke2

mω2
c

(4)

is a convenient unit of length. Therefore, the distance to the
origin is r = λ

2 (u2 + v2). The scaled time is given by

t = Tc

∫ τ

0

r

λ
dτ, (5)

where Tc = 2π/ωc is the cyclotron period.
To be concrete, the magnetic field is chosen along the

positive direction of the z axis, i.e., B = (0,0,B), with B > 0.
The electric field will be given by F = F ( sin(ψ),0, cos(ψ)),
where F is the intensity and 0 � ψ � π . The motion equation
(1) leads to

ü = uε

2
− π2u3v2w − π2uv4(1 − w)w

−f

2
u3 cos(ψ) − f

4
v(3u2 + v2) sin(ψ) cos(φ), (6)

v̈ = vε

2
− π2u4v(1 − w)w − π2u2v3w

−f

4
u(u2 + 3v2) sin(ψ) cos(φ) + f

2
v3 cos(ψ), (7)

and

φ̇ = 2πw r/λ, (8)

where ε = 4π2E/(mω2
cλ

2), w = (dφ/dt)/ωc, f = 4π2Fe/

(mω2
cλ), and

ẇ = f (u2 + v2) sin(ψ) sin(φ)

4πuv
+ (1 − 2w)

(
u̇

u
+ v̇

v

)
. (9)

Accordingly, Eq. (2) takes the form

(u̇)2

2
+ (v̇)2

2
+ π2

2
u2v2w2(u2 + v2) − ε

4
(u2 + v2)

+ f

8
(u4−v4) cos(ψ)

+ f

4
uv(u2 + v2) sin(ψ) cos(φ) = 1

2
, (10)

The electron launches essentially from the origin. Theoret-
ically, since the present approach does not include relativistic
effects, the initial distance to the origin cannot be too small. For
moderate energy values, i.e., for |E| � mc2, such a distance
should be much larger than 2ke2/(mc2) ≈ 5.6 fm. This is
fairly small in comparison with the size of the hydrogen atom.
Therefore, in the numerical calculations, one may take the
initial position as u = v = 0.

The direction of the initial velocity is given by the polar
angle θ and the azimuth φ. Since the initial electron position
is the origin of coordinates, Eq. (10) leads to u̇2 + v̇2 = 1.
Therefore, one may take u̇ = cos(θ/2) and v̇ = sin(θ/2). The
singularity in Eq. (9) is avoided by taking w = 1/2 at t = 0.
Thus the initial value of ẇ is f sin(ψ) sin(φ)/[2π sin(θ )].

This method of scaling the equations and utilizing semi-
parabolic coordinates has been used in the special cases of
pure magnetic fields and parallel electric and magnetic fields
for several decades. In the case of crossed electric and magnetic

023405-2



ELECTRIC-FIELD EFFECTS ON THE CLOSED ORBITS . . . PHYSICAL REVIEW A 93, 023405 (2016)

fields, due to the loss of rotational symmetry in the system,
this method has been confined to analyzing the 2D hydrogen
atom [25–27]. In the 3D hydrogen atom, other methods such
as combining the Kustaanheimo-Stiefel transformation with
a time-dilation variable in a four-dimensional representation
have been required. Here we show that scaling of the equations,
and semiparabolic coordinates, which had been predominantly
limited to use in special cases with rotational symmetry, can
also be generalized for arbitrary orientation of electric and
magnetic fields in the 3D hydrogen atom.

A. Parallel fields

The electric field is parallel to the magnetic field when
ψ = 0. In this case, w remains equal to 1/2. This corresponds
to a rotation around the z axis at the Larmor frequency. Because
of symmetry, the initial value of φ does not affect the shape
and the duration of the trajectories. Taking zero as the initial
value of φ, one finds φ = ωct/2,

ü = uε

2
− π2

2
u3v2 − π2

4
uv4 − f

2
u3 (11)

and

v̈ = vε

2
− π2

4
u4v − π2

2
u2v3 + f

2
v3, (12)

which match equations published in Ref. [7] except for
differences in scaling. The energy conservation equation now
reads

