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Polarization of Lyman-α emission in proton-hydrogen collisions studied using a semiclassical
two-center convergent close-coupling approach
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The semiclassical convergent close-coupling approach to ion-atom collisions has been extended to include
electron-transfer channels. The approach has been applied to study the excitation and the electron-capture
processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman-α
emission and the cross sections for excitation and electron-capture into the lowest excited states have been
calculated for a wide range of the proton impact energies from 1 keV to 1 MeV. The results are in good agreement
with experimental measurements.
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I. INTRODUCTION

Processes taking place in proton collisions with atomic
hydrogen are of fundamental theoretical and practical im-
portance. For theoretical description of these processes at
low incident energies various adiabatic, hyperspherical, and
molecular-orbital close-coupling methods are used (see, e.g.,
[1,2] and references therein). At sufficiently high energies
the problem can be treated using the continuum distorted-
wave [3–6] and other perturbative methods [7]. However,
in the intermediate-energy range the cross sections for the
excitation of the target, electron capture by the projectile,
and direct ionization are comparable in magnitude. In this
region, nonperturbative methods based on the solution of
the time-dependent Schrödinger equation (TDSE) within
lattice or various close-coupling schemes allow studying these
processes simultaneously.

Since the pioneering work of Bates and McCarroll [8],
two-center coupled-channel methods have seen significant
development. Earlier works [9–13] with a small number of
eigenstates were followed by Shakeshaft [14] to include a large
basis set of scaled hydrogenic states. The rapid development
in the computing technology made it possible to perform
large-basis calculations including pseudostates. However, such
calculations of Slim and Ermolaev [15] produced oscillatory
structures in the excitation cross sections which were not
observed experimentally. Kuang and Lin [16] attributed the
existence of these oscillations to the simultaneous use of
pseudocontinuum states on both centers. Hence, they pro-
posed to use an asymmetric close-coupling scheme, called
bound-bound-continuum (BBC), with pseudocontinuum states
either on the target (BBC-T) or on the projectile (BBC-P).
In their BBC-T calculations excitation cross sections were
stable and well behaved (meaning smooth, without spurious
oscillations), but capture cross sections exhibited unphysical
oscillations. At the same time, the BBC-P-type expansion
produced the opposite picture, where capture cross sections
were stable, while excitation cross sections became unstable
and oscillatory.

An extensive study of proton-hydrogen collision processes
was performed by Toshima [17–19] using the two-center
close-coupling approach based on the Gaussian-type orbitals.
It demonstrated that the spurious oscillations observed in
the excitation and capture channels are due to the strong-

coupling effect between bound and pseudocontinuum states
belonging to different centers. As evidence, it was shown
that as the density of pseudocontinuum states increased, the
oscillatory structures became less prominent. In [19] the author
investigated in detail the convergence of the ionization cross
section by performing BBC-T and BBC-P calculations and
comparing them with the results of symmetric calculations
where the pseudocontinuum states were on both centers. For
all three types of expansions fairly similar ionization cross
sections were obtained except for the low-energy region.

The most recent investigation of capture, excitation, and
ionization in the p-H collision system using atomic-orbital
close coupling is due to Winter [20]. This work extended
Shakeshaft’s Sturmian calculations by including large number
of pseudostates. For the ionization channel, the results of
Winter are in agreement with those reported by Toshima
[19].

A semiclassical convergent close-coupling (SC-CCC)
method has been developed in [21] and applied to antiproton
collisions with multielectron targets [22,23]. The SC-CCC
method utilized a large basis of pseudostates for expansion
of the electronic part of the scattering wave function. The
Hamiltonian for the target is diagonalized using the orthogonal
Laguerre basis resulting in negative- and positive-energy
pseudostates. The method did not include rearrangement
channels.

