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Azimuthal asymmetry of the extracted electron in field ionization of a hydrogen atom
with orbital angular momentum
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The tunneling ionization of an excited hydrogen atom by a static electric field E is investigated for the case where
the initial electron has an orbital angular momentum L nonparallel to E. The outgoing electron has a nonzero
mean transverse velocity 〈vT〉 in the direction of E × 〈L〉. During this process the linear Stark effect makes 〈L〉
and 〈vT〉 oscillate or rotate about E. Measures of the asymmetry are calculated at leading order in E for an initial
state 2P state. The generalization to coherent elliptic Rydberg states is outlined. A subset of these states whose
classical Kepler ellipses rotate rigidly about E is particularly interesting for the observation of the asymmetry.
The preparation of states with L nonparallel to E and the conditions to get a sizable vT asymmetry are discussed.
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I. INTRODUCTION

An atom placed in a strong static electric field E may be
ionized by tunneling if the initial electron energy is below
the saddle point of the atomic and external potentials. The
calculation, to lowest order (LO) in E, of the ionization
rate γ for a hydrogen atom in the ground state is given in
textbooks [1]. A large amount of work has been devoted to
the generalization to n � 2 states, with the inclusion of higher
orders in E (see [2,3] and references therein for analytical
calculations and [4–6] and references therein for numerical
calculations). The distribution in transverse velocity vT of
the outgoing electron is also of theoretical and experimental
interest. It provides a kind of photographic image of the
electron wave function inside the atom [7–9]. The fringes of
this distribution have been observed [10] using fields of the
order of a few hundred volts per centimeter for atomic levels
n ∼ 20, just below or above the saddle point. A quadrupolar
anisotropy in vT has also been observed when the atom is
excited with a linearly polarized light [11].

In the case where the initial electron state has an orbital
angular momentum L at an angle to E, a dipolar asymmetry
is predicted [12], with 〈vT〉 being in the direction of 〈L〉 × F,
where F = −e0E is the external force.1 This effect, pictured
in Fig. 1, will be referred to as the [v,L,F] asymmetry. An
analogous effect presumably exists in high-energy hadron
physics, with the proton-electron system being replaced by
a quark-antiquark pair in a 3P0 state and the electric field
being replaced by a chromoelectric field [12,13]. In the case of
the hydrogen atom, the [v,L,F] asymmetry is an interference
between the decays of several Stark states. It is therefore
sensitive to the relative phases of decay amplitudes, whereas
the decay widths give only the amplitudes squared.

Purpose and layout of the paper. A preliminary
study [14,15] predicted the [v,L,F] asymmetry for the 2P state
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1e0 is the elementary charge, while e ≡ exp(1).

of hydrogen, with an alternating time dependence because
the linear Stark splitting makes 〈L〉 oscillate. However, the
required field to ionize the 2P state fast enough is not attainable
in the laboratory. We therefore extend our study to Rydberg
states, more particularly to the quasiclassical coherent elliptic
states (CESs) [16]. We will first consider circular Ly (CLy)
eigenstates, with F pointing in the +ẑ direction (we could
have chosen Lx eigenstates as well). This is a priori the most
simple choice. However, we will also consider another type of
CES, which we call rotating oblique elliptic (ROE) states. They
have oblique 〈L〉, and their classical ellipses rotate undeformed
about E. They have some advantages for a [v,L,F] experiment.
Estimations of the asymmetry will be made with analytical
calculations at the LO approximation.

This paper is organized as follows: in Sec. II we briefly
review the Stark states and CESs. Section III presents the
CLy and ROE states, their evolutions in the field E, and
their decompositions in the Stark basis. Section IV deals with
the preparation of the CLy and ROE states for a [v,L,F]
experiment. In Sec. V we review the calculation of the width γ

of a single Stark state at LO and using the Gamow-Siegert (GS)
representation of Stark resonances. In addition we obtain the
asymptotic phases of the GS wave functions. These phases
are needed to evaluate the [v,L,F] asymmetry. Tunneling
ionization of states with 〈LT〉 �= 0 and the resulting [v,L,F]
asymmetry are treated in Sec. VI. Numerical results for the
n = 2 CLy state are presented. Conditions of observability are
discussed. The case of high-n CLy and ROE states is investi-
gated. Conclusions and suggestions are made in Sec. VII.

II. REVIEW OF STARK AND COHERENT
ELLIPTIC STATES

In this section we review the relevant properties of the
states involved in the [v,L,F] asymmetry and write down
their wave functions with precisely defined phases. The latter
point is important since the asymmetry is an interference effect
between several states. The Hamiltonian of a hydrogen atom in
the static electric field E ≡ −F = −F ẑ isH = H0 − Fz, with
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FIG. 1. Semiclassical motion of the electron extracted from the
hydrogen atom by a strong field E when the electron is initially in a
Ly = +1 state.

H0 = p2/2 − 1/r in atomic units.2 Relativistic and radiative
corrections like spin-orbit and Lamb shifts are neglected. We
make the analytic calculations at lowest order (LO) in F . In
parabolic coordinates3 ξ =r−z, η = r + z, ϕ = arg (x + iy),
the eigenstates of H and Lz and the Schrödinger equation have
the separable form [1,17]

�(r) = N ξ−1/2 χ (ξ ) η−1/2 �(η) eimϕ , (1)

∂2�

∂η2
+

[E
2

+ Zη

η
− m2 − 1

4η2
+ Fη

4

]
�(η) = 0, (2)

together with a similar equation for χ (ξ ) with F → −F and
Zξ = 1 − Zη. E = −1/(2ν2) is the energy, and N = 2|E |√π

is a normalization coefficient. We introduce the new variables4√
ξ/ν = ř ,

√
η/ν = Ř, x̌ + i y̌ = ř eiϕ1 , and X̌ + iY̌ = Ř eiϕ2

with the constraint ϕ1 + ϕ2 = ϕ. The functions

χ̌(x̌,y̌) = ξ−1/2χ (ξ ) eimϕ1 , �̌(X̌,Y̌ ) = η−1/2�(η) eimϕ2

(3)

are stationary functions of two two-dimensional (2D) anhar-
monic oscillators [19]:

[2λ + 
 − ř2 − ν3F ř4]χ̌(x̌,y̌) = 0 , (4a)

[2μ + 
 − Ř2 + ν3F Ř4]�̌(X̌,Y̌ ) = 0 . (4b)

They have the same orbital angular momentum Lz = m;
their “energies”5 λ = 2ν Zξ and μ = 2ν Zη are linked by
λ + μ = 2ν. The angles ϕ1 and ϕ2 were defined above up
to a transformation ϕ1 → ϕ1 + δϕ, ϕ2 → ϕ2 − δϕ; from now
on we fix ϕ1 = ϕ, ϕ2 = 0. Then Eq. (1) can be rewritten as

�(r) = N χ̌ (x̌,y̌) �̌(Ř,0) . (5)

We will also use the mixed representation

�(r) = N χ̌ (x̌,y̌) �(η)/
√

η . (6)

Stark states |nξ ,nη,m〉 are eigenstates of H at LO, neglecting
ionization. nξ and nη are the numbers of nodes of χ (ξ ) and

2We use atomic units (a.u.). For time and electric and magnetic
fields, they are 2.42×10−17 s, 5.14×109 V/cm, and 2.35×105 Tesla.

3Following the usual convention, ξ and η are, respectively, the
“uphill” and “downhill” coordinates. However, our z axis is in the
downhill direction.

4(x̌,y̌,X̌,Y̌ ) = ν−1/2(u3,u4,u1,u2) of Ref. [18].
5λ and μ are twice α1 and α2 of Ref. [2] or β1 and β2 of Ref. [3].

FIG. 2. The {h,k} lattices of Stark states for n = 5 and 2. The top
right (bottom left) corner represents the long-lived blue (short-lived
red) state. The n = 2 states are those of Eq. (9).