(u̇)2

2
+ (v̇)2

2
+ π2

8
u2v2(u2 + v2) − ε

4
(u2 + v2)

+f

8
(u4 − v4) = 1

2
. (13)

B. Crossed fields

The crossed-fields configuration corresponds to ψ = π/2.
In this case the equations for u, v, and w are

ü = uε

2
− π2u3v2w − π2uv4(1 − w)w

−f

4
v(3u2 + v2) cos(φ), (14)

v̈ = vε

2
− π2u4v(1 − w)w − π2u2v3w

−f

4
u(u2 + 3v2) cos(φ), (15)

and

ẇ = f (u2 + v2) sin(φ)

4πuv
+ (1 − 2w)

(
u̇

u
+ v̇

v

)
. (16)

These equations of motion provide a simpler framework for
the calculation of closed classical orbits than had previously
been available in the crossed-fields configuration.

III. NUMERICAL RESULTS AND DISCUSSION

In the present work, the calculations are performed with a
uniform step of 6” for θ . In all cases the electron energy is
given by ε = 0 unless stated otherwise.

TABLE I. The launching angle θ , the period T , and the return
and maximum distances, for different values of the parallel electric-
field intensity f . There are two almost closed orbits for most field
strengths.

Orbit index f θ (deg) T/Tc rret/λ rmax/λ

0.00 90.0 0.666667 1.8 × 10−32 0.587368
0.01 89.869 0.666666 1.3 × 10−8 0.5873671
0.10 88.701 0.666627 1.2 × 10−8 0.587312
1.00 76.8383 0.662708 2.8 × 10−10 0.581802

53.8317 1.57087 1.1 × 10−13 0.707072
0.00 126.168 1.57087 1.1 × 10−13 0.707072

53.577 1.57146 8.9 × 10−9 0.708243
0.01

125.914 1.57023 9.7 × 10−9 0.705907
2 51.219 1.57707 9.4 × 10−8 0.719625

0.10
123.678 1.56452 6.9 × 10−8 0.696089

12.17 1.62649 7.7 × 10−12 0.955875
1.00

104.915 1.50185 7.4 × 10−10 0.633792

42.81 2.58188 2.9 × 10−9 1.10748
0.00

137.19 2.58188 2.9 × 10−9 1.10748
42.43 2.5831 2.8 × 10−8 1.11103

0.01
136.814 2.58068 9.9 × 10−9 1.10396

3 38.831 2.59346 7.5 × 10−8 1.14398
0.10

133.583 2.56998 6.6 × 10−8 1.07352
– – – –

1.00 109.787 2.44959 1.3 × 10−7 0.857887

63.65 2.14518 4.5 × 10−8 0.642937
0.00

116.35 2.14518 4.5 × 10−8 0.642937
63.414 2.14512 7.8 × 10−8 0.643456

0.01
116.116 2.14514 8.3 × 10−8 0.643477

4 61.271 2.1444 8.9 × 10−8 0.648843
0.10

114.031 2.14439 7.9 × 10−8 0.648857
36.4983 2.04661 5.1 × 10−11 0.724737

1.00
94.7917 2.04663 4.0 × 10−9 0.724763

A. Parallel fields

Table I presents the values of the launching angle θ , orbit
period, return distance, and maximum distance for several
scaled field values. In the absence of the electric field, i.e.,
for f = 0, the orbits correspond to the first four trajectories
in Fig. 8 of Ref. [5]. The orbit periods would correspond to
peaks in the Fourier transform of experimental spectra showing
a correspondence between classical orbits and oscillations
observed in the spectrum. The maximum distance of the orbit
is large enough to justify the use of classical physics to produce
accurate results and would also give an indication of the density
of hydrogenic atoms required to consider every atom and
associated electron orbit to be isolated.

Figure 1(a) is representative of a hydrogen atom in a static
magnetic field which is a known chaotic system. However,
over short time frames (less than 5Tc for the purposes of
this work), pockets of stability exist in the form of electron
orbits which return to the nucleus [5]. The local minima of
the distance to the origin along the orbit, as a function of
the launch distance, are depicted as dots in the figure. This
results in bundles of almost closed orbits as shown in Fig. 1.
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FIG. 1. The return distance to the nucleus as a function of launch
polar angle for scaled parallel fields (a) f = 0, (b) f = 0.01, (c)
f = 0.1, and (d) f = 1. Data points are shaded according to their
orbital period in the range 0–5Tc as indicated by the bar at the bottom
of the figure. This convention will be adopted throughout the paper.

