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Velocity-dependent dipole forces on an excited atom
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We present a time-dependent calculation of the velocity-dependent forces which act on an excited atomic
dipole in relative motion with respect to ground state atoms of a different kind. Both its interaction with a single
atom and with a dilute atomic plate are evaluated. In either case, the total force consists of a conservative van
der Waals component and a nonconservative Röntgen component. On physical grounds, the former corresponds
to the velocity-dependent recoil experienced by the excited atom in the processes of absorption and emission
of the photons that it exchanges with the ground-state atoms on a periodic basis. The latter corresponds to the
time-variation of the Röntgen momentum, which is also mediated by the periodic exchange of quasiresonant
photons. We find that, at leading order, all these interactions are linear in velocity. In the nonretarded regime
the van der Waals force dominates, being antiparallel to the velocity. On the contrary, in the retarded regime
the velocity-dependent forces oscillate in space, van der Waals and Röntgen forces are of the same order in the
atom-atom interaction, and the Röntgen component dominates in the atom-surface interaction.
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I. INTRODUCTION

Frictional forces mediated by the electromagnetic (EM)
vacuum field between neutral atoms and dielectric objects in
relative motion have been the subject a number of recent
works [1–10]. As already appreciated by Einstein in his
celebrated paper of 1917 [11], it is the Doppler shift on
the photons which interact with a neutral atom in motion
with respect to a thermal bath that gives rise to an effective
friction which drives the atom to thermal equilibrium. Since
then, a number of authors have discussed the possibility of
an analogous effect at zero temperature [1–10,12–15]. In
this case, it is the exchange of vacuum photons between
the fluctuating currents of neutral objects moving at relative
velocities that gives rise to a net transfer of momentum
between them in the direction parallel to the velocity. In this
respect, the explanatory work by Pendry [1] has motivated
the investigation of the so-called quantum friction in different
scenarios. Several approaches and approximations have been
considered since then by a number of authors, yielding
apparent contradictory results with regard to the dependence
of the friction force on the velocity. Nonetheless, recent
works agree on the cubic scaling of the friction force with
velocity on a ground-state atom at zero temperature in motion
with respect to a metallic slab [8–10]. For the case of the
interaction between two macroscopic objects, the approaches
are semiclassical and based on linear response theory and
the fluctuation dissipation theorem [2,3]. Concerning the
interaction between an atom and a dielectric object, the authors
of Refs. [5,9,12] have treated the atom quantum-mechanically,
while the electric response of the system macroscopic object-
EM field has been considered semiclassical. On the contrary,
the authors of Refs. [7,10,14] have applied time-dependent
perturbation theory within a Hamiltonian approach in which
the interaction between the macroscopic objects and the EM
field is effective and semiclassical. Lastly, the interaction
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between two harmonic oscillators (intended to describe two
atoms) has been considered by the authors of Refs. [6,8,15]
within a Hamiltonian approach in which the EM interaction
between them reduces to the electrostatic (i.e., nonquantum)
one. Finally, all the aforementioned works, except for that by
Scheel and Buhmann [5], deal with bodies in their (internal)
ground states, and they all appeal to some effective mechanism
of dissipation to explain quantum friction.

In this article we study the velocity-dependent EM force
between two neutral bodies, one of which is initially prepared
in an excited state. In the first place we study the interaction
between two atoms of different kinds, A and B, in relative
motion, one of which, say atom A, is initially prepared in
an excited state at zero temperature—see Fig. 1(a). This is
probably the simplest realistic scenario where a Hamiltonian
treatment can be carried out all the way to the end. Important
is the fact that dissipation is purely radiative here, which
allows us to trace it along the calculation. In order to simplify
the calculation we adopt the quasiresonant approximation
outlined in Ref. [16]. That is, we assume two-level atoms for
which the detuning between their resonant frequencies, �AB ≡
ωA − ωB , is such that �A,B < �AB � ωA,B , where �A,B are
the linewidths of the corresponding transitions of atoms A