�(η). The Stark wave functions are obtained by putting for
χ̌ and �̌ in (5) the 2D harmonic oscillator wave functions
� [20]:

χ̌ → �h,k(x̌,y̌) = (π h! k!)−1/2 (a†
+)h (a†

−)k e−(x̌2+y̌2)/2, (7)

where the operator a
†
± = [x − ∂x ± i(y − ∂y)]/2 creates one

quantum of clockwise (−) or counterclockwise (+) excita-
tion. h,k are the numbers of these quanta. Similarly, �̌ →
�H,K (X̌,Y̌ ). In the F → 0 limit,

E → −1/(2n2) ,

ν → n = nη + nξ + |m| + 1 ,

λ → λ(0) = n + nA = 2nξ + |m| + 1 = h + k + 1 ,

μ → μ(0) = n − nA = 2nη + |m| + 1 = H + K + 1 . (8)

nA ≡ nξ − nη is the electric number.N in Eqs. (1), (5), and (6)
is chosen such that 〈�|�〉 = 1 for Stark states. For n = 2 the
Stark wave functions �nξ ,nη,m are

�0,1,0 = 8−1π−1/2 e−(ξ+η)/4 (η − 2) ≡ �1,

�0,0,±1 = 8−1π−1/2 e−(ξ+η)/4
√

ξη e±iφ ≡ �2±, (9)

�1,0,0 = 8−1π−1/2 e−(ξ+η)/4 (ξ − 2) ≡ �3,

and we will use the simplified notation on the right.
Among the quantum numbers n, m, nA, nξ , nη, h, k, H , and

K , only three are independent. Besides Eqs. (8) we have nξ =
inf(h,k), nη = inf(H,K), h − k = H − K = m, h + K =
k + H = N ≡ n − 1. We will often use N for n − 1 in our
formulas. At fixed n we choose {h,k} as independent numbers,
represent a Stark state by a point M = (h,k) in a square n×n

lattice, as shown in Fig. 2, and use the notation |h,k〉 or |M〉
for |nξ ,nη,m〉. The Stark shifts of E , λ, and μ at LO are

δEM = nA ωS , ωS = 3Fn/2 ,

δλM = +Fn3 [3(λ(0))2 − m2 + 1]/4 , (10)

δμM = −Fn3 [3(μ(0))2 − m2 + 1]/4 .

The lattice corners h = k = 0 and H = K = 0 represent the
short-lived “red” and long-lived “blue” states. Their classical
limits at large n are linear Kepler orbits of eccentricity
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FIG. 3. Classical picture of the Stark oscillations of Ly and Ax .
Orbits 0 to 7 correspond to the eight panels of Fig. 4.

ecc = 1, like orbits 2 and 6 in Fig. 3. At the two other corners
we have the circular states orbiting in the (x,y) plane.

For F = 0 the Runge-Lenz-Pauli vector

A = (−2H0)−1/2 [−r/r + (p × L − L × p)/2] (11)

is conserved. Stark states are Az = nA eigenstates. At fixed n,

A · L = 0, A2 + L2 = n2 − 1, (12)

and 〈r〉 = −3n〈A〉/2.6 The pseudospins j1 = (L + A)/2 and
j2 = (L − A)/2 obey the usual spin commutations rules
j × j = i j and j2 = j (j + 1), with j ≡ N/2.

Superposition of E and B fields. To first order in E and B
the perturbation Hamiltonian restricted to the n manifold is

HI = ωS · A + ωL · L = ω1 · j1 + ω2 · j2, (13)

with ωS = −(3n/2)E, ωL = B/2, and ω1,2 = ωL ± ωS. The
stationary states are labeled by the pseudomagnetic quantum
numbers7

iα ≡ jα · ω̂α (α = 1,2). (14)

In the electric field −F ẑ, i1 = j1,z = h − j = (nA + m)/2 and
i2 = −j2,z = k − j = (nA − m)/2, as indicated in Fig. 2. This
figure also applies to general {E,B} configurations, but the
quantification axes ω̂1 and ω̂2 for j1 and j2 may be at an angle.
The energy shifts δE = |ω1| i1 + |ω2| i2 are usually nonde-
generate. For nonstationary states the expectation values of A,
L, j1, and j2 obey the secular equations (see, e.g., [2,21,22])

dĀ/dt = ωL × Ā + ωS × L̄ ,

dL̄/dt = ωS × Ā + ωL × L̄ , (15)

d j̄α/dt = ωα × j̄α (α = 1,2). (16)

Coherent elliptic states. These states are quasiclassical
states (see, e.g., [22,23] and references therein) fully defined
by their expectation values Ā and L̄ of A and L, with the
constraint

Ā · L̄ = 0 , Ā2 + L̄2 = N2 (17)

[compare with (12)]. We denote them as |Ā,L̄〉. For the
pseudospins,

|j̄1| = |j̄2| = j ≡ N/2 . (18)

6In the quantum approach 〈O〉 or O is the expectation value of an
observable O. In the classical approach it is its average during one
orbital revolution.

7Vectors with a hat are unitary; X̂ ≡ X/|X| for any vector X.

The circular (linear) states are obtained for j̄1 = j̄2 (j̄1 = −j̄2).
If j̄1 and j̄2 make an angle 2α, the classical Kepler orbit has
eccentricity ecc = |Ā|/N = sin α. In a weak field {E,B} the
CES character is preserved by the evolution (15) and (16). The
stationary CESs have j̄1 = ±j ω̂1 and j̄2 = ±j ω̂2. They sit at
the corners of the (i1,i2) lattice associated with {E,B}. Their
Kepler orbits are elliptic for noncolinear E and B.

CESs expand in the Stark basis as follows (see
Appendix A):

|Ā,L̄〉 =
∑

M

cM(Ā,L̄) |M〉, (19)

cM(Ā,L̄) = [
Bh

N (h̄/N ) Bk
N (k̄/N)

]1/2
e−ihβ1+ikβ2 , (20)

where β1 and β2 are the azimuths of −j̄1 and +j̄2, respectively,
h̄ = (N + Āz + L̄z)/2, k̄ = (N + Āz − L̄z)/2, and B

p

N (x) =
(Np ) xp (1 − x)N−p is the binomial p distribution of barycenter
p̄ = xN .

III. STATES FOR A [v,L,F] EXPERIMENT

We need an initial state with L̄T = (L̄x,L̄y) �= 0. In the field
−F ẑ it is a nonstationary state, with L̄ changing according
to (15). Two kinds of CES candidates are presented below.

(1) Circular Ly eigenstates. These correspond to circular
orbits in the (x,z) plane and have Ly = ±N . We denote them
as |Ly±〉. Their wave functions,

�Ly± = [nn+1 N !
√

π ]−1 (z ± ix)N e−r/n , (21)

decompose in Stark states (9) according to Eqs. (19) and (20)
with −β1 = β2 = ±π/2 and h̄ = k̄ = N/2. Therefore,

cM(Ly±) = (±i)h+k 2−N
[(

N
h

) (N

k

)]1/2
. (22)

At large n, cM is important only near the center of the
lattice. Indeed, L̄z = Āz = 0, and the quantum fluctuations
are 〈m2〉 = 〈n2

A〉 = N/2 	 N2. According to (15), the Kepler
orbit changes continuously, as depicted in Fig. 3, keeping
Ā2

x + L̄2
y = N2 and L̄x = L̄z = Āy = Āz = 0. L̄y and Āx os-

cillate in quadrature at the Stark frequency ωS = 3nF/2. Such
oscillations have been observed with Stark wave packets [24].
The quasilinear orbits 2 and 6 in Fig. 3 correspond to the red
and blue Stark states in an external field along +x̂. Since Ly

oscillates, we can already infer that the [v,L,F] effect results
in an oscillating 〈vx〉.

Case with n = 2. Equations (9) and (21) give at t = 0

�Ly± = [�1 − �3 ± i(�2+ + �2−)]/2 . (23)

Taking into account the Stark shifts (10), we have8 at t > 0

�(t) = eit/8[eiωSt �1 − e−iωSt �3 ± i (�2+ + �2−)]/2 (24)

= eit/8[cos2(ωSt/2) �Ly± − sin2(ωSt/2) �Ly∓

+ (i/
√

2) sin(ωSt) �2s], (25)

8�(t) is a shorthand notation for �(t,x,y,z) or �(t,r). When the
argument t is omitted, � designates the wave function at t = 0:
�(r) ≡ �(0,r).
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FIG. 4. Evolution of the electron density |�(t,r)|2 of Eqs. (24)
and (25) (y = 0 slice) during one Stark period TS. At 4t/TS =
0,1,2,3,4, �(t) takes the values �Ly+, i�x+, −�Ly−, −i�x−, and
�Ly+ again, where �x± is the Ax = ±1 eigenstate. � vanishes
along the current vortex z = 0, 2 ± x/ sin(3F t) = r (whirling as
indicated by arrows). For t = TS/4 or 3TS/4, � vanishes on the
surface 2 ± x = r . The x and z windows are [−7, +7].

where �2s = (32π )−1/2(r − 2)e−r/2 is the 2S wave function.
Thus the atom oscillates between three Ly eigenstates with
the Stark period TS = 2π/ωS. A complete oscillation of
�(t,x,y,z) is analyzed in Fig. 4.

(2) Rotating oblique elliptic states. For a CES |Ā,L̄〉 of
oblique L̄ (i.e., both L̄ × F and L̄ · F �= 0), the evolution of
the Kepler orbit differs from that in Fig. 3: since 〈m〉 ≡ L̄ · F̂
is conserved, L̄ never vanishes, and linear states are avoided.
An example is given in [25]. The advantage is a longer radiative
lifetime and, for nonhydrogenic atoms, a strong reduction
of core effects. In fact, noncircular elliptic states contain
components of any l, but the low-l ones are negligible if
|L̄| � √

n. Let P (l) be the total weight of the l components.
For |L̄| ∼ √

n, Eq. (12) of Ref. [26] gives, for instance,

P (0) = n−1 e2n−2
cc ∼ n−1 e−L̄2/N ,

P (1) = 3(n − 1)(n + 1)−1 (2e−2
cc − 1) P (0) , (26)

with ecc = (1 − L̄2/N2)1/2 being the eccentricity. The ROE
states are CESs with either j̄1 or j̄2 parallel to E. Then the
ellipse rotates rigidly about E at angular velocity ωS, with L̄
and Ā being oblique and coplanar with E (see Fig. 5). The
coefficients cM of (19) are nonzero only on one border of the

j1

j2 L

A
F

FIG. 5. Classical orbit of a ROE state. The orbit plane rotates as
indicated by the curved arrow. The overbar of j̄, L̄, and Ā has been
omitted.