Kołakowska et al. [24,25] have developed a lattice-
based method to solve the Schrödinger equation. They have
calculated excitation and charge-transfer cross sections for
transitions into {1s,2s,2p,3s,3p,3d} states in collisions of
protons with hydrogen in the ground state. The semiclassical
time-dependent Schrödinger equation has been solved using
the lattice-based finite differences and Fourier collocation
methods. The approach has been further developed by Schultz
et al. [26] and Pindzola et al. [27]. Pindzola and Schultz
[28] later reformulated the approach using the cylindrical
coordinates. Another method of numerical integration of
the three-dimensional time-dependent Schrödinger equation
based on the Fourier collocation method has been developed
by Chassid and Horbatsch [29] with emphasis on differential
cross sections. Overall, the results of the lattice methods
have been found to be in good agreement with experimental
data.
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Another coupled-channel approach to proton-hydrogen
collisions has been proposed by Keim et al. [30]. The approach,
known as a basis-generator method (BGM), provides a basis
dynamically adapted to the collision process. It has been
applied to calculate the excitation and electron-capture cross
sections.

All aforementioned approaches rely on the semiclassical
approximation, where the nuclear motion is assumed to be
along a straight-line trajectory with a constant velocity. This
allows separation of electron and nuclear dynamics, resulting
in approximate TDSE for the electronic part of the scattering
wave function. There is another class of close-coupling
methods that does not use the semiclassical approximation
to separate the electron and nuclear dynamics. These methods
also can take into account all possible reaction channels in
ion-atom collisions. An impact-parameter Faddeev approach
(IPFA) to ion-atom collisions based on the three-body Faddeev
equations was developed by Avakov et al. [31] and applied to
calculate different electron-transfer reactions [32,33]. In IPFA
the effective potentials were taken into account only in the
lowest-order approximation corresponding to the so-called
pole-type Feynman diagram for electron transfer. Although
the calculations of the total and partial electron-transfer cross
sections showed good agreement with available experimental
data, at high energies this approach overestimated the ex-
perimental observations. To improve the theory a three-body
eikonal approach (TBEA) [34] was developed. The approach
takes into account the next-order “triangle” Feynman diagrams
in the effective potentials. The application of TBEA led to
considerable improvement in the description of the total and
partial electron-transfer cross sections. Later, Alt et al. [35]
demonstrated that the three-body Faddeev approach was also
capable of providing reliable differential electron-transfer and
elastic-scattering cross sections. Somewhat related to these are
the approaches based on the Faddeev-Watson series [36,37].
However, being perturbative in nature the latter do not take
into account the coupling between the channels and are only
applicable at sufficiently high incident energies.

A fully quantum-mechanical three-dimensional integral-
equation approach to ion-atom collisions has been developed
in [38,39]. However, being time-consuming it did not allow
large multichannel calculations. A quantum-mechanical ver-
sion of the convergent close coupling (QM-CCC) approach
has been developed in the impact-parameter representation
and applied to antiproton scattering on atomic hydrogen
[40,41] and helium [42]. In contrast to the SC-CCC, the
QM-CCC method utilizes a large basis of Laguerre pseu-
dostates for expansion of the total three-body scattering wave
function without separation of the electronic and nuclear
motions.

Despite the overall success of the theoretical approaches,
the results of various calculations for the seemingly simplest
proton-hydrogen system differ, and there are some discrep-
ancies with experimental observations. For instance, in the
case of the ionization channel, near the ionization peak the
discrepancy between theory [19,20,25] and the experiment
[43–45] is from 30% to 45%. In addition, almost a factor
of 2 disagreement exists between experimental measurements
[46,47] and theoretical calculations [20,48] for the Balmer-
α emission. Clearly, an independent ab initio two-center

approach would be helpful in clarifying the situation for this
most fundamental collision system. Recently, a two-center
QM-CCC method was developed [49] in order to address some
of these problems.