and B, respectively. This condition is easily met in pairs of
alkali atoms as well as, in an approximate manner, in pairs of
circular Rydberg atoms [17]. It allows us to truncate our results
at leading order in �AB/ωA,B . In addition, we assume that
the observation time T satisfies 2π/|�AB | < T � 2π/�A,B ,
such that atom A remains excited until the observation
time. We will extend our approach to the calculation of the
velocity-dependent force on an excited atom of type A flying
at constant velocity parallel to a thin plate made of a random
distribution of atoms of kind B in their ground state—see
Fig. 1(b).

The paper is organized as follows: In Sec. II we explain
the fundamentals of our approach. In Sec. III we compute
the velocity-dependent van der Waals force. The Röntgen
force is evaluated in Sec. IV. Conclusions are summarized in
Sec. V.
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FIG. 1. (a) Sketch of the interaction of atom A with an atom B.
Atom A moves at constant velocity v while atom B remains at rest at
a distance R which varies in time. (b) Sketch of the interaction of an
atom A with a thin plate made of a random distribution of atoms of
kind B, with numerical surface density σ . Atom A flies with velocity
v parallel to the plate at a height d . The wavy lines represent the
pairs of photons exchanged by the atoms. Emission and absorption
processes take place at different locations of atom A.

II. FUNDAMENTALS OF CALCULATION

We aim at computing the velocity-dependent force on the
atom A as a result of its EM interaction and its relative
motion with respect to atom B in the electric-dipole and
quasiresonant approximations. Our approach is based on that
of Ref. [16], which is appropriately extended to account for
dynamical effects. Basically, the extension consists of, in
the first place, promoting the center-of-mass (CM) degrees
of freedom (d.o.f.) of the atoms to quantum operators, and
second, adding the contribution of the Röntgen momentum
both to the force operator and to the interaction poten-
tial. Following Ref. [18], in the electric-dipole approxima-
tion the canonical conjugate momenta of the atomic CM
position vectors RA,B are PA,B = QA,B − dA,B · B(RA,B),
with QA,B being the kinetic momenta of the CM of each
atom. The interaction potential between the free EM field
and the atomic dipoles is W = WE

A + WE
B + WR

A + WR
B ,

where

WE
A,B = −dA,B · E(RA,B),WR

A,B = [PA,B · [dA,B × B(RA,B)]

+ [dA,B × B(RA,B)] · PA,B]/2mA,B

are the electric field and Röntgen coupling potentials, re-
spectively, which act upon the free Hamiltonians. These are
the free Hamiltonian of the atomic internal d.o.f., HA +
HB = �ωA|A+〉〈A+| + �ωB |B+〉〈B+|, the kinetic energy of
the atomic CMs, KA,B = c(Q2

A,B + c2m2
A,B)1/2, and the

Hamiltonian of free photons, HEM = ∑
k,ε �ω(ak,εa

†
k,ε +

1/2). In the above expressions dA,B denote the electric-dipole-
moment operators of atoms A and B, respectively, mA,B are
their respective atomic masses, and E and B are the electric and
magnetic field operators, respectively, which can be expressed
as series of annihilation and creation field operators of photons

of momentum �k:

E(RA,B) =
∑

k

E(−)
k (RA,B) + E(+)

k (RA,B)

= i
∑
k,ε

√
�ck

2Vε0
[εak,εe

ik·RA,B − ε∗a†
k,εe

−ik·RA,B ],

B(RA,B) =
∑

k

B(−)
k (RA,B) + B(+)

k (RA,B)

= i
∑
k,ε

√
�

2ckVε0
k × [εak,εe

ik·RA,B − ε∗a†
k,εe

−ik·RA,B ],

where V is a quantization volume, ω = ck is the photon
frequency, and the operators a

†
k,ε and ak,ε are the creation

and annihilation operators of photons of momentum �k and
polarization ε, respectively.