{h,k} lattice. Equation (20) simplifies into

cM(Ā,L̄) = [
Bh

N (h̄/N )
]1/2

e−imβ × (δk,0 or δk,N ) (27)

or the same expression with h ↔ k. β is the azimuth of −Ā
at t = 0. The example in Fig. 5, with j̄1 = j ẑ, corresponds
to the choice with a δh,N factor. The fact that (27) contains n

instead of n2 terms is a big simplification. Since the ellipse
is precessing about E, we can already infer that the mean
transverse velocity 〈vT〉 due to the [v,L,F] effect is rotating
about E.

Case with n = 2. The four kinds of ROE states are given
by

e−it/8 �(t) = sin α �1 e+iωSt + e∓iβ cos α �2± (28a)

or

e−it/8 �(t) = sin α �3 e−iωSt + e∓iβ cos α �2±, (28b)

where sin α = ecc. The �3,�2+ mixture is of the type shown
in Fig. 5.

IV. PREPARATION OF CLy AND ROE STATES

In this section we consider only the case n � 1, where
the necessary field for ionization is technically obtainable.
As readily visible in Eq. (19), circular CLy and ROE states
are coherent superposition of eigenstates of all |m| � N .
Therefore their production is not trivial. Indeed, in a static
electric field an optical transition from a low excited state
will populate only low |m| values (typically, |m| = 0, 1 or 2).
Nevertheless, several methods [22,23,27–31] exist to produce
circular or elliptic states. Let us recall the general principle
of one of them [23,29,31] in the hydrogenic case. It can be
schematically decomposed in two or three steps: (I) optical
excitation, in a field E0, from the ground state to the red or blue
linear Stark state of the nth shell, |Ā,0〉 with Ā = ±N Ê0, (II)
circularization of this state, changing E0 into a time-dependent
field E(t) plus optionally a magnetic field B(t), and (III) setting
up the final field {E,B} (if not already done in step II). An
example is the setting of the final electric field shown in
Fig. 1(d) of [29].

For step II, Ref. [23] proposes a constant B plus a slowly
decreasing E(t). Reference [22] proposes a rotating E(t).
Another possibility is suggested by Fig. 3: starting from linear
orbit 2, created in a field E0 ‖ x̂, one can first turn off E0, then
turn on a field E in the −ẑ direction. After a 1/4 Stark period
circular state 4 is obtained and should remain like this if E
is turned off. These changes must satisfy adiabatic conditions
discussed below. Infinitely many other field configurations can
realize step II. It suffices to choose two independent paths j̄1(t)
and j̄2(t) on the sphere of radius j from the initial j̄1 and j̄2 to
the wanted final ones. Inverting (16), we get

ωi(t) = [j̄i × d j̄i/dt] /j 2 + fi(t) j̄i(t) (i = 1,2) , (29)

with f1 and f2 being arbitrary functions. The needed fields are
E(t) = [ω2(t) − ω1(t)]/(3n), B(t) = ω1(t) + ω2(t). One can
do without magnetic field and use rotating electric fields; in
the rotating frame the Coriolis force acts as a magnetic field.
Figure 6 shows how to produce a ROE state in this way.
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*2 *1

j2(T)

j1(0)
= j1(T)

J2(0) S

FIG. 6. Construction of a ROE state. At t < 0 the external field
E = E0 is static, and the atom is in the blue Stark state: j̄1(0) =
−j̄2(0) = j ω̂S(0), where ωS(t) ≡ −(3n/2)E(t). During the interval
[0,T ] one makes E rotate about �. The figure shows what happens
in the rotating frame: ωS is fixed, and the Coriolis force makes j̄1 and
j̄2 rotate about ω∗

1 = −� + ωS and ω∗
2 = −� − ωS, respectively. We

choose T = 2π/ω∗
1 and ω∗

2 < ω∗
1 , so that j̄1(T ) has rejoined j ω̂S(T )

while j̄2(T ) had not yet rejoined −j ω̂S(T ). At t > T the field is static
again: E = E(T ). The atom is then in a ROE state where j̄1(t) =
j ω̂S(T ) and j̄2(t) starts rotating about −ωS(T ). The overbar of j̄1 and
j̄2 has been omitted.

Timing. The state we need for the [v,L,F] asymmetry is
not stationary and starts to oscillate or rotate already during
step III. We must know the values of Ā and L̄ at the time
(t = 0) when the measurement begins. They can, in principle,
be calculated knowing {E(t),B(t)} of step III.

Conditions to remain in the n manifod. To prevent inter-
manifold (or δn) transitions during steps II and III, we require
that the classical energy change of the electron matches the
adiabatic energy change of the CES state with an error less
than9 1/n3. The classical energy varies at the rate

Ėcl(t) = −Ḟ(t) · r(t) + (1/2) Ḃ(t) · L̄(t) (30)

(a dot means time derivative), whereas the adiabatic rate is

Ėad(t) = (3n/2) Ḟ(t) · Ā(t) + (1/2) Ḃ(t) · L̄(t) . (31)

Thus we require∣∣∣∣
∫

step II
dt Ḟ(t) · [r(t) + (3n/2) A(t)]

∣∣∣∣ < 1/n3 . (32)

Due to 〈r〉 = −3n〈A〉/2 the integral over one Kepler period
TK = 2πn3 almost vanishes when Ḟ is nearly constant during
this period. Only variations of Ḟ(t) on smaller time scales
may produce δn transitions, as expected from a quantum-
mechanical treatment.

For nonhydrogenic atoms, δn transitions may also be
produced by the avoided crossings [16,33,34] occurring at
|E| � 1/(3n5). These come from the non-Coulomb part of the
potential and are no longer effective as soon as the CES has
gained enough circularity in step II. Avoided crossings are
useful in other methods, e.g., in [35].

9This is the spacing between states of adjacent n and close values
of i1 and i2. Transitions between states of very different i1 and i2 are
suppressed, as can be checked with Eqs. (42) and (43) of [32].

Preventing premature ionization. A last requirement is that
the probability of tunneling ionization during step III remains
small. |E(t)| must remain lower than Fcr(M) (defined in Sec. V)
most of the time, at least for the states |M〉 which contribute
the most to (19). It must reach its final intensity F from below
and not too slowly. Let Trise be the rise time of |E(t)| from, say,
0.8 F to F (due to the steep dependence of the Stark widths
γM on F we can neglect tunneling below 0.8 F ). We thus
require γM Trise 	 1. On the other hand, (32) implies Trise �
TK. These two conditions are compatible if γM TK 	 1. We
a priori assume this last inequality: this means that the Stark
resonance |M〉 lives at least several Kepler periods.

Adiabatic versus diabatic steering inside the n manifold.
Here adiabaticity [21] means that the atom can follow a
quasistationary state (fixed i1 and i2) in the field {E(t),B(t)}.
In particular the highest level stays the highest, and the lowest
level stays the lowest. This requires the angular velocity of
ωi(t) to be much smaller than |ωi |:

|ω̇i × ωi | 	 |ωi |3 (i = 1,2) (33)

[see Eq. (10) of Ref. [23]]. Then, the evolution of the atom
is tightly controlled, and the second term of (29) is dominant.
For a CES this means that j̄1 follows closely the vector j ω̂1(t)
or −j ω̂1(t) and j̄2 behaves similarly. A diabatic regime
violates (33). It needs less field strength or field duration.
In Ref. [29], step II [Fig. 1(b) of that work] is adiabatic but
not step III [Fig. 1(d)]: when B/E = 3n, ω1 or ω2 crosses the
origin, strongly violating (33). In our case step II or step III is
necessarily diabatic since it transforms a stationary state into
a nonstationary one.

We conclude from the above considerations that the
preparation of a CLy or ROE state for a [v,L,F] experiment is
possible, although not trivial.