The purpose of this paper is to further develop the
SC-CCC method [21–23] to include the electron-capture
channels. As a first test, the method is applied to calculate the
integral alignment parameter A20 for the linear polarization of
Lyman-α emission produced in proton-hydrogen collisions.
The parameter requires calculations of the excitation and
electron-capture cross sections to the lowest (n = 2) excited
states. Such calculations do not need continuum states on
both centers. We generate the Laguerre-based pseudostates
to represent the bound and continuum states of hydrogen. The
full set of the generated pseudostates is used for the target
center. However, in this work for the projectile center only the
negative-energy pseudostates are used. Thus, the scheme we
use is somewhat similar to the BBC-T one mentioned above.
However, for the projectile we use the full set of generated
negative-energy pseudostates rather than several eigenstates.
This allows one to span the entire space of the bound states of
the atom formed by the projectile after capturing the electron.
The ionization cross section, on the other hand, would require
the fully symmetric calculations with the complete set of
pseudostates on both centers [49].

The experimentally observable degree of linear polarization
of Lyman-α emission induced by proton impact on atomic
hydrogen and the associated integral alignment parameter
provide detailed information about the relative population of
different magnetic sublevels and can serve as a sensitive test
for theory. The earliest experimental values for the polarization
of Lyman-α radiation in proton-hydrogen collisions were
reported by Kauppila et al. [50] and Hippler et al. [51] at
low energies (below 25 keV). The most recent experiments by
Keim et al. [30] covered the energy range from 1 keV to 1 MeV.
Along with the experimental data, Keim et al. [30] presented
the results of the calculations based on the two-center BGM
approach mentioned earlier. Agreement between experiment
and theory is good over a wide energy range. However,
there are some discrepancies at higher energies. Recently,
the polarization of Lyman-α and Balmer-α emissions in the
proton-hydrogen collisions has been studied using the first-
order Faddeev-Watson method [37]. The authors considered
the excitation channels only and made comparisons with the
experimental and theoretical data of Keim et al. [30]. The
agreement with experiment was better at higher energies where
the contribution from the electron-capture channels is expected
to be small.

II. TWO-CENTER SEMICLASSICAL
CLOSE-COUPLING METHOD

A. Basic equations

Consider scattering of a proton on the hydrogen atom. We
assume the target nucleus is located at a fixed origin and the
projectile is moving along a classical trajectory R = b + vt ,
where b is the impact parameter and v is the constant velocity,
defined so that b · v = 0. The nonrelativistic semiclassical
time-dependent Schrödinger equation for the electronic part

022710-2



POLARIZATION OF LYMAN-α EMISSION IN . . . PHYSICAL REVIEW A 93, 022710 (2016)

of the total scattering wave function is written as

H�(t,r,R) = i
∂�(t,r,R)

∂t
, (1)

with the Hamiltonian

H = −1

2
�r − 1

rT

− 1

rP

+ 1

R
, (2)

where r and rT (rP ) denote the electronic coordinates with
respect to the midpoint of the internuclear axis and the target
(projectile) nucleus. (Atomic units are used unless otherwise
specified.) The scattering wave function is expanded in terms
of target ψT

α (rT ) and projectile ψP
β (rP ) pseudostates as

�(t,r,R) =
Nα∑
α=1

aα(t,b)ψT
α (rT ) exp

[ − iεT
α t

]

+
Nβ∑
β=1

bβ(t,b)ψP
β (rP ) exp

[ − iεP
β t

]
× exp[−i(v · rT + v2t/2)], (3)

where Nα (Nβ) is the number of states in the target (projectile)
center and εT

α (εP
β ) is the energy of the target (projectile)

electronic state α (β). The expansion coefficients aα(t,b) and
bβ(t,b) at t → +∞ represent the transition amplitudes into
the target and projectile states. The extra phase factor in the
second term of Eq. (3) results from the Galilean transformation
which takes into account the fact that in the moving system
the captured electron acquires a kinetic energy mv2/2 and
momentum mv relative to the target [52].