The results given in Table I represent the local minima of the
distance to the nucleus corresponding to the bundle centers.
The more stable an orbit, the more neighboring points appear
[5] and the larger the bundle. This is dependent on how the
angular distribution is sampled numerically. However, for any
constant angular step size, the stability of the orbits relative to
one another will remain essentially constant. The orbit located
at a 90◦ launch angle in Fig. 1(a) is the first orbit identified
by Garton and Tomkins [31] (hereafter referred to as the GT
orbit), with the angular spectrum of orbits being symmetric
with respect to θ = 90◦. The addition of a weak electric field in
the direction of the magnetic field, as shown in panel (b), only
perturbs the system slightly and, from Table I, only produces
small differences in the orbit periods. This small perturbation
is enough to break the symmetry of the spectrum of orbits
around the GT orbit, as depicted in the orbit periods depending
on whether the orbit is launched above or below θ = 90◦.
Experimentally, this may be observed as peaks in the Fourier
transformed spectra beginning to split due to the differences
in orbit periods. Increasing the strength of the electric field
as shown in panels (c) and (d) leads to a more noticeable
loss of symmetry around θ = 90◦. As the field is increased,
orbits migrate to launch angles closer to the direction of the
electric field. This larger perturbation of the electron orbits
has a stronger effect on the orbit periods. It is interesting to
note that the application of the electric field produces a new
closed orbit at ε = 0 associated with the Stark effect. For
instance, if f = 1 and θ = 0◦, then the period of a straight
trajectory is T = 1.694 43 Tc, with the maximum distance to
the origin being rmax = λ. As other orbits migrate further
towards this part of the spectrum they interact and mix together
with this new orbit. The transition from the magnetic to the
electric-field dominated atomic spectrum has been studied by
König et al. [6] and will be investigated more thoroughly in
the next section. Figures depicting the orbits detailed in Table
I are provided in the Supplemental Material [32].

1. Orbit mixing at intermediate and high fields

As was demonstrated earlier in Fig. 1, at scaled fields of
approximately f = 1 an orbit orientated parallel to the applied
fields appears with a period less than 5Tc. This orbit becomes
more stable as the electric field is increased. As was also
pointed out earlier, the orbits which are present at low fields
migrate to launch angles close to parallel as the electric field is
increased. Eventually, a field is reached in which these orbits
begin to mix with the new electric-field-induced orbit and
interesting features present themselves in the calculations. This
section will focus on scaled fields of f = 0.8–1.18, increasing
the field in 0.02 steps, in order to gain an understanding of
how these orbits mix with each other. At these scaled fields,
in contrast to at weaker fields, there are large regions where
closed orbits proliferate.

Figure 2 depicts the system at angles θ ∼ 0◦ for scaled
fields of f = 0.8–0.98. At f = 0.8, orbits associated with
quasi-Landau oscillations have migrated towards angles close
to parallel from those shown earlier in Fig. 1(a). The orbit
on the far left of all figures is the electric-field-induced orbit
related to the Stark effect. The orbits which disappear between
f = 0.8 and f = 0.82 in the region of 15–20° are due to
those orbits coming together, mixing, and then evolving to the
point where no orbits return to within 0.001λ of the nucleus.
This was observed by increasing the field in 0.001 increments
(figures detailing this process are presented as Supplemental
Material [32]). The discontinuity on the far right at f = 0.8
is due to the orbit period moving from below to above 5Tc.
Increasing the field to f = 0.82 shifts the orbits on the right
of the figure closer to parallel and the discontinuity no longer
appears due to the higher field constricting the orbit further and
therefore reducing its period below 5Tc. Present in the figures
are parabolas of different curvature with the same minimum
point; these correspond to multiples (“harmonics”) of the same
orbit. The higher the harmonic, the more sensitive the orbit is
to changes in initial launching angle and therefore the sharper
the parabola.