As in Ref. [16], we use the wave-function formalism
in the Schrödinger picture [19] to compute the velocity-
dependent force on an excited atom A which moves at certain
velocity v with respect to an atom B in its ground state.
That is, denoting by U(T ) the time-evolution operator at
the time of observation T , U(T ) = T exp {−i�−1

∫ T

0 dt[HA +
HB + HEM + KA + KB + WE

A + WE
B + WR

A + WR
B ]}, and by

|�(0)〉 the wave function of the two-atom system right at the
moment at which atom A gets excited, the total force acting
upon atom A at T > 0 reads, at O[(WE

A + WR
A )2],

〈FA(T )〉 = ∂T 〈QA(T )〉
= −i�∂T 〈�(0)|U†(T )∇RA

U(T )|�(0)〉
+ ∂T 〈�(0)|U†(T )dA × B(RA)U(T )|�(0)〉

� −∇RT

〈[
WE

A + WR
A

]
(T )

〉
/2 + ∂T 〈[dA×B(RA)](T )〉

� 1
2∇RT

〈
dA · [

E(RA) + m−1
A 〈QA〉 × B(RA)

]
(T )

〉
+ ∂T 〈[dA × B(RA)](T )〉. (1)

In this equation, a term quadratic in B(RA) has been
discarded in the last line because it yields a negligible
contribution under quasiresonant conditions and we assume
that quantum fluctuations over the classical trajectories of
the atoms are negligible, both in the positions and in the
kinetic momenta of their CMs. That is, denoting by UK(T ) =
exp {−i�−1[KA + KB]} the free-evolution operator of the CM
d.o.f., the (approximately) constant values of the atomic kinetic
momenta read 〈QA,B〉 ≡ 〈�(0)|U†

K(t)QA,BUK(t)|�(0)〉 ∀ t .
Next, neglecting quantum fluctuations over the expecta-
tion values of the CM position and momentum vec-
tors, we can write 〈�(0)|U†

K(t)F(RA,B,QA,B)UK(t)|�(0)〉 �
F(〈RA,B(t)〉,〈QA,B〉) for any functional F of the operators
RA,B and QA,B . In particular, the functional gradient ∇RA

is
replaced with ∇RT

in Eq. (1), with RT ≡ 〈[RA − RB](T )〉, and
the constant velocity of atom A relates to 〈QA〉 through the
classical relativistic expression

v = ∂

∂t
〈�(0)|U†

K(t)RAUK(t)|�(0)〉

� 〈QA〉/mA√
1 + 〈QA〉2/(mAc)2

.
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Similar to the calculation carried out in Ref. [16] for
the van der Waals (vdW) interaction, we apply standard
time-dependent perturbation theory at order four in W to
compute the force of Eq. (1) under quasiresonant conditions.
The only difference here is the additional coupling to the
Röntgen momentum. We address first the velocity-dependent
force in the absence of the Röntgen momentum, which we refer
to as velocity-dependent vdW force. Later, we compute the
terms of the force which depend on the Röntgen momentum,
which we refer to as Röntgen force for brevity.

III. VELOCITY-DEPENDENT VAN DER WAALS FORCE

It was found in Ref. [16], by using standard time-dependent
perturbation theory at order four in the potential WE

A + WE
B ,

that the energy of interaction between an excited atom A and
a ground-state atom B at time T after the excitation of atom
A is given by

〈
WE

A (T )
〉 � 1

�3

∫ ∞

−∞

Vk2dk

(2π )3

∫ ∞

−∞

Vk
′2dk′

(2π )3

∫ 4π

0
d


×
∫ 4π

0
d
′

[
i〈�(0)|U0(−T )|�(0)〉�(T − 2R/c)

×
∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′〈�(0)|dA

·E(−)
k′ (RA)U0(T − t)dB · E(+)

k′ (RB)U0(t − t ′)dB

·E(−)
k (RB)

×U0(t ′ − t ′′)dA · E(+)
k (RA)U0(t ′′)|�(0)〉

]

+ [k ↔ k′]†, (2)

where R is the interatomic displacement vector, R =
RA − RB , and U0(t) is the unperturbed time-evolution prop-
agator in the absence of W . Equation (2) corresponds almost
completely to the diagram of Fig. 2(a) alone, where the
photonic loop is made of two doubly resonant photons. In
addition, the diagrams (b)–(f) of Fig. 1 in Ref. [16] provide the
Heaviside function �(T − 2R/c), which guarantees causality.