V. TUNNELING FROM STARK STATES

For F > 0 the eigenstates of H are bound states in ξ and
continuous scattering states in η, with both incoming and
outgoing asymptotic waves. Up to a critical field Fcr(n,nξ ,nη)
a Stark state is a resonance which can decay only by tunneling
ionization. For F > Fcr the electron can escape classically.
The position and wave function of a resonance may be
obtained by looking for a bound-state solution of (4a) and
solving (4b) semiclassically for Ř below the return point. λ, μ,
and ν are thus given by the equations λ = λ(ν3F ; m,nξ ), μ =
μ(ν3F ; m,nη), and λ + μ = 2ν. Fcr is such that μ equals the
potential barrier of (4b), [Ř2 − ν3F Ř4 + (m2 − 1/4)/Ř2]/2,
including the centrifugal term. Neglecting the latter and taking
the unperturbed values (8) for μ and ν, we get the approximate
critical field F (0)

cr and mean critical field F̄ (0)
cr ,

F (0)
cr = [8n3(n − nA)]−1, F̄ (0)

cr = 1/(8n4) . (34)

F (0)
cr underestimates Fcr. For n � |m| + 1, Eqs. (2.65) and

(2.69) of [2] yield

n3F (0)
cr

/
(ν3Fcr) = μ(Fcr)/μ

(0) = 3π/
√

128 � 5/6 . (35)

As in [3,6], we describe Stark resonances as discrete states
of complex energy E = εR − iγ /2, which contain only the
outgoing asymptotic wave: the GS states [36,37]. To calculate
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their widths or decay rates γ one needs only the modulus of
the asymptotic Gamow-Siegert wave function �GS. Since we
are interested in the ionization of CLy or ROE states, which
are linear combination of Stark states, we also need the relative
phases of the asymptotic �GS. Below we briefly summarize
the semiclassical calculation of the widths and relative phases
at LO (details are given in Appendix B).

The perturbation of χ (ξ ) by E is neglected. Tunneling in η

is calculated in the semiclassical approximation [1],

�GS(η) � �GS(η0)[pη(η0)/pη(η)]1/2eS(η0,η) , (36)

S(η0,η) = i

∫ η

η0

pη(s) ds , (37)

with p2
η(η) = E/2 + (1 − m2)/η2 + Zη/η + Fη/4. Equation

(36) can be extended in the complex η plane and is valid for
η and η0 far enough from the tunnel entrance and exit, ηin

and ηex, where p2
η = 0. We chose η0 inside the tunnel (the

classically forbidden region) such that

ηin 	 η0 	 ηex , |S(ηin,η0| � 1 , |S(η0,ηex| � 1. (38)

These conditions can easily be met if F 	 F (0)
cr . A natural

choice is η0 = (ηin ηex)1/2, where −p2
η is nearly maximum.

In (36) �GS(η0) is approximated by the unperturbed Stark
wave function �St(η0). The integration of (37) is done along a
path in the upper complex half plane, avoiding cuts of pη(s).
The result for (36) is independent of the precise choice of
η0. The knowledge of the behavior of �GS(η) near ηex is not
needed (it is a combination of Ai and Bi functions; see, e.g.,
Ref. [4(b)]).

The width. Equations (B4) and (B5) of Appendix B give

γM =
(

4

Fν3

)μ

exp

(
− 2

3Fν3

)
ν−3

H ! K!
, (39)

in accordance with Eq. (125) of [3]. At LO we replace μ with
μ(0) = n − nA and ν with n, except in the exponential where
ν−3 � n−3 − 9FnA/2. One gets the Slavjanov result [38]
[see also [4] and Eq. (2.80) of [2] and Eq. (126) of [3]]:

γM =
(

4

Fn3

)n−nA

exp

{
3nA − 2

3Fn3

}
n−3

H ! K!

= γmin (f −H /H !) (f −K/K!). (40)

f ≡ Fn3e3/4 and γmin = (n3f )−1 exp{3n − 2/(3Fn3)} is the
width of the blue state nA = n − 1. For the n = 2 states (9),

γ2 = 2−5F−2 e−1/(12F ) ,

γ3/γ2 = γ2/γ1 = 2Fe3 . (41)

Let us also mention an approximate intuitive formula for the
width:

γ = T −1
η exp{−2S(ηin,ηex)} , (42)

where Tη is the classical period of the η motion. See Eq. (2.73)
of [2], Eq. (63) of [39], and Eq. (7.9) of [8].

The asymptotic Gamow-Siegert wave function. The η-
dependent phase is given by the second line of Eq. (B4).
Replacing E with −1/(2n2) + δE − iγ /2 in (B4) and χ̌ in (6)

with �h,k and including the time dependence gives

�GS(t,r) ∼ exp{it/(2n2)} U (t∗,x̌,y̌) V (η) , (43)

U (t∗,x̌,y̌) = iμ
√

γ exp{−(γ /2 + iδE)t∗} �h,k(x̌,y̌), (44)

V (η) =
√

i (Fn2η3)−1/4 exp{i(η − η̄ex)3/2
√

F/3}. (45)

η̄ex = 1/(Fn2) is the tunnel exit for nA = 0 and |m| = 1; t∗ =
t − [(η − η̄ex)/F ]1/2 is the classical time at which the electron
exits the tunnel if it reaches point η at time t (it is analogous to
the retarded time in classical radiation theory). The exponential
of (44) takes into account the energy shift and the decay of the
wave. V (η) is common to the n manifold.

Note that once the external field E is switched on, the
transition from a Stark wave function �St(t,r) to a Gamow-
Siegert wave function �GS(t,r) is not instantaneous. At large
η, due to the finite velocity of the electron, the Gamow-Siegert
wave function sets up only when t∗ becomes positive.

|�GS(t,r)|2 of (43)–(45) can be roughly interpreted as
the density of a classical electron cloud falling freely
in the uniform force field F. An electron of this cloud
which leaves the tunnel at time t∗ follows approximately a
parabolic motion z = η̄ex/2 + (t − t∗)2F/2 = (x/x̌)2/(2n) =
(y/y̌)2/(2n), with fixed parameters x̌ and y̌. Its transverse
velocity vT � (x̌,y̌)

√
nF gives access to |χ̌(x̌,y̌)|2 in the

imaging method of [7–11].
The iμ factor in Eq. (44) plays an essential role in the

[v,L,F] effect. It yields the relative phase between different
GS asymptotic wave functions. We recall that the above
calculations are made at lowest order in F . When F ∼ F (0)

cr ,
they become inaccurate [see condition (48) of [4(b)]], even in
order in magnitude, because the errors of S(η0,η) are amplified
by the exponentiation in (36).

VI. TUNNELING FROM A 〈LT〉 �= 0 STATE

We assume that at t = 0 the atom has been prepared in a CLy
or ROE state in the field E = −F ẑ, as discussed in Sec. IV.
Then tunneling ionization begins together with oscillations or
orbit precession about ẑ. At large η its time-dependent wave
function is obtained from (20) and (43)–(45):

�(t,r) ∼ exp{it/(2n2)} V (η) ψ̌(t∗,x̌,y̌) , (46a)

ψ̌(t∗,x̌,y̌) =
∑

M

cM UM(t∗,x̌,y̌). (46b)

|ψ̌(t∗,x̌,y̌)|2 may be measured with the imaging method
of [7–11].

The [v,L,F] asymmetry. This asymmetry is related to the
asymmetry of |ψ̌(t∗,x̌,y̌)|2, recalling that vT � (x̌,y̌)

√
nF .

A first measure of it is the mean transverse velocity v̄T of
components

v̄x(t∗) = (nF )1/2 I{x}(t∗)/I (t∗) (47)

and similarly for x → y. I{w} is defined for any function
w(x̌,y̌) by

I{w}(t∗) ≡ 〈ψ̌(t∗,x̌,y̌) |w(x̌,y̌)| ψ̌(t∗,x̌,y̌)〉 (48)
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and I ≡ I{1}. We also define the alternative asymmetry
parameters:

ax(t∗) = 
xI (t∗)/I (t∗) , (49)

bx(t∗) ≡ v̄x

/〈
v2

x

〉1/2 = I{x}(t∗)/
√

I (t∗) I{x2}(t∗), (50)

and similarly for x → y. 
xI = I{w} for w = sgn(x̌). v̄x , ax ,
and bx give similar information, but |ax(t∗)| and |bx(t∗)| are
bound by 1, while v̄x is of the order of (F/Fcr)1/2 n−1. ax(t∗)
can be simply measured with two half-plane detectors.