Increasing the field to f = 0.84, the orbits on the right-hand
side of the figure are beginning to cluster together and become
more stable as is illustrated when increasing the field again
to f = 0.86. This effect is strongest in orbits with longer
periods. A few orbits in the middle of the figures disappear
between f = 0.84 and f = 0.86 due to reasons discussed
previously for orbits disappearing between f = 0.8 and
f = 0.82.

At f = 0.88 we begin to see the overlapping of orbits and
at f = 0.9 these orbits begin to mix creating nonparabolic
orbit dispersion patterns. There are quite a few discontinuities
present in the calculations at these fields. However, as the field
is increased further, these discontinuities evolve and represent
the changing periods of the orbits around 5Tc.

Increasing the field again to f = 0.92, previous discontinu-
ities have been resolved due to the increase in field and orbits
previously seen as separated are now linked to one another.
At f = 0.94 this creates a significant area of stability ranging
over ∼15◦. This represents quite a large range compared to the
region covered by the most stable orbits at f = 0 (the GT orbit
is stable over an angular range of ∼3◦). We would therefore
expect such orbits to yield strong features in spectra at these
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FIG. 2. Return distance to the nucleus as a function of launch
polar angle for scaled parallel fields (a) f = 0.8, (b) f = 0.82, (c)
f = 0.84, (d) f = 0.86, (e) f = 0.88, (f) f = 0.9, (g) f = 0.92, (h)
f = 0.94, (i) f = 0.96, and (j) f = 0.98 at angles close to parallel
to the applied fields.

fields. The electric-field-induced orbit is also expanding its
range of stability with increasing field and therefore we would
expect to see it becoming more influential in experimental
results.

At fields of f = 0.96 and f = 0.98, the electric-field-
induced orbit continues to increase in stability and the orbits
associated with quasi-Landau oscillations continue shifting
to launch angles closer to parallel resulting in the mixing of
these orbits and extending further the region of stability in the
spectrum of orbits. More orbits are also entering the panels on
the right side as they continue to migrate as the field increases.

FIG. 3. Return distance to the nucleus as a function of launch
polar angle for scaled parallel fields (a) f = 1, (b) f = 1.02, (c)
f = 1.04, (d) f = 1.06, (e) f = 1.08, (f) f = 1.10, (g) f = 1.12,
(h) f = 1.14, (i) f = 1.16, and (j) f = 1.18 at angles close to parallel
to the applied fields.

Discontinuities are still present and evolving with increasing
scaled field.

Figure 3 depicts the results at scaled fields of f = 1–1.18.
At f = 1, the area of stability begins to contract back towards
parallel as the orbits contributing to the right side of the large
region of stability continue to shift towards parallel launch
angles. Subsequently, we would expect the peaks observed in
experimental data of Fourier transformed spectra to decrease
in height as there is now a drop in the number of closed orbits
over this scaled field range.

At f = 1.04 the electric-field-induced orbit and its associ-
ated harmonics all diverge from stability in essentially the same
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FIG. 4. Returning distance to the nucleus as a function of launch
polar angle for scaled parallel field f = 20.

manner. This is contrary to anything which has been observed
previously at other scaled fields as higher harmonics are
expected to lose stability faster as is observed in the GT orbit
and other quasi-Landau-associated orbits. Experimentally we
might expect the peaks in a Fourier transformed spectra to
have equal intensity for peaks corresponding to each harmonic.
Increasing the field again to f = 1.06, we have another
orbit significantly increasing in stability as it approaches the
electric-field-induced orbit.

At f = 1.08 this orbit mixes with the electric-field-induced
orbit creating a larger region of stability for that particular
harmonic than for the other two. Again, this may be able to
be observed in Fourier transformed spectra in their respective
peak intensities. At f = 1.10, this region of stability decreases
as the orbit which has mixed continues shifting towards
parallel.