FIG. 2. (a) Diagrammatic representation of Eq. (2) for 〈WE
A (T )〉.

Time runs along the vertical as indicated by the arrows. R is intended,
generally, as a quantum operator. Only for both atoms at rest can R
be treated in this picture as a classical variable. (b) Diagrammatic
representation of Eq. (10) for 〈WE

A (T )〉v up to order (v/c)3. The
interatomic displacement here is a classical variable which depends
on time. v(T − t ′′) is the displacement of atom A during the lag
between the emission of the first photon and the absorbtion of the
second photon.

For both atoms at rest (which we denote by the superscript
0) their position vectors RA and RB can be considered
as classical and constant vectors, and U0(t) reads U0

0(t) =
exp [−i�−1(HA + HB + HEM )t]. Finally, |�(0)〉 at zero ve-
locity is made of the tensor product of the EM vacuum
state (|0γ 〉) and the internal states of the atoms, the excited
one for atom A and the fundamental one for atom B,
|�0(0)〉 = |A+〉 ⊗ |B−〉 ⊗ |0γ 〉. Substituting next these for-
mulas in Eq. (2), taking the limit to the continuum by replacing
the sums over momenta by integrals, and summing over
polarizations and integrating in orientations, we arrive at [16]

〈
WE

A (T )
〉0 � 4αf c3

πε0e2
μA

i μB
j μB

p μA
q

∫ +∞

−∞
dkk2Im{Gij (k′R)}

×
∫ +∞

−∞
dk′k′2Im{Gpq(kR)}�(T − 2R/c)

×
∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′[(ieiωAT e−i(T −t)ω′

× e−i(t−t ′)ωB e−i(t ′−t ′′)ωe−it ′′ωA ) + (ω ↔ ω′)†],

(3)

where αf is the fine structure constant, μA = 〈A−|dA|A+〉,
μB = 〈B−|dB |B+〉, and the tensor G(kR) is the dyadic
Green’s function of the electric field induced by an electric
dipole of frequency ck in free space:

G(kR) = keikR

4π
[α/kR + iβ/(kR)2 − β/(kR)3], (4)

where the tensors α and β read α = I − RR/R2,
β = I − 3RR/R2.

Let us consider next that the atoms move away from
each other at relative velocity v. For simplicity, we consider
atom B at rest in our reference frame. We denote the
associated observables by the superscript v. At leading order,
the dominant contribution to the interaction still comes from
Eq. (2), but now allowing for the constant motion of the CM
of each atom. In order to account for this motion, the position
vectors of the CMs, RA,B , and their kinetic momenta, QA,B ,
are promoted to quantum operators; the initial state is now
the tensor product of the EM vacuum, the initial internal
atomic states and the states of the CMs of each atom; and
the time-evolution propagator contains the kinetic energy of
the CMs defined earlier, U0(t) = U0

0(t) ⊗ UK(t). When the
CM d.o.f. are considered quantum operators in Eq. (2), the
resultant equation reads