Substituting this representation of the scattering wave
function into the semiclassical Schrödinger equation (1) and
using the standard projection technique, one obtains the
following set of the first-order differential equations for the
time-dependent coefficients:

iȧα′ + i

Nβ∑
β=1

ḃβK
(PT )
α′β =

Nα∑
α=1

aαD
(T )
α′α +

Nβ∑
β=1

bβQ
(PT )
α′β ,

i

Nα∑
α=1

ȧαK
(T P )
β ′α + iḃβ ′ =

Nα∑
α=1

aαQ
(T P )
β ′α +

Nβ∑
β=1

bβD
(P )
β ′β,

α′ = 1,2,3, . . . ,Nα, β ′ = 1,2,3, . . . ,Nβ,

where D(T ) and D(P ) are direct-scattering matrix elements,
while K (PT ), K (T P ), Q(PT ), and Q(T P ) are rearrangement
matrix elements [53]. This system of coupled equations can
be written in the matrix form as

i

(
I K (PT )

K (T P ) I

)(
ȧ
ḃ

)
=

(
D(T ) Q(PT )

Q(T P ) D(P )

)(
a
b

)
,

(4)

where I is the identity matrix and submatrices K , Q, and D
contain the corresponding direct-scattering and rearrangement
matrix elements. This system is solved subject to the initial
boundary conditions

aα(−∞,b) =δα1, α = 1,2,3, . . . ,Nα,

bβ(−∞,b) =0, β = 1,2,3, . . . ,Nβ. (5)

B. Pseudostates

Projectile or target pseudostates used in the calculations can
be written as

ψnlm(r) = φnl(r)Ylm(r̂), (6)

where

φnl(r) =
Nl∑

k=1

cl
nkξkl(r), (7)

and the basis functions ξkl(r) are made of the orthogonal
Laguerre functions

ξkl(r) =
√

λl(k − 1)!

(2l + 1 + k)!
(λlr)l+1e−λlr/2L2l+2

k−1 (λlr). (8)

Here L2l+2
k−1 (λlr) are the associated Laguerre polynomials, and

λl are the exponential falloff parameter. Expansion coefficients
cl
nk are found by diagonalizing the Hamiltonian of the hydro-

gen atom. The diagonalization procedure gives negative- and
positive-energy pseudostates. As the number of pseudostates
in each target symmetry increases, the lowest negative-energy
pseudostates converge to the hydrogen eigenstates, while the
positive-energy pseudostates represent an increasingly dense
discretization of the continuum.

C. Observables

The partial cross sections for the individual direct-scattering
(di) and electron-exchange (ex) transitions from the ground
state are given by

σ di
α =2π

∫ ∞

0
dbbP di

α (b), (9)

σ ex
β =2π

∫ ∞

0
dbbP ex

β (b), (10)

respectively, where the transition probabilities are

P di
α (b) = |aα(+∞,b) − δα1|2, (11)

P ex
β (b) = |bβ(+∞,b)|2. (12)

The integral alignment parameter A20 characterizes the
anisotropy of the atomic states and is defined as [30]

A20 = σ2p1 − σ2p0

2σ2p1 + σ2p0

, (13)

where

σ2p0 = σ di
2p0

+ σ ex
2p0

, (14)

σ2p1 = σ di
2p1

+ σ ex
2p1

. (15)

Note that here σ2p1 refers to the m = 1 sublevel, which is
identical to the cross section for the m = −1 sublevel.
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III. TWO-CENTER SEMICLASSICAL CONVERGENT
CLOSE-COUPLING CALCULATIONS

A. Validation of the computer code

The system of the first-order differential equations (4)
has been solved within the range Z ∈ (−Zmax,Zmax), where
Z ≡ vt , subject to the initial boundary conditions given by
(5). To this end we have developed an adaptive solver similar
to the method of Hamming [54], where the integration step
is automatically adjusted according to a certain error-control
criterion.

The calculation of the direct-scattering matrix elements is
relatively straightforward. In this work we use the procedure
that has previously been developed and used in the antiproton-
hydrogen calculations by Abdurakhmanov et al. [40]. In
contrast, the evaluation of the rearrangement matrix elements
is significantly more challenging. For this reason, we have
performed a series of tests to validate the numerical methods
for the calculation of the exchange matrix elements. These are
described below.