At fields of f = 1.12 and f = 1.14, the approach of another
quasi-Landau-associated orbit to the electric-field-induced
orbit is observed. As this new orbit approaches, it becomes
increasingly more stable as seen by the widening of the
parabola describing adjacent trajectories. The mixing of the
orbit depicted at f = 1.08 is now unnoticeable at f = 1.14,
as the region of stability of the electric-field-induced orbit
contracts back towards its other harmonics.

At f = 1.16, the approaching orbit mixes with a different
harmonic of the electric-field-induced orbit than was previ-
ously involved at f = 1.08. This mixing again leads to a large
region of stability which may manifest itself in experimental
measurements. Increasing the field again to f = 1.18, the
mixing of the orbit with the electric-field-induced orbit follows
the same pattern as was seen earlier in moving from f = 1.08
to f = 1.10.

Figure 4 shows all the closed orbits of the system for a scaled
field f = 20. At this strong field, all quasi-Landau-associated
orbits have migrated to launch angles close to θ = 0◦ and
are interacting with the electric-field-induced orbit and its
associated harmonics. This represents a close to full transition
from the chaotic regime at f = 0 to the regular regime at
f = ∞. Therefore, we can conclude that the mixing of orbits
which has been detailed represents the dynamics of the system
shifting from one regime to the other.

TABLE II. The launching angle θ , the period T , and the return
and maximum distances, for different values of the classical energy
ε at a fixed scaled parallel field of f = 1.

Orbit index ε θ (deg) T/Tc rret/λ rmax/λ

0 76.84 0.662706 5.0992 × 10−9 0.581801
1 78.714 0.742808 1.49022 × 10−8 0.695772

1
2 80.028 0.798498 6.10091 × 10−9 0.804591
3 80.994 0.837343 6.05821 × 10−9 0.906482
4 81.735 0.865182 5.39586 × 10−8 1.00157

12.271 1.62543 3.62469 × 10−7 0.955163
0

104.915 1.50185 6.83174 × 10−8 0.633792
40.616 1.69678 3.78973 × 10−8 0.912468

1
97.383 1.59973 1.27222 × 10−8 0.725303

2
51.786 1.75212 5.91534 × 10−8 0.945133

2
93.444 1.67696 1.36753 × 10−7 0.822794
58.362 1.79414 2.65158 × 10−8 1.01163

3
91.28 1.73488 3.12071 × 10−8 0.918555

62.717 1.82605 1.96283 × 10−8 1.08605
4

90.018 1.77817 1.48121 × 10−7 1.01009

– – – –
0 109.786 2.44946 4.93364 × 10−8 0.857853

– – – –
1 101.177 2.54127 4.45631 × 10−8 0.906536

3
32.996 2.77808 1.29848 × 10−5 1.65875

2
96.379 2.61708 9.41017 × 10−7 0.965357
43.622 2.812 1.05115 × 10−7 1.69403

3
93.577 2.67684 9.14176 × 10−7 1.03068
50.195 2.83834 6.47719 × 10−9 1.73337

4
91.853 2.7236 9.47386 × 10−7 1.09936

36.498 2.0466 7.54841 × 10−8 0.72474
0

94.792 2.04661 6.97346 × 10−8 0.724742
48.103 2.3691 4.15814 × 10−8 0.819641

1
4 91.368 2.36911 3.85737 × 10−8 0.81967

56.239 2.52946 7.76836 × 10−8 0.899922
2

89.326 2.52947 3.18742 × 10−9 0.899916
61.533 2.62874 6.83799 × 10−7 0.982804

3
88.209 2.62876 1.46014 × 10−7 0.982884
65.179 2.69622 5.1662 × 10−7 1.0652

4
87.589 2.69626 2.46447 × 10−7 1.06528

2. Intermediate positive energy

In 2009, the diamagnetic Kepler problem was observed in
the semiconductor environment [22]. Five years later, we have
shown [23] that a scaled energy above the ionization threshold
provides a good match between theory and experiment. This
is due to the spectral oscillations occurring far beyond the
ionization threshold. Much work in the literature regarding
elemental gases has been focused in the region of ε � 0.
We look here to investigate the effect positive energy values
have on both the orbits and the system as a whole in the
high-field regime of f = 1. Table II gives the values of
the launching angle θ , orbit period, return distance, and the
maximum distance for positive integer values of the classical
scaled energy ε up to ε = 4 (the energy identified as being the
best match to experimental data [23]).
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FIG. 5. The return distance to the nucleus as a function of launch
polar angle for scaled parallel field f = 1 and a classical energy of
(a) ε = 1, (b) ε = 2, (c) ε = 3, and (d) ε = 4.