〈
WE

A (T )
〉v �

∫
dtdt ′dt ′′dkdk′[〈�(0)|

× C(A±,B±,γ ; k,k′,t,t ′,t ′′,T )UK(−T )eik′ ·RA

×UK(T − t)e−ik′·RBUK(t − t ′)eik·RB

×UK(t ′ − t ′′)e−ik·RAUK(t ′′)|�(0)〉] + [k ↔ k′]†,

(5)

where we have isolated explicitly the factors which depend
on the CM operators alone, with C being a function of the
photonic and internal atomic d.o.f. as well as of the time and
frequency variables. In the absence of the Röntgen momentum,
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the following relation holds in application of the canonical commutation relations, [Ri
A,B,Q

j

A,B] � i�δij ,1

e−ik·RA,B e−iK(QA,B )t/�eik·RA,B = e−iK(QA,B+�k)t/�

� e−iK(QA,B )t/� exp
[−ik · QA,B

mA,B

t

[
1 − Q2

A,B/2

(mA,Bc)2
+ 3Q4

A,B/8

(mA,Bc)4

]]
. (6)

In the last line we expanded K up to terms of order five in QA,B/mA,Bc. Applying the above relation to Eq. (5), we end up with
the expression

〈
WE

A (T )
〉v �

∫
dtdt ′dt ′′dkdk′

{
〈�(0)|UK(−t ′)C(A±,B±,γ ; k,k′,t,t ′,t ′′,T )

× exp
[
ik′ · QA

mA

(T − t ′)
[

1 − Q2
A

2(mAc)2
+ 3Q4

A

8(mAc)4

]]

× exp
[

− ik′ · QB

mB

(t − t ′)
[

1 − Q2
B

2(mBc)2
+ 3Q4

B

8(mBc)4

]]
eik′ ·(RA−RB )e−ik·(RA−RB )

× exp
[
ik · QA

mA

(t ′ − t ′′)
[

1 − Q2
A

2(mAc)2
+ 3Q4

A

8(mAc)4

]]
UK(t ′)|�(0)〉

}
+ {k ↔ k′}†, (7)

where terms of the order of �k/QA,B times less have been ignored in the exponentials.2 We observe that the factors which depend
on the CM d.o.f. are evaluated on the state of the CM at time t ′, UK(t ′)|�(0)〉. Neglecting quantum fluctuations in the CM d.o.f.
and making use of the approximation

v � 〈QA〉
mA

[
1 − 〈QA〉2

2(mAc)2
+ 〈QA〉4

8(mAc)4

]
, (8)

we find

〈WE
A (T )〉v �

∫
dtdt ′dt ′′dkdk′[〈�(0)|C(A±,B±,γ ; k,k′,t,t ′,t ′′,T )|�(0)〉

× e−ik·[〈RA(T )〉−v(T −t ′′)−〈RB 〉]eik′ ·[〈RA(T )〉−〈RB 〉]e−ik·v(v/c)4(t ′′−t ′)/4eik′ ·v(v/c)4(T −t ′)/4] + [k ↔ k′]†. (9)

This result shows that, up to terms of order three in v/c, the net effect of the application of Eqs. (6) and (8) is the substitution
of the operators RA,B in Eq. (2) by their corresponding classical vectors which evolve in time as 〈RB(t)〉 = 〈RB〉 constant,
〈RA(t)〉 = 〈RA(T )〉 − v(T − t), with 0 � t � T . The absence of Doppler shifts of order (v/c)3 is remarkable.

The resultant diagrammatic representation of 〈WE
A (T )〉v up to O[(v/c)3] is shown in Fig. 2(b). Once integrated in orientations,

the interaction energy of the moving atom A reads

〈
WE

A (T )
〉v � 4αf c3

πε0e2
μA

i μB
j μB

p μA
q

∫ +∞

−∞
dk′

∫ +∞

−∞
dk

{ ∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′[k′2Im{Gij (k′RT )}k2Im{Gpq[k|RT − v(T − t ′′)|]}

×�[T (1 + vR/c) − 2RT /c](ieiωAT e−i(T −t)ω′
e−i(t−t ′)ωB e−i(t ′−t ′′)ωe−it ′′ωA)] + [ω ↔ ω′]†