Different techniques for calculating the two-center rear-
rangement matrix elements have been reported in the literature.
For example, Avakov et al. [32] studied the electron transfer
in proton-hydrogen collisions using true eigenstates. The
authors included only the lowest-order Feyman diagram,
corresponding to the electron-proton interaction. In order to be
able to compare the effective potentials, in our code (written
for pseudostates) we constructed a large basis so that the
lowest pseudostates practically reproduce the exact hydrogenic
eigenstates and then used in the calculations only the lowest
pseudostates. For example, with the exponential falloff param-
eter λl in the Laguerre functions set equal to 1 for all l and the
basis size Nl = 40 − l, all n � 4 eigenstates are reproduced
very accurately. Therefore, as a first important test we have
compared the impact parameter dependence of the electron-
capture probability amplitudes for all possible combinations
of the transitions involving eigenstates with n � 4. Excellent
agreement with the corresponding results by Avakov et al. [32]
has been obtained. To further test the accuracy of the individual
exchange matrix elements, we have calculated the Born cross
sections for all channels in p-H(1s) collisions, taking into
account both the electron-proton and proton-proton interac-
tions, and compared them with the corresponding results from
Belkić et al. [7]. In this case too, excellent agreement has been
obtained.

The next step is testing the coupling between direct and
rearrangement channels in calculations with a limited number
of eigenstates. Lovell and McElroy [55] carried out (2 + 1)
and (1 + 2) coupled calculations with different combinations
of 1s and 2s hydrogenic states used in target and projectile
centers. The authors tabulated excitation and electron-capture
cross sections for several energies. We have obtained very
good agreement with all their tabulated data, except for the
cross section for the excitation of the 2s state at 12.5 keV
energy when the 1s and 2s states for the projectile and the
1s state for the target center are used. Since we got excellent
agreement for all transitions at all other reported collision
energies, we believe that there must be a misprint in [55] in
the aforementioned transition.

Calculations with the lowest five eigenstates (1s, 2s, 2p0,
and 2p±1) reported by Cheshire et al. [11] and Rapp and
Dinwiddie [13] could serve as a stronger test. These papers
give excitation and capture cross sections for all channels in
a tabulated form. Comparing our calculated cross sections at
corresponding incident energies, we conclude that our results
also agree well with the results by Cheshire et al. [11] and
Rapp and Dinwiddie [13]. Winter and Lin [12] performed
calculations with only 1s in the target center and 1s, 2s, 2p0,
and 2p±1 states in the projectile center. They reported the 2s

and 2p capture cross sections at E = 25 and 100 keV, which
we reproduce as well.

Thus the performed tests validate the current implemen-
tation of the two-center semiclassical close-coupling method
and the associated computer code. Next, we apply the method
to perform large-scale pseudostate calculations.

B. The integral alignment parameter A20

First, we calculate the integral alignment parameter A20

for the linear polarization of Lyman-α emission produced in
proton-hydrogen collisions. Since this quantity requires cal-
culations of the excitation and electron-capture cross sections
for the transitions into the lowest (n = 2) excited states only,
in principle, we do not need continuum states on both centers.
In our calculations, we first generate the Laguerre-based
pseudostates to represent the bound and continuum states of the
target and the projectile. However, in the projectile center the
positive-energy pseudostates are truncated as their contribution
is small. As mentioned earlier, this scheme is somewhat
similar to the BBC-T one mentioned in the Introduction.
The difference is that we use the full set of negative-energy
pseudostates rather than several eigenstates. This allows one
to span the entire space of the bound states of the atom formed
by the projectile after capturing the electron.