From Table II, the orbit periods do change substantially
when varying the energy. This is important when moving into
the semiconductor environment with the only experimental
results being explained by orbits with positive intermediate
energies. Figure 5 shows the spectrum of orbits as the scaled
energy is increased in integer steps. The results for ε = 0 were
shown earlier in Fig. 1(d). Many of the orbits present at ε = 0
no longer have periods less than 5Tc at higher energies leaving
only a few stable orbits. Orbit mixing no longer occurs as the
energy is increased from ε = 0 to 1 and, as it is increased
to a value of ε = 4, the electric-field orbit disappears from
the results as its period now exceeds the 5Tc threshold in the
calculations. Figures depicting the orbits detailed in Table II
are presented as Supplemental Material [32].

As is to be expected, Figs. 15–28 of the Supplemental
Material [32] show that increasing the classical energy has
the opposite effect to increasing the scaled field. Increasing
the scaled field leads to orbits becoming constricted and
launch angles migrating towards the direction of the applied
fields; here the orbits are enlarged and launch angles migrate
back towards θ = 90◦. As the orbits are being enlarged under
these conditions, semiconductor samples need to be very pure
in order for doping sites to be regarded as isolated for the
observation of quasi-Landau oscillations [24].

B. Crossed fields

This field configuration lacks the rotational symmetry of
the pure magnetic field and parallel fields cases and therefore
calculations should be performed for different values of the
polar angle θ and the azimuth φ of the launching velocity.
While θ varies from 0◦ to 180◦, φ goes from 0◦ to 360◦. There
still remain three symmetries in the system as discussed by
Bartsch et al. [17]. The first is a reflection in the x-y plane,
the second is a combination of time reversal and a reflection
in the x-z plane, and the third is the combination of the first
two symmetries.

FIG. 6. The shape of a closed orbit on the x-y plane for scaled
energy ε ≈ −1.9972 and scaled crossed field f ≈ 0.7946, when the
electron is launched at θ = 90◦ and (a) φ ≈ 325.10◦, (b) φ ≈ 135.20◦.
The shading of the curve represents changing time as the electron
describes the essentially closed path in the direction of the arrow
shown on the orbit.

FIG. 7. The relation between the polar angle θ and the azimuth
φ of the launching velocity of essentially closed orbits of an electron
with energy ε = 0, in the presence of crossed electric and magnetic
fields along the directions of the x and z axes, respectively. Panels
(a)–(c) are for electric-field strength f = 0.01, f = 0.1, and f = 1,
respectively. Orbits whose scaled returning distance, rret/λ, is larger
than (a) 0.00001, (b) 0.0001, and (c) 0.001 are not shown.
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FIG. 8. The shapes of the plane closed orbits that evolve from
the Garton-Tomkins orbit in the crossed fields, for ε = 0, and (a), (b)
f = 0.01, (c), (d) f = 0.1, and (e), (f) f = 1.

We first show that our simplified method is able to produce
the same results as those reported by Rao et al. [20]. To
calculate the orbits displayed in Fig. 4 of that work, we
must convert the energy and electric-field values to the
units introduced above. The values of ε and f̃ in Ref. [20]
should be multiplied by (2π )2/3 and (2π )4/3, respectively.
The calculations for ε = −1.997 177 713 650 031 3 and f =
0.794 639 734 100 187 3 yield the orbits displayed in Fig. 6.
The shapes of the orbits are in good agreement with Figs. 4(a)
and 4(b) of Ref. [20]. The sizes of the orbits in the present
calculation are smaller due to the use of a unit of length which
is (2π )2/3 times larger.