}
, (10)

where RT was defined earlier as the interatomic displacement vector at the time of observation. In Eq. (10) the argument of the
first Green function is shifted with respect to the one in Eq. (3) by an amount proportional to the displacement of atom A during
the lag between the emission of the first photon and the absorbtion of the second photon by atom A, v(T − t ′′). Correspondingly,
the argument of the Heaviside function is shifted by an amount vRT /c, where vR is the component of v parallel to RT . The shift
in the argument of the Green function gives rise to two kinds of terms at O(vR/c),

G
[
k|RT − v

(
T − t ′′

)|] � keik(RT −vRT +vRt ′′)

4π

[
αT

k[RT − vR(T − t ′′)]
+ iβT

{k[RT − vR(T − t ′′)]}2 − βT

{k[RT − vR(T − t ′′)]}3

]

� keikRT

4π

{
e−ikvR (T −t ′′)

[
αT

kRT

+ iβT

(kRT )2 − βT

(kRT )3

]
+ vR(T − t ′′)

RT

[
αT

kRT

+ 2iβT

(kRT )2 − 3βT

(kRT )3

]}
,

(11)

where the tensors read αT = I − RT RT /R2
T , βT = I − 3RT RT /R2

T . The terms within the first square brackets of the second line
of Eq. (11) can be interpreted as Doppler shifts on the frequency of the photon emitted from atom A, whereas the terms within

1The inclusion of the Röntgen momentum would yield contributions of higher order in W , hence being negligible.
2This approximation relies on the assumption that the active electrons within the atoms are nonrelativistic, which implies an implicit

wavelength cutoff of the order of the electronic Compton wavelength, which translates into the assumption mec/mAv � 1.
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the second square brackets are multiplied by the lag between the photons emitted and absorbed by atom A. This distinction,
however, is merely formal, since in both cases the origin of these terms lies in the Doppler shifts of the complex exponentials of
Eq. (9), restricted to terms linear in vR/c.

The substitution of Eq. (11) into Eq. (10) yields three different contributions to 〈WE
A (T )〉v. We denote the interaction associated

with the first term of Eq. (11) by 〈WE
A (T )〉v

Dop, and the interaction associated with the second term of Eq. (11) by 〈WA(T )〉v
Lag.

Lastly, the Heaviside function contributes at leading order with a term 〈WE
A 〉v

� = −vR∂
2∂vR

〈WE
A [2RT (1 − vR/c)/c]〉0|vR=0. In

summary, we obtain〈
WE

A (T )
〉v
�

= 2Uijpq�ABvR

R5
T c2

[
β

ij

T β
pq

T − k2
BR2

T

(
β

ij

T β
pq

T + 2α
ij

T β
pq

T

) + k4
BR4

T α
ij

T α
pq

T

]
sin (2kART )

− 4Uijpq�ABvR

R4
T c2

kB

[
β

ij

T β
pq

T − k2
BR2

T α
ij

T β
pq

T

]
cos (2kART ), (12)

which is of the order of vR�ABRT /c2 times the interaction 〈WE
A (T )〉0 calculated in Ref. [16], with Uijpq = μA

i μA
q μB

j μB
p /

[(4πε0)2
��AB]. As for the Doppler term we find

〈WA(T )〉v
Dop = 2Ũijpq

R6
T

[
β

ij

T β
pq

T − k̃2
AR2

T

(
β

ij

T β
pq

T + 2α
ij

T β
pq

T

) + k̃4
AR4

T α
ij

T α
pq

T

]
cos (2k̃ART )

+ 4Ũijpq

R5
T

k̃A

[
β

ij

T β
pq

T − k̃2
AR2

T α
ij

T β
pq

T

]
sin (2k̃ART ) − 2Ũijpq

R6
T

[
β

ij

T β
pq

T − k2
BR2

T

(
β

ij

T β
pq

T + 2α
ij

T β
pq

T

) + k4
BR4

T α
ij

T α
pq

T

]