We set the falloff parameter λl equal to 1 for all l. This
allows one to reproduce the ground state of hydrogen with
the least number of basis states. In turn this ensures the fastest
convergence in the close-coupling calculations. For each l from
0 to lmax we set Nl = Nmax − l. To achieve convergence in the
final cross sections, lmax and Nmax are systematically increased.
Calculations with various bases are labeled as (Nlα ,N

′
lβ

), with
the prime meaning only negative-energy pseudostates are used.
For example, the diagonalization of the hydrogen Hamiltonian
with Nmax = 20 and lmax = 3 gives 74 nl states. In the nlm

notation (including all m with |m| � lmax) this corresponds
to 286 states, and 46 of them are of negative energy. These
calculations are denoted as (203,20′

3). Similarly, the (213,21′
3)

calculations include 53 negative-energy pseudostates and
249 positive-energy pseudostates for the target and only 53
negative-energy pseudostates for the projectile.

We have performed a series of calculations in the energy
interval between 1 keV and 1 MeV with increasing lmax

and Nmax with particular attention to the convergence of the
integral alignment parameter A20, characterizing the degree of
linear polarization of Lyman-α emission in proton-hydrogen
collisions. In Table I we give A20 at incident energies E =
1,10,100, and 1000 keV for Nmax from 10 to 21 at the fixed
value of the angular momentum lmax = 3. In Fig. 1 we plot the
integral alignment as a function of impact energy with respect
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TABLE I. Convergence of integral alignment A20 of Lyman-α emission for proton impact on atomic hydrogen with increasing Nmax at
fixed lmax = 3.

Energy (keV) Nmax = 10 Nmax = 15 Nmax = 17 Nmax = 18 Nmax = 19 Nmax = 20 Nmax = 21

1 20.92 44.32 45.49 42.66 44.33 44.56 44.68
10 18.08 16.93 16.20 16.32 16.33 16.15 16.08
100 −3.729 −3.757 −3.768 −3.759 −3.752 −3.751 −3.752
1000 16.16 16.19 16.20 16.25 16.24 16.26 16.26

to increasing lmax at fixed Nmax = 20. Table I and Fig. 1 show
that the integral alignment A20 is very well converged with
the (203,20′

3) basis. These results have been obtained with
Zmax = 200. Calculations with Zmax = 250 have also been
carried out to make sure the results do not depend on them.
Hereafter the (203,20′

3) results are simply called SC-CCC.
In Fig. 2 we plot the calculated integral alignment A20

of Lyman-α emission in p-H collisions as a function of
the impact energy. The results of different close-coupling
calculations are given by curves, while symbols with error
bars represent the experimental data. Comparing our results
with the experimental data of Hippler et al. [51] in the energy
range from 1 to13 keV, we observe fairly good agreement.
Within 13–25 keV, where there is some disagreement between
the experimental measurements of Keim et al. [30] and
Hippler et al. [51], our results are in good agreement with
the former. But at higher energies (E > 30 keV) our results
underestimate the experimental observations of Keim et al.
[30]. From the theoretical side, comparison is made with
the calculations of McLaughlin et al. [48], Winter [20], and
Keim et al. [30]. At lower energies, A20 from the 40-state
triple-center close-coupling calculations of McLaughlin et al.
[48] is higher than the results of the current work and the
other calculations. The 40-state coupled-channel calculation
[48] produces A20 that passes through zero at much lower
energy than the experiment and the other theories. Similarly,
the minimum of A20 is reached at much lower energy by the
three-center work [48]. The recent semiclassical 220-state
Sturmian function results of Winter [20] in the interval
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 lmax=1
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FIG. 1. Convergence of integral alignment A20 of Lyman-α
emission in p-H collisions with respect to increasing lmax at fixed
nmax = 20.

between 1 and 100 keV show significantly different energy
dependence exhibiting double minima at about 20 and 50 keV.
Reasonably good agreement is achieved with the two-center
BGM calculations of Keim et al. [30] over the whole energy
range of interest. Especially, the agreement is rather good
below 10 keV. In Fig. 2, the results of Fathi et al. [37] from
the three-body Born-Faddeev calculations are also shown. As
mentioned before, these calculations do not take into account
electron capture. The results are close to the ones from the
close-coupling techniques above 200 keV, which indicate that
at high energies the contribution from the electron-capture
channels is small.