The overall dependence of the launching direction and the
duration of the closed orbits on the strength of the electric
field is displayed in Fig. 7. As the field strength increases from
panel (a) to (c), the dependence of the polar angles and duration
of closed orbits on the azimuth becomes more apparent. The
reflection symmetry with respect to the x-y plane, i.e., θ =
90◦, is quite evident. Moreover, the orbits of shorter duration
are launched on the symmetry plane and evolve from the GT
orbits. The evolution may be understood by analyzing Fig. 8,

TABLE III. The launching angle θ , the period T , and the return
and maximum distances, for different values of the crossed electric-
field intensity f . The launching azimuth is φ = 0◦.

Orbit index f θ (deg) T/Tc rret/λ rmax/λ

0.00 90.0 0.666667 1.8 × 10−32 0.587368
0.01 90.0 0.666003 2.3 × 10−6 0.586742

1
0.10 90.0 0.660125 2.2 × 10−4 0.581168
1.00 90.0 0.607811 1.4 × 10−2 0.530252

0.00 53.8317 1.57087 1.1 × 10−13 0.707072
0.01 53.7933 1.56928 8.3 × 10−6 0.706661

2
0.10 53.4717 1.55474 7.5 × 10−4 0.702828
1.00 52.085 1.37526 1.8 × 10−2 0.652981

0.00 42.81 2.58188 2.9 × 10−9 1.10748
0.01 42.77 2.57934 2.2 × 10−5 1.10667

3
0.10 42.445 2.55462 1.9 × 10−3 1.09839
1.00 40.9933 2.25026 1.8 × 10−4 0.989591

0.00 63.65 2.14518 4.5 × 10−8 0.642937
0.01 63.6467 2.14087 6.0 × 10−7 0.642202

4
0.10 63.635 2.10329 2.6 × 10−5 0.636107
1.00 64.9833 1.84521 4.3 × 10−3 0.625781

where the two orbits having minimum returning distance are
displayed for f = 0.01, f = 0.1, and f = 1. The duration of
the closed orbits in panels (a), (c), and (e) is less than 2

3Tc. As
the electric-field strength increases, both the duration and the
size of the orbit decrease. The orbits in panels (b), (d), and (f)
last more than 2

3Tc and display the opposite dependence on the
field strength.

We now consider the cases where the electron is launched on
the vertical semiplane given by y = 0 and x � 0, i.e., φ = 0.
The parameters of the orbits that evolve from the main orbits
in the absence of the electric field are given in Table III.

FIG. 9. The return distance against launch polar angle in crossed
fields at φ = 0◦ and for scaled fields of (a) f = 0.01, (b) f = 0.1, and
(c) f = 1.
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TABLE IV. The launching angle θ , the period T , and the return
and maximum distances, for different values of the crossed electric-
field intensity f . The launching azimuth is φ = 90◦.

Orbit index f θ (deg) T/Tc rret/λ rmax/λ

0.00 90.0 0.666667 1.8 × 10−32 0.587368
0.01 90.0 0.667098 7.6 × 10−7 0.58756

1
0.10 90.0 0.671077 7.3 × 10−5 0.589323
1.00 90.0 0.720405 4.2 × 10−3 0.610131

0.00 53.8317 1.57087 1.1 × 10−13 0.707072
0.01 53.8217 1.57189 5.3 × 10−6 0.707486

2
0.10 53.7233 1.58232 4.8 × 10−4 0.711371
1.00 52.6233 1.76554 2.2 × 10−3 0.761754

0.00 42.81 2.58188 2.9 × 10−9 1.10748
0.01 42.8 2.58403 1.3 × 10−5 1.10807

3
0.10 42.6967 2.60742 1.0 × 10−3 1.11434
1.00 42.87 2.89857 4.4 × 10−2 1.17774

0.00 63.65 2.14518 4.5 × 10−8 0.642937
0.01 63.6617 2.14349 1.2 × 10−5 0.643068

4
0.10 63.7717 2.13007 1.1 × 10−3 0.644824
1.00 63.615 2.14893 6.6 × 10−2 0.673262