A. Asymmetry for n = 2

The n = 2 case contains the basic features which remain at
higher n. We treat it in detail for a CLy state and then mention
the main changes for a ROE state. From Eqs. (46b), (44),
and (22),

ψ̌(t∗,x̌,y̌) = (1/2)
{
iμ1

√
γ1 e(−iδE1−γ1/2)t∗ �00

−iμ3
√

γ3 e(−iδE3−γ3/2)t∗ �11

±iμ2+1 √
γ2 e(−iδE2−γ2/2)t∗ (�10 + �01)

}
. (51)

Applying (7) and taking the square modulus,

|ψ̌(t∗,x̌,y̌)|2 = (4π )−1 e−x̌2−y̌2{
γ1 e−γ1t

∗ + 4γ2 e−γ2t
∗
x̌2

+ γ3 e−γ3t
∗

(x̌2 + y̌2 − 1)2

± 4
√

γ1γ2 e−γ̄12t
∗
x̌ cos(α12 − ω12t

∗)

± 4
√

γ2γ3 e−γ̄23t
∗
x̌ (x̌2 + y̌2 − 1) cos(α23 − ω23t

∗)

+ 2
√

γ1γ3 e−γ̄13t
∗

cos(α13 − ω13t
∗) (x̌2 + y̌2 − 1)

}
, (52)

where γ̄ij ≡ (γi + γj )/2, ωij ≡ δEi − δEj , and αij ≡
(δμi − δμj ) π/2. To first order in F [see Eq. (10)],

α12/16 = α23/8 = α13/24 = −πF , (53)

ω12 = ω23 = ω13/2 = −ωS = −3F ; (54)

γi is given by (41) or, more accurately, by (39). The asymmetry
comes from the odd part in x̂. The quantities needed in (49)
and (50) are obtained from (48) and (52):

4I = γ1 e−γ1t
∗ + 2γ2 e−γ2t

∗ + γ3 e−γ3t
∗
, (55a)


xI = ± 1√
π

cos(α12 − ω12t
∗)

√
γ1γ2 e−γ̄12t

∗

± 1

2
√

π
cos(α23 − ω23t

∗)
√

γ2γ3 e−γ̄23t
∗
, (55b)

2I{x} = ± cos(α12 − ω12t
∗)

√
γ1γ2 e−γ̄12t

∗

± cos(α23 − ω23t
∗)

√
γ2γ3 e−γ̄23t

∗
, (55c)

8I{x2} = γ1 e−γ1t
∗ + 6γ2 e−γ2t

∗ + 3γ3 e−γ3t
∗

+2 cos(α13 − ω13t
∗)

√
γ1γ3 e−γ̄13t

∗
. (55d)

The time-dependent asymmetry. At LO, all cosines in (55b)
and (55c) are equal to cos(ωSt

∗). v̄x(t∗) oscillates at the
Stark frequency and in phase10 with 〈Ly(t∗)〉. When 〈Ly〉 > 0,

10It looks as if the group velocity is infinite in the tunnel.

FIG. 7. Motion of the probability density |�(t,r)|2 of the outgo-
ing electron. The curve represents 〈x(t,z)〉 � 2〈x̌(t)〉√z versus z at
fixed t . With time, the undulations move to the right. It looks like a
crawling snake.

v̄x > 0, as guessed from Fig. 1. The outgoing electron stream
is pictured in Fig. 7. If γ1 � γ2 � γ3 (which is the case
for F 	 F̄ (0)

cr ), we can distinguish three “eras,” depending on
which term dominates in (55a). The transition between the ith
and (i + 1)th eras is at

t∗i,i+1 = (γi − γi+1)−1 ln[ciγi/(ci+1γi+1)], (56)

with c1 = c3 = c2/2 = 1. At t∗i,i+1 the Stark sublevels i and
i + 1 interfere with maximum efficiency. Let us denote by a◦
and v◦

x the oscillation amplitudes of ax and v̄x , obtained by
replacing the ± cosine factors by +1 in (55b) and (55c). They
have local maxima of heights a◦(t∗1,2) � 2a◦(t∗2,3) � √

2/π and
v◦

x(t∗1,2) � v◦
x(t∗2,3) � F 1/2. Incidentally, F 1/2 is the transverse

velocity 〈Ly〉/z of the unperturbed CLy state at the saddle point
z = F−1/2. In the third era a◦ and v◦

x fall off exponentially.
Figure 8 plots I (t∗) and a◦(t∗) for F = 0.004, using the “exact”
widths found in [4(a)].

The time-averaged asymmetry. Except for very small values
of F/F̄ (0)

cr , v̄x(t∗), ax(t∗), or bx(t∗) oscillates too fast to be

FIG. 8. Intensity I (t∗) of the outgoing electron flux from an n = 2
CLy state [Eq. (55a)] and amplitude ao(t∗) of the oscillations of the
asymmetry (49). The time of exit t∗ is in picoseconds, and I (t∗) is
in ps−1. Field intensity F = 0.004 a.u. The oscillations, of period
TS = 0.0127 ps, are too dense to show. Note the change of “eras” and
local maxima at t∗

1,2 and t∗
2,3. The sloping straight lines under the I (t∗)

curve represent the successive dominant contributions to (55a).
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TABLE I. Numerical results for the widths, the initial asymmetry, and the time-averaged asymmetry for the n = 2 CLy state. The “LO”
results are at lowest order in F . The “corr.” results are calculated with (39) with first-order corrections for μ and ν. The “num.” results are
based on numerical values of γ found in the literature.

103F Method γ1 γ2 γ3 bx(0) ax(0) 〈bx〉
3.5 LO 8.3×10−7 1.2×10−7 1.6×10−8 0.71 0.69 2.5×10−6

corr. 3.9×10−7 7.7×10−8 8.8×10−9 0.75 0.75 1.4×10−6

num.a 3.9×10−7 6.0×10−8

4.0 LO 1.1×10−5 1.7×10−6 2.8×10−7 0.73 0.71 3.5×10−5

corr. 4.7×10−6 1.1×10−6 1.4×10−7 0.77 0.78 1.9×10−5

num.b 4.4×10−6 0.81×10−6 1.4×10−7

5.0 LO 3.6×10−4 7.2×10−5 1.5×10−5 0.75 0.75 1×10−3

corr. 1.3×10−4 4.6×10−5 6.2×10−6 0.78 0.82 6.6×10−4

num.c 1.1×10−4 2.6×10−5 5.7×10−6

6.0 LO 0.0033 0.0008 0.0002 0.79 0.81 0.0049
corr. 0.0011 0.00043 7.1×10−5 0.78 0.83 0.0065
num.a 6.1×10−5

6.5 LO 0.0077 0.0020 0.00052 0.77 0.78 0.052

8.0 LO 0.045 0.015 0.0047 0.81 0.85 0.28
corr. 0.011 0.0066 0.0013 0.77 0.82 0.12
num.b 0.0042 0.0020 0.00085

10 LO 0.19 0.075 0.030 0.83 0.87 0.66
corr. 0.032 0.029 0.0063 0.73 0.78 0.42
num.c 0.011 0.0063 0.0033

aReference [[4](b)].
bReference [[4](a)].
cReference [6].

measured with an ordinary detector. For instance, F > 0.002
gives TS � 25 fs. Therefore one can only measure the time-
averaged asymmetry obtained by integrating I{w}(t∗). For
instance,

〈ax〉 =
∫ ∞

0
dt∗ 
xI (t∗) (57)

[the integral of I (t∗) is 1]. Integration of (55) is made using∫ ∞

0
dt∗ e−γ̄ij t

∗
cos(αij − ωij t

∗) = γ̄ij cos αij + ωij sin αij

γ̄ 2
ij + ω2

ij

.

(58)
If γij 	 ωij , the {ij} contribution to the asymmetry is washed
out by the oscillations of I{x}(t∗) or 
xI . To get a sizable 〈ax〉
one must take F such that the Stark oscillations are quenched
by the decay of the �1 state, that is, γ1 � ωS = 3F .

Numerical results for n = 2 and discussion. Table I shows
numerical results for the widths γi , the asymmetries ax and bx

at t∗ = 0, and the time average of bx for seven values of F . For
the largest F values we have γ1 > ωS, Stark oscillations are
quenched, and 〈bx〉 is sizable. For F > 0.005 the widths given
by Eq. (41) are much larger than the exact numerical results
found in literature. Equation (39) gives better results, but again
they are too big for F � 0.008. In fact the chosen F are
not small compared to F̄ (0)

cr = 0.0078. Nevertheless, our main
results concerning the asymmetry should be qualitatively true.
First, the [v,L,F] asymmetry depends essentially on the ratios
γ1/γ2 and γ2/γ3, which are not so badly predicted by (41).
Second, widths not far from the exact ones are obtained if
we replace F in Eq. (39) or (41) by a slightly reduced value.
Compare, for instance, the exact results for F = 0.008 with

the LO ones for F = 0.0065 or exact results for F = 0.01 with
our “corr.” ones for F = 0.008 in Table I. The smallness of
this reduction is due to the very steep dependence of log γ on
F . Note that the reduction from Fcr to F (0)

cr in Eq. (35) is of the
same order.

Case of a ROE n = 2 state. The above calculations can be
adapted to the ROE states (28) without great modifications.
The following are the main changes:

(1) ψ̌(t∗,x̌,y̌) involves two states instead of four in Eq. (51).
In the analog of (52) |ψ̌(t∗,x̌,y̌)|2 contains two γi terms and
one

√
γiγj term. We have two eras instead of three.

(2) 
yI (t∗) and I{y}(t∗) are nonzero and oscillate in
quadrature with 
xI (t∗) and I{x}(t∗) such that 〈vT〉 rotates in
the direct sense about ẑ for the �1,�2+ and �3,�2− mixtures
of (28) and in the retrograde sense for the two other mixtures.
The undulating stream in Fig. 7 is replaced by a helical stream.

(3) The size of the asymmetry depends on the eccentricity
sin α and is bigger when the two components of (28a) or (28b)
are comparable, i.e., α � π/4.