As seen from Fig. 2, A20 from the current calculations
reproduces the experimental data reasonably well at all
considered energies. At low energies, the integral alignment is
positive, meaning that the cross section for the transition to the
2p1 state is much larger than the one corresponding to the 2p0

level. As the incident energy increases, the cross section for the
2p0 channel gets larger, resulting in the change of sign at about
15 keV. Here the electron-capture channels become negligible,
and the excitation channels give the main contribution to the
integral alignment parameter. It is interesting to note that,
although the integrated cross sections for both the excitation
and the electron-transfer channels calculated by the large-scale
coupled-channel approaches agree reasonably well with the
experiments, the agreement for the relative ratio of cross
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 Keim et al. (theory)
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FIG. 2. Integral alignment A20 of Lyman-α emission in p-H
collisions as a function of the impact energy. Experimental results
of Hippler et al. [51] and Keim et al. [30] and theoretical calculations
of McLaughlin et al. [48], Winter [20], Keim et al. [30], and Fathi
et al. [37] are also given. The results of the present work are given by
a red solid line connecting the calculated points.
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sections for 2p channels (as defined by A20) is not satisfactory
at higher energies.

Finally, we emphasize that all previous calculations (except
perturbative ones) exhibit oscillations and wiggles (see Fig. 2).
The latter may indicate that convergence has not been reached
in terms of the range of included impact parameters. According
to our calculations, the probabilities for the 2p0 and 2p1

transitions have extremely long tails. In fact, the higher the
energy is, the longer the tail is. For this reason, in order to get
convergent (and therefore smooth) results we had to include
impact parameters as large as 50 a.u. Test calculations at 1 MeV
with the maximum impact parameter of 60 and 70 a.u. gave
the same result. At the same time, trial calculations with the
maximum impact parameter 30 a.u. showed wiggles similar
to those seen in A20 calculated using the BGM method [30].
The oscillations similar to those seen in the Sturmian-based
close-coupling method may indicate that the exchange matrix
elements, calculated as two-dimensional integrals with the
reported integration parameters [20], were not sufficiently
accurate. Generally, we find that A20 is more demanding in
terms of various integration parameters than the individual
partial cross sections used to calculate it.

C. Excitation and electron capture into 2s and 2 p states

In Figs. 3–6 we present our 2s and 2p excitation and
electron-capture cross sections and compare with experimental
measurements and various calculations. The agreement with
the calculations of Winter [20] is generally good. However,
detailed comparison with Winter’s 220-state Sturmian function
calculations (see Table V in [20]) reveals that there are some
discrepancies. These are clearly noticeable, e.g., at energies of
8 and 25 keV. In the 2s excitation cross sections (Figure 3),
the disagreements at these energies are about 13% and 16%,
respectively. However, in the case of excitation to the 2p state
the discrepancies are 5% and 12%, respectively. Interestingly,
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FIG. 3. The cross section for excitation to the 2s state for the
p-H(1s) collisions. Experimental results of Higgins et al. [56] and
Morgan et al. [57] as well as the theoretical calculations by Winter
and Lin [58], Kołakowska et al. [24], Sidky and Lin [59], and Winter
[20] are shown. The present SC-CCC results are shown by a red solid
line. Experimental results are given with error bars, while symbols
indicate the theoretical calculations.
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FIG. 4. The cross section for excitation to the 2p state for the p-
H(1s) collisions. Experimental results are due to Detleffsen et al. [60],
Morgan et al. [57], and Kondow et al. [61]. Theoretical calculations
are as described in Fig, 3.

our cross sections for electron capture to the 2p level agree
very well with the corresponding results of Winter [20] at all
energies.