Figure 9 depicts how the system evolves as the scaled
field is varied for φ = 0◦. The results for f = 0 were shown
earlier in Fig. 1(a). As was the case for parallel fields, a weak
electric field only yields a small perturbation in the results
as shown in Table III. As the field is increased further, fewer
orbits return close to the nucleus. This is seen by the relative
absence of orbits returning within a distance of 0.0002λ in
comparison to the parallel-fields case. In this configuration, the
plane containing the orbit which is identified as the GT orbit
at f = 0 is now parallel to the electric field which changes
the behavior of this orbit substantially. At f = 0.1 it is seen
that the first harmonic is no longer returning as close to the
nucleus as at lower fields and at f = 1 it no longer returns
to within the 0.001λ threshold. Figures depicting the orbits
detailed in Table III are presented as Supplemental Material
[32].

Table IV and Fig. 10 are for launching azimuth φ = 90◦.
Figure 10 shows how the system changes as the scaled field is
varied for launch angles perpendicular to the applied electric
field, i.e., φ = 90◦. The results for f = 0 were shown earlier
in Fig. 1(a). As was the case in the parallel fields and φ = 0◦
cases, a weak electric field only yields a small perturbation
in the results as shown in Table IV. Increasing the electric
field to a scaled field of f = 1, there appear to be no short
period orbits which return within 0.001λ of the nucleus and
the orbits which do appear have quite low stability. Therefore,
the oscillations in the spectrum linked to these orbits would
be quite weak compared to those depicted for φ = 0◦. Figures
depicting the orbits detailed in Table IV are presented in the
Supplemental Material [32].

It should be stressed that the present method is not
appropriate for the study of orbits launched near either θ = 0◦
or θ = 180◦ in crossed fields. Therefore, orbits of this kind
that have been reported by Rao et al. [20,21] have not been

FIG. 10. The return distance against launch polar angle in crossed
fields at φ = 90◦ and for scaled fields of (a) f = 0.01, (b) f = 0.1,
and (c) f = 1.

obtained here. Nevertheless, such orbits are not very stable and
should not manifest themselves in the optical spectra.

IV. CONCLUSIONS

The closed orbits of an electron interacting with a positive
unit charge in the presence of magnetic and electric fields
have been calculated in a simpler manner than has been
reported previously for the cases of parallel and crossed-field
configurations. Such trajectories may manifest themselves in
the optical spectrum of an atomic system. The calculations
show the evolution of the orbits reported by Du and Delos [5],
as the electric-field intensity and classical energy are increased.
Small changes are seen for f � 0.1. However, at higher fields
the orbits do undergo significant changes in size, shape, and
duration.

In the parallel fields geometry, the emergence of the
electric-field-induced orbit associated with the Stark effect,
and the incremental increase of the scaled field, leads to some
complex behavior as quasi-Landau-associated orbits interact
with this Stark orbit at launching angles close to parallel with
the external fields. Large regions of the system facilitate closed
orbits in this region which are not seen in other regions or
associated with other orbits. We expect this large range of
stability to become more dominant in comparison to the rest
of the orbit spectrum in experimental results as the scaled
field is increased and orbits continue to migrate to launch
angles closer to the field direction. Since this orbit mixing
shows similar behavior to the system at extreme electric-field
strength, which is known to be a regular system, this orbit
mixing may provide an indication of the system moving from
chaotic to regular dynamics.

The introduction of a finite positive energy, which has
been shown previously to be important in the semiconductor
environment [23,24], also has a large impact on the size, shape,
and period of the closed orbits but in the opposite manner to
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increasing the scaled field. While a finite positive energy leads
to an expansion of the orbits’ size, shape, and their associated
periods, increasing the scaled field generally constricts the
orbits and their periods.

In the presence of crossed fields, the rotational symmetry
of the set of nearly closed orbits is broken by the electric
field. The Garton-Tomkins orbit splits into a pair of orbits
whose evolution occurs in opposite ways as the field strength
increases. The duration and the size of one of them decreases
in the range of intensities under investigation. In a sufficiently
strong field, such a splitting should be apparent in the Fourier
transform of the optical spectrum.

We expect our detailed analysis of the closed orbits to
encourage and partially explain further experimental investi-
gation of quasi-Landau resonances in both atomic and shallow-
impurity systems.
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