B. Asymmetry for large-n CESs

The n = 2 case was instructive, but the required field is not
attainable in the laboratory. We therefore explore the large-n
case, where the needed field (∝ n−4 for M in the bulk of the
{h,k} lattice) is considerably reduced and experiments become
feasible. Besides, the Stark period TS ∼ n3×10−16 s can be
long enough to make a time-resolved experiment possible. For
instance, in [40] (n ∼ 20) the escaping times of the electrons
are recorded with a picosecond resolution. The n = 2 results
generalize as follows:
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Gathering (8), (10), (20), (44), (46b), and (48), we have, for
a real function w(x̌,y̌),

I{w}(t∗) = Re
∑
M,M′

iμ−μ′
cM c∗

M′ (γMγM′)1/2

× exp(−γ̄MM′ t∗ − iωMM′ t∗) 〈�h′,k′ |w(x̌,y̌)|�h,k〉,
(59)

with γ̄M,M′ = (γM + γM′)/2 and ωM,M′ = δEM − δEM′ . The
summation in (59) is restricted by selection rules. For I we
have M = M′. For I{x} or I{y}, M and M′ are nearest neighbors:
|n′

A − nA| = |m′ − m| = 1; the relevant matrix elements are

〈�h−1,k|x̌|�h,k〉 = −i〈�h−1,k|y̌|�h,k〉 =
√

h/2 ,

〈�h,k−1|x̌|�h,k〉 = +i〈�h,k−1|y̌|�h,k〉 =
√

k/2 . (60)

For I{x2}, I{y2}, or I{xy} we have |n′
A − nA| = |m′ − m| = 0 or

2. For 
xI or 
yI the only rule is m − m′ is an odd number.
In the following we only consider the asymmetry parameters
v̄x ∝ I{x} and v̄y ∝ I{y}. We consider first a CLy state and then
a ROE state.

Time-dependent asymmetry for a CLy state. The coefficients
cM are given by (22). The evaluation of (59) is simplified by
the symmetry {h,h′} ↔ {k,k′} of the MM′ contributions. Let
us first examine the LO results.

At t∗ = 0 all the contributions to I{x} have the same sign.
Indeed, the matrix elements (60) of x are positive, and from (8)
and (22), the argument of iμ−μ′

cMc∗
M′ in (59) is αMM′ ≡ (δμ −

δμ′)π/2 for the |Ly+〉 state and αMM′ + π for the |Ly−〉 state,
and αMM′ is zero at LO. Thus the initial asymmetry is oriented
as suggested by Fig. 1. Including the first-order correction does
not change this result since |αMM′ | � (3π/32) F/F (0)

cr < π/2,
from Eqs. (10) and (34). At t∗ > 0, v̄x(t∗) oscillates at the
Stark frequency ωS. A MM′ pair interferes with the maximum
efficiency at

t∗M,M′ = (γM − γM′ )−1 ln[|cM|2γM/(|cM′ |2γM′)], (61)

yielding a peak or at least a “knee” of the oscillation amplitude
v◦

x , like those of Fig. 8 for the n = 2 case. There are
n(n − 1) such peaks. Most of them should not be discernible,
and a subdivision in eras is less clear than in the n = 2
case. However, for M close to the m = 0 diagonal, γM and
|cM| depend mainly on nA, with an approximate Gaussian
dependence on m:

γM � γmin

√
2/π

N − nA
exp

{ −m2

2(N − nA)

}
(2/f )N−nA

(N − nA)!
. (62)

Therefore several t∗M,M′ almost coincide, making an enhanced
peak.

The time-averaged asymmetry 〈v̄x〉. This asymmetry is
obtained from (47) and (59) but replacing I{x}(t∗) by its
time-integrated value and I (t∗) by 1. The integration is made
using (58) with ij → MM′. To contribute significantly to 〈v̄x〉
a MM′ pair must fulfill sup(γM,γM′) � ωS so that the Stark
oscillation is quenched. It must also be near the center of the
lattice of Fig. 2 to have a large enough cMc∗

M′ . For |nA| and
|m| 	 √

n the Stirling formula applied to (40) gives

γM

ωS
� 8

3πf ′

(
64e

f ′

)n−nA

exp

{
4nA − 16n

3f ′ − n2
A + m2

2n

}
, (63)

with f ′ ≡ F/F̄ (0)
cr = 32 e−3 nf . Thus the oscillation quench-

ing requires ln(64e/f ′) − 16/(3f ′) � 0, that is, F ∼ F̄ (0)
cr (we

exclude the case F > F̄ (0)
cr ).

Comparison between LO and exact γ at large n. We
choose F not much smaller than F̄ (0)

cr in order to get a large
enough time-average asymmetry. As for n = 2, the Slavjanov
formula (40) greatly overestimates the widths. Let us take,
for instance, n = 10 and F = 10−5. For m = 1 and nξ = 4,
Table 5 of Ref. [5] gives γ = 3.31×10−12, whereas Eq. (40)
gives γ = 4.06×10−10 (here H = 5, K = 4, and nA = 0).
This is because F is not far from F (0)

cr = 1.25×10−5. Again,
the correct result can be recovered with a small reduction of
F (F = 0.923×10−5) in Eq. (40). Besides, the ratio γM′/γM
for neighboring M and M′ is reasonably well described by
Eq. (40). This is best seen when looking at γ̂ ≡ H ! K! γ .
According to (40), the ratio between the γ̂ for two successive
values of nξ and m = 1 is equal to f 2 � 1/400 for F = 10−5.
According to Table 5 of Ref. [5], this ratio ranges from 1/379
to 1/324. A similar statement is made with Eqs. (3) and (4) of
Ref. [[4](c)]. Therefore, as in the n = 2 case, we believe that
our results are qualitatively true.

ROE case. Equations (59)–(61) also apply to ROE states,
using the coefficients cM of (27). At t∗ = 0, v̄T calculated
at LO is in the direction of L̄×F. This can be checked with
the ROE states with k ≡ 0, β = −π/2 or h ≡ N , β = π/2
in (27). At t∗ > 0, v̄T(t∗) rotates at the Stark frequency about
ẑ; in Fig. 7 the planar undulating curve should be replaced
by a three-dimensional helical curve. For small F/Fcr one
should observe peaks of |v̄T(t∗)| at t∗ given by (61). Their
number is n − 1 instead of n(n − 1); therefore they should
be more discernible than the peaks of v̄x(t∗) for a CLy state.
Another difference with the CLy case is that Stark components
of m ∼ n/2 have an important weight. For these states the
approximations (62) and (63) are not valid.

VII. CONCLUSION

We have given theoretical grounds for the existence of a
[v,L,F] asymmetry in strong-field tunneling ionization of an
excited hydrogen atom possessing a transverse orbital angular
momentum: the extracted electron keeps part of the transverse
velocity v̄T that it had just before entering the tunnel.

For fields significantly smaller than the mean critical field
F̄ (0)

cr ∼ 1/(8n4) (in a.u.), the linear Stark effect produces
oscillations of 〈LT〉, and therefore of 〈vT〉, making the time-
averaged asymmetry very small. A time-resolved experiment
is then necessary. For F ∼ F̄ (0)

cr we predict a sizable time-
averaged asymmetry, although our calculations done at lowest
order in F greatly overestimate the widths γi .

For n = 2, the required field is too strong to obtain in
a laboratory, at least as a static field. Lasers can produce
strong enough, but oscillating, fields. One might nevertheless
look for an asymmetry in the lobes and jetlike structure of
the photoelectron [41] when the atom initially has an orbital
angular momentum perpendicular to the polarization of the
laser light.

For n � 10, the required field has reasonable values, and for
n � 20 a time-resolved experiment can be foreseen. Circular
Rydberg states with L ⊥ F and rotating oblique elliptic states
are the simplest candidates for a [v,L,F] experiment. The
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latter have the advantage of not being affected by interactions
with the electron core. We wrote down analytical formulas
generalizing those of the n = 2 case. They predict a [v,L,F]
asymmetry in the direction suggested by Fig. 1, at least at
leading order in the external field strength.

The preparation of states at a given starting time for a
[v,L,F] experiment is certainly not trivial but, in principle,
feasible. Some premature ionization at t < 0 is unavoidable
but can be limited by approaching the final field from below.

We have restricted our study to ionization in a constant
field. One may generalize it to a field F (t) which increases
slowly enough so that each Stark component |M〉 decays in
its turn in the tunneling regime, i.e., while F (t) < Fcr(M).
The [v,L,F] asymmetry probably occurs also in the classical
ionization regime.