Also shown in Figs. 3–6 are the cross sections by
Kołakowska et al. [24] obtained using the lattice-based Fourier
collocation method. Our results agree with theirs at all energies
except at 100 keV for excitation to the 2p state and at 40
keV for electron capture to the 2s state. Relatively worse
agreement is observed with the calculations from the two-
center momentum-space discretization method of Sidky and
Lin [59]. Significant differences in 2p excitation and 2s capture
cross sections are visible at almost all five energies given by
Sidky and Lin [59]. Winter and Lin [58] reported 36-state
triple-center results at E = 8, 11.11, and 15 keV. These are
also displayed in Figs. 3–6. Overall agreement between our
results and the calculations of Winter and Lin [58] is not very
good. For example, for the 2s excitation (Fig. 3) at 8 keV the
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FIG. 5. The cross section for electron transfer to the 2s state for
the p-H(1s) collisions. Experimental results are due to Bayfield [62],
Chong and Fite [63], Hill et al. [64], Morgan et al. [57], and Ryding
et al. [65]. Theoretical calculations are as described in Figure 3.
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FIG. 6. The cross section for electron transfer to the 2p state
for the p-H(1s) collisions. Experimental results are due to Kondow
et al. [61], Morgan et al. [57], and Stebbings et al. [66]. Theoretical
calculations are as described in Fig. 3.

discrepancy is almost 40%. This gets even worse for the 2p

excitation cross section at E = 11.11 keV.
For the 2s excitation (Fig. 3), in the range 5–15 keV there is

excellent agreement with the experimental values of Morgan
et al. [57]. But at higher energies our results lie slightly above
the experimental data of Higgins et al. [56]. As is seen from
Fig. 4, the 2p excitation cross section is in good agreement
with the experiment except for the region 15–25 keV. At higher
energies our cross sections are within the error bars of the
measurements by Detleffsen et al. [60]. As to electron transfer
to the 2s state (Fig. 5), our cross sections are in agreement
with the experimental data of Bayfield [62], Chong and Fite
[63], Hill et al. [64], and Morgan et al. [57]. But in the 40–100
keV energy interval our results are located between the values
given by Bayfield [62] and Ryding et al. [65]. A comparison
of the calculated 2p electron-transfer cross section in Figure 6
shows excellent agreement with the experiment of Kondow
et al. [61], Morgan et al. [57], and Stebbings et al. [66].

IV. CONCLUSION

The semiclassical convergent close-coupling approach to
ion-atom collisions has been extended to include rearrange-

ment channels. The approach has been applied to calculate
the integral alignment parameter A20 associated with the
degree of linear polarization of Lyman-α emission induced
by proton impact on atomic hydrogen over the broad energy
range spanning 1 to 1000 keV. It provides detailed information
about the relative population of different magnetic substates
and can serve a sensitive test for theory. The calculated
linear polarization parameter A20 includes contributions to
Lyman-α radiation from both direct and exchange excitations
of atomic hydrogen and is in good agreement with the
most recent measurements of Keim et al. [30] as well as
earlier experimental data of Hippler et al. [51]. However, at
higher energies the agreement with the experiments is less
satisfactory. Fairly good agreement with the two-center BGM
calculations by Keim et al. [30] is obtained. The excitation as
well as capture cross sections to the lowest levels of the atomic
hydrogen are in excellent agreement with the experimental
data.

As mentioned earlier, almost a factor of 2 disagreement
still exists between experimental measurements [46,47] and
theoretical calculations [20,48] for the Balmer-α emission.
Another challenge is calculation of stopping power. The first
coupled-channel calculation of the energy loss for protons
colliding with H atoms was reported by Grande and Schiwietz
[67]. Since then, the problem has not been fully resolved.
Recently, we reported stopping-power calculations for antipro-
tons in atomic [68] and molecular targets [69]. However, a full
solution to the proton-H energy loss problem is more chal-
lenging as it requires solution of the concurrent H-H problem
as well. Grande and Schiwietz [67] considered the latter in the
so-called first-order plane-wave Born approximation. It would
be interesting to apply the present method to the Balmer-α
emission problem and calculations of stopping cross sections
for protons colliding with atomic hydrogen.
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