The [v,L,F] asymmetry, like other angular momentum
effects in strong-field ionization [42–44], can lead to a better
understanding of the tunnel ionization process itself. It should
exist as well in the strong-field detachment of electrons from
negative ions, with the following advantages: (1) the required
field is lower than that for a neutral atom, and (2) there
should be no linear Stark effect and hence no oscillation of
the asymmetry. An analog of the [v,L,F] mechanism may
also be at work [13,45] in hadron physics, particularly for the
Collins effect [46].
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APPENDIX A: DERIVATION OF EQUATION (20)

We first derive Eq. (22) giving cM for a CLy state |Ā,L̄〉 =
|Ly±〉 by fitting the asymptotic behaviors of (21) and (19). Let
u ≡ x̌ + iy̌ = eiφ

√
ξ/n and Ř ≡√

η/n. For (21) we write z ±
ix = (η − ξ ± i

√
ηξ cos φ)/2 = (n/2)(Ř ± iu)(Ř ± iū), and

we obtain

�Ly±(r) = [2Nn2N !
√

π ]−1 e−r/n

×
N∑

h=0

Ch
N (±iu)h ŘN−h

N∑
k=0

Ck
N (±iū)k ŘN−k .

(A1)

For (19) we calculate �M(r) with (5) and the asymptotic form
of (7),

�h,k(x̌,y̌) ∼ (π h! k!)−1/2(x̌+iy̌)h (x̌ − iy̌)k e−(x̌2+y̌2)/2,

(A2)

obtained by replacing ∂x̌ by −x̌ and ∂y̌ by −y̌, together with
a similar expression for �H,K (X̌,Y̌ ). It gives

�M(r) ∼ n−n−1 (π h! k! H ! K!)−1/2

×uh ūk ŘH+K e−(x̌2+y̌2+X̌2+Y̌ 2)/2 . (A3)

Recalling h + K = k + H = N and comparing (A1) with
(A3), we obtain (22).

We now derive Eq. (20) from (22) using the fact that
exp(b · j1) or exp(b · j2) transforms a CES into another CES
for any real or complex vector b. In particular,

|Ā,L̄〉 = C exp{(λ1 − iβ1 − iπ/2) j1 · ẑ

+ (λ2 − iβ2 + iπ/2) j2 · ẑ} |Ly±〉 , (A4)

with eλ1 = h̄/(N − h̄) and eλ2 = k̄/(N − k̄), gives the
most general CES (20) up to a phase. C = [cosh(λ1/2)
cosh(λ1/2)]−j is a normalization factor.

APPENDIX B: CALCULATION OF THE ASYMPTOTIC
TUNNELING WAVE FUNCTION AND OF THE WIDTH

We start from (36) and (37). Neglecting the (1 − m2)/η2

term, the roots of p2
η(η) (entrance and exit of the tunnel)

are ηin � −2Zη/E , ηex � −2E/F + 2Zη/E . They are slightly
complex. We choose the determination

pη � (1/2)
√

iF
√

1 − ηin/η
√

−i(η − ηex) , (B1)

which has cuts along the lines [0,ηin] and [ηex, − i∞].
In the tunnel region [Re ηin,Re ηex] it gives Im pη(η) > 0,
corresponding to an evanescent wave. Beyond the tunnel
region it gives Re pη > 0, corresponding to an outgoing wave.
We assume Re ηin 	 η0 	 Re ηex 	 η and |S(ηin,ηex| � 1.
The integration contour in (37) must avoid crossing the cuts
of pη and therefore pass above ηex in the complex plane. One
obtains

S(η0,η) �
√

−E/2

(
η0 + 4E

3F

)
+ (μ/2) ln

(−8E
Fη0

)

+(i/3)
√

F (η + 2E/F )3/2 + iπμ/2 . (B2)

The first line is S(η0,ηex); the second is S(ηex,η).
For �St(η0) we use η−1/2�St(η) ≡ �H,K (

√
η/n,0) and

Eq. (A2) (changed to capital letters):

�(η0) ∼ (π H ! K!/ν)−1/2 (η0/ν)μ/2 e−η0/(2ν) . (B3)

Using pη(η0) � i/(2n), pη(η) � √
Fη/2 in (36), we arrive at

the η0 independent result

�GS(η) ∼ (π H ! K!
√

Fη)−1/2

(
4

Fν3

)μ/2

exp

{ −1

3Fν3

}

× exp

{
i

3

√
F (η + 2E/F )3/2 + iπμ/2 + iπ/4

}
.

(B4)

The ionization rate is the flux through the paraboloid
η = const � n2. In the mixed representation (6), it reads

γ = 2νpη |N |2 |�(η)|2
∫

dx̌ dy̌ |�h,k(x̌,y̌)|2 . (B5)

The last integral equals 1. In |�(η)|2 we consider the second
line of (B4) to be a pure phase factor, neglecting Im E . One
obtains Eq. (39).
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tique (Hermann, Paris, 1977), Vol. 1.
[21] A. K. Kazansky and V. N. Ostrovsky, J. Phys. B 29, L855 (1996).

[22] P. Bellomo and C. R. Stroud Jr., Phys. Rev. A 59, 2139 (1999),
and references therein.

[23] D. Delande and J. C. Gay, Europhys. Lett. 5, 303 (1988).
[24] C. Raman, T. C. Weinacht, and P. H. Bucksbaum, Phys. Rev. A

55, R3995 (1997).
[25] T. P. Hezel, C. E. Burkhardt, M. Ciocca, and J. J. Leventhal,

Am. J. Phys. 60, 324 (1992).
[26] J. C. Gay, D. Delande, and A. Bommier, Phys. Rev. A 39, 6587

(1989).
[27] R. G. Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430

(1983).
[28] W. A. Molander, C. R. Stroud, Jr., and J. A. Yeazell, J. Phys. B

19, L461 (1986).
[29] J. Hare, M. Gross, and P. Goy, Phys. Rev. Lett. 61, 1938 (1988).
[30] P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J. M. Raimond,

S. Haroche, and W. Gawlik, Phys. Rev. A 48, 3991 (1993).
[31] J. C. Day, T. Ehrenreich, S. B. Hansen, E. Horsdal-Pedersen,

K. S. Mogensen, and K. Taulbjerg, Phys. Rev. Lett. 72, 1612
(1994).

[32] D. P. Dewangan, Phys. Rep. 511, 1 (2012).
[33] M. G. Littman, M. L. Zimmerman, T. W. Ducas, R. R. Freeman,

and D. Klepner, Phys. Rev. Lett. 36, 788 (1976).
[34] J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppner,

Phys. Rev. A 23, 3107 (1981).
[35] C. H. Cheng, C. Y. Lee, and T. F. Gallagher, Phys. Rev. Lett. 73,

3078 (1994).
[36] G. Gamow, Z. Phys. 51, 204 (1928).
[37] A. J. F. Siegert, Phys. Rev. 56, 750 (1939).
[38] Yu. Slavjanov, Problemi Matematicheskoi Fiziki (Lenigrad State

University, Leningrad, 1970), pp. 125–134.
[39] M. H. Rice and R. H. Good, Jr., J. Opt. Soc. Am. 52, 239

(1962).
[40] G. M. Lankhuijzen and L. D. Noordam, Phys. Rev. Lett. 76,

1784 (1996).
[41] L. Bai, J. Zhang, Z. Xu, and D.-S. Guo, Phys. Rev. Lett. 97,

193002 (2006).
[42] I. Barth and O. Smirnova, Phys. Rev. A 84, 063415 (2011);

85, 029906 (2012); 85, 039903 (2012).
[43] T. Herath, L. Yan, S. K. Lee, and W. Li, Phys. Rev. Lett. 109,

043004 (2012).
[44] T. Wang, X. L. Ge, J. Guo, and X. S. Liu, Phys. Rev. A 90,

033420 (2014).
[45] X. Artru, J. Czyzewski, and H. Yabuki, Z. Phys. C 73, 527

(1997).
[46] J. Collins, Nucl. Phys. B 396, 161 (1993).

023403-11

http://dx.doi.org/10.3367/UFNr.0153.198711b.0379
http://dx.doi.org/10.3367/UFNr.0153.198711b.0379
http://dx.doi.org/10.3367/UFNr.0153.198711b.0379
http://dx.doi.org/10.3367/UFNr.0153.198711b.0379
http://dx.doi.org/10.1070/PU1987v030n11ABEH002977
http://dx.doi.org/10.1070/PU1987v030n11ABEH002977
http://dx.doi.org/10.1070/PU1987v030n11ABEH002977
http://dx.doi.org/10.1070/PU1987v030n11ABEH002977
http://dx.doi.org/10.1103/PhysRevA.16.877
http://dx.doi.org/10.1103/PhysRevA.16.877
http://dx.doi.org/10.1103/PhysRevA.16.877
http://dx.doi.org/10.1103/PhysRevA.16.877
http://dx.doi.org/10.1088/0022-3700/9/18/006
http://dx.doi.org/10.1088/0022-3700/9/18/006
http://dx.doi.org/10.1088/0022-3700/9/18/006
http://dx.doi.org/10.1088/0022-3700/9/18/006
http://dx.doi.org/10.1088/0022-3700/11/11/009
http://dx.doi.org/10.1088/0022-3700/11/11/009
http://dx.doi.org/10.1088/0022-3700/11/11/009
http://dx.doi.org/10.1088/0022-3700/12/16/011
http://dx.doi.org/10.1088/0022-3700/12/16/011
http://dx.doi.org/10.1088/0022-3700/12/16/011
http://dx.doi.org/10.1088/0022-3700/13/9/009
http://dx.doi.org/10.1088/0022-3700/13/9/009
http://dx.doi.org/10.1088/0022-3700/13/9/009
http://dx.doi.org/10.1088/0022-3700/13/9/009
http://dx.doi.org/10.1088/0022-3700/20/11/008
http://dx.doi.org/10.1088/0022-3700/20/11/008
http://dx.doi.org/10.1088/0022-3700/20/11/008
http://dx.doi.org/10.1088/0022-3700/20/11/008
http://dx.doi.org/10.1088/0022-3700/17/10/007
http://dx.doi.org/10.1088/0022-3700/17/10/007
http://dx.doi.org/10.1088/0022-3700/17/10/007
http://dx.doi.org/10.1088/0022-3700/17/10/007
http://dx.doi.org/10.1103/PhysRevA.58.400
http://dx.doi.org/10.1103/PhysRevA.58.400
http://dx.doi.org/10.1103/PhysRevA.58.400
http://dx.doi.org/10.1103/PhysRevA.58.400
http://dx.doi.org/10.1103/PhysRevLett.88.133001
http://dx.doi.org/10.1103/PhysRevLett.88.133001
http://dx.doi.org/10.1103/PhysRevLett.88.133001
http://dx.doi.org/10.1103/PhysRevLett.88.133001
http://dx.doi.org/10.1103/PhysRevLett.110.183001
http://dx.doi.org/10.1103/PhysRevLett.110.183001
http://dx.doi.org/10.1103/PhysRevLett.110.183001
http://dx.doi.org/10.1103/PhysRevLett.110.183001
http://dx.doi.org/10.1103/PhysRevLett.110.213001
http://dx.doi.org/10.1103/PhysRevLett.110.213001
http://dx.doi.org/10.1103/PhysRevLett.110.213001
http://dx.doi.org/10.1103/PhysRevLett.110.213001
http://dx.doi.org/10.1103/PhysRevLett.93.233003
http://dx.doi.org/10.1103/PhysRevLett.93.233003
http://dx.doi.org/10.1103/PhysRevLett.93.233003
http://dx.doi.org/10.1103/PhysRevLett.93.233003
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1209/0295-5075/15/7/001
http://dx.doi.org/10.1209/0295-5075/15/7/001
http://dx.doi.org/10.1209/0295-5075/15/7/001
http://dx.doi.org/10.1209/0295-5075/15/7/001
http://dx.doi.org/10.1007/BF00419624
http://dx.doi.org/10.1007/BF00419624
http://dx.doi.org/10.1007/BF00419624
http://dx.doi.org/10.1007/BF00419624
http://dx.doi.org/10.1088/0953-4075/29/24/001
http://dx.doi.org/10.1088/0953-4075/29/24/001
http://dx.doi.org/10.1088/0953-4075/29/24/001
http://dx.doi.org/10.1088/0953-4075/29/24/001
http://dx.doi.org/10.1103/PhysRevA.59.2139
http://dx.doi.org/10.1103/PhysRevA.59.2139
http://dx.doi.org/10.1103/PhysRevA.59.2139
http://dx.doi.org/10.1103/PhysRevA.59.2139
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1103/PhysRevA.55.R3995
http://dx.doi.org/10.1103/PhysRevA.55.R3995
http://dx.doi.org/10.1103/PhysRevA.55.R3995
http://dx.doi.org/10.1103/PhysRevA.55.R3995
http://dx.doi.org/10.1119/1.16875
http://dx.doi.org/10.1119/1.16875
http://dx.doi.org/10.1119/1.16875
http://dx.doi.org/10.1119/1.16875
http://dx.doi.org/10.1103/PhysRevA.39.6587
http://dx.doi.org/10.1103/PhysRevA.39.6587
http://dx.doi.org/10.1103/PhysRevA.39.6587
http://dx.doi.org/10.1103/PhysRevA.39.6587
http://dx.doi.org/10.1103/PhysRevLett.51.1430
http://dx.doi.org/10.1103/PhysRevLett.51.1430
http://dx.doi.org/10.1103/PhysRevLett.51.1430
http://dx.doi.org/10.1103/PhysRevLett.51.1430
http://dx.doi.org/10.1088/0022-3700/19/12/003
http://dx.doi.org/10.1088/0022-3700/19/12/003
http://dx.doi.org/10.1088/0022-3700/19/12/003
http://dx.doi.org/10.1088/0022-3700/19/12/003
http://dx.doi.org/10.1103/PhysRevLett.61.1938
http://dx.doi.org/10.1103/PhysRevLett.61.1938
http://dx.doi.org/10.1103/PhysRevLett.61.1938
http://dx.doi.org/10.1103/PhysRevLett.61.1938
http://dx.doi.org/10.1103/PhysRevA.48.3991
http://dx.doi.org/10.1103/PhysRevA.48.3991
http://dx.doi.org/10.1103/PhysRevA.48.3991
http://dx.doi.org/10.1103/PhysRevA.48.3991
http://dx.doi.org/10.1103/PhysRevLett.72.1612
http://dx.doi.org/10.1103/PhysRevLett.72.1612
http://dx.doi.org/10.1103/PhysRevLett.72.1612
http://dx.doi.org/10.1103/PhysRevLett.72.1612
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1103/PhysRevLett.36.788
http://dx.doi.org/10.1103/PhysRevLett.36.788
http://dx.doi.org/10.1103/PhysRevLett.36.788
http://dx.doi.org/10.1103/PhysRevLett.36.788
http://dx.doi.org/10.1103/PhysRevA.23.3107
http://dx.doi.org/10.1103/PhysRevA.23.3107
http://dx.doi.org/10.1103/PhysRevA.23.3107
http://dx.doi.org/10.1103/PhysRevA.23.3107
http://dx.doi.org/10.1103/PhysRevLett.73.3078
http://dx.doi.org/10.1103/PhysRevLett.73.3078
http://dx.doi.org/10.1103/PhysRevLett.73.3078
http://dx.doi.org/10.1103/PhysRevLett.73.3078
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1007/BF01343196
http://dx.doi.org/10.1103/PhysRev.56.750
http://dx.doi.org/10.1103/PhysRev.56.750
http://dx.doi.org/10.1103/PhysRev.56.750
http://dx.doi.org/10.1103/PhysRev.56.750
http://dx.doi.org/10.1364/JOSA.52.000239
http://dx.doi.org/10.1364/JOSA.52.000239
http://dx.doi.org/10.1364/JOSA.52.000239
http://dx.doi.org/10.1364/JOSA.52.000239
http://dx.doi.org/10.1103/PhysRevLett.76.1784
http://dx.doi.org/10.1103/PhysRevLett.76.1784
http://dx.doi.org/10.1103/PhysRevLett.76.1784
http://dx.doi.org/10.1103/PhysRevLett.76.1784
http://dx.doi.org/10.1103/PhysRevLett.97.193002
http://dx.doi.org/10.1103/PhysRevLett.97.193002
http://dx.doi.org/10.1103/PhysRevLett.97.193002
http://dx.doi.org/10.1103/PhysRevLett.97.193002
http://dx.doi.org/10.1103/PhysRevA.84.063415
http://dx.doi.org/10.1103/PhysRevA.84.063415
http://dx.doi.org/10.1103/PhysRevA.84.063415
http://dx.doi.org/10.1103/PhysRevA.84.063415
http://dx.doi.org/10.1103/PhysRevA.85.029906
http://dx.doi.org/10.1103/PhysRevA.85.029906
http://dx.doi.org/10.1103/PhysRevA.85.029906
http://dx.doi.org/10.1103/PhysRevA.85.039903
http://dx.doi.org/10.1103/PhysRevA.85.039903
http://dx.doi.org/10.1103/PhysRevA.85.039903
http://dx.doi.org/10.1103/PhysRevLett.109.043004
http://dx.doi.org/10.1103/PhysRevLett.109.043004
http://dx.doi.org/10.1103/PhysRevLett.109.043004
http://dx.doi.org/10.1103/PhysRevLett.109.043004
http://dx.doi.org/10.1103/PhysRevA.90.033420
http://dx.doi.org/10.1103/PhysRevA.90.033420
http://dx.doi.org/10.1103/PhysRevA.90.033420
http://dx.doi.org/10.1103/PhysRevA.90.033420
http://dx.doi.org/10.1007/s002880050342
http://dx.doi.org/10.1007/s002880050342
http://dx.doi.org/10.1007/s002880050342
http://dx.doi.org/10.1007/s002880050342
http://dx.doi.org/10.1016/0550-3213(93)90262-N
http://dx.doi.org/10.1016/0550-3213(93)90262-N
http://dx.doi.org/10.1016/0550-3213(93)90262-N
http://dx.doi.org/10.1016/0550-3213(93)90262-N