× cos (2kBRT + �̃ABT ) − 4Ũijpq

R5
T

kB

[
β

ij

T β
pq

T − k2
BR2

T α
ij

T β
pq

T

]
sin (2kBRT + �̃ABT ), (13)

which corresponds to the result obtained in Ref. [16] for 〈WA(T )〉0 but for the replacement of kA and �AB with their
Doppler-shifted values, kA → k̃A = kA(1 − vR/c), �AB = ωA − ωB → �̃AB = ωA − ωB(1 + vR/c), and Uijpq → Ũijpq =
μA

i μA
q μB

j μB
p /[(4πε0)2

��̃AB]. Finally, the lag term reads

〈WA(T )〉v
Lag = (vR/RT �AB)2Uijpq

{
[2c−1�ABRT cos (2kART ) − sin (2kART )]

[
3β

ij

T β
pq

T /R6
T + 2

k2
A

R4
T

(
β

ij

T β
pq

T + 2α
ij

T β
pq

T

)

+ k4
Aα

ij

T α
pq

T /R2
T

]
− [2c−1�ABRT sin (2kART ) + cos (2kART )]

(
5kAβ

ij

T β
pq

T /R5
T − 3k3

Aα
ij

T β
pq

T /R3
T

)}
, (14)

where oscillating transient terms of frequency much higher
than �AB have been omitted for simplicity.

Next, we proceed to compute the velocity-dependent vdW
force on atom A at order v/c, FvdW

A O(v), which is the gradient
of the difference between the electric interaction at velocity
v �= 0 and at zero velocity,〈

FvdW
A O(v)

〉 = − 1
2∇RT

[〈
WE

A (T )
〉v
Dop

− 〈
WE

A (T )
〉0

+ 〈
WE

A (T )
〉v
�

+ 〈
WE

A (T )
〉v
Lag

]
. (15)

Averaging Eq. (13) in time for T � |�−1
AB |, averaging over

dipole orientations, and restricting ourselves to the near-field
and far-field regimes for which kART � 1 and kART � 1,
respectively, we are left with

〈
FvdW

A O(v)

〉 � −20
U
R7

T

(kA + kB)

�AB

vR, kART � 1,

〈
FvdW

A O(v)

〉 � 4
Uk5

A

9R2
T

kB

�AB

vR[sin (2kART )

− 2c−1�ABRT cos (2kART )], kART � 1, (16)

where U = μ2
Aμ2

B/[(4πε0)2
��AB]. Interestingly, while in the

near-field both Doppler and lag terms contribute at the same
order to 〈FvdW

A O(v)〉, Doppler terms dominate in the far field.

Terms coming from 〈WE
A (T )〉v

� are negligible in both cases. In
addition, while 〈FvdW

A O(v)〉 is antiparallel to vR in the near field
so that it can be referred to as a friction force, it oscillates in
space in the far field. Physically, 〈FvdW

A O(v)〉 corresponds to the
velocity-dependent recoil experienced by atom A during the
processes of absorption and emission of the photons that it
exchanges with atom B, which takes place at a rate |�AB |.
〈FvdW

A O(v)〉 is indeed proportional to the adimensional factor
vRωA,B/c�AB , and hence to the component of the decay
rate of atom A which depends on the presence of atom
B, FvdW

A = −∑
ε

∫
d3k�k d

2dT
(|〈A−B−,γk,ε |U(T )|�(0)〉|2).3

The expression within parentheses is the probability of
emission of a single photon of momentum �k and polarization
ε at a time T after the excitation of atom A.

3Denoting by �(0)PA−B−γ (T ) the probability of emission of a single
photon at a time T after the excitation of atom A, �(0)PA−B−γ (T ) =∫

d3k
∑

ε〈�(0)|U†(T )|A−B−,γk,ε〉〈A−B−,γk,ε |U(T )|�(0)〉, the
following relation holds at our approximation order: 〈WE

A (T )〉 =
−i�

∫
d3k

∑
ε

d

dT
(〈�(0)|U†(T )|A−B−,γk, ε〉)〈A−B−, y γk, ε | U(T )

|�(0)〉 + c.c., with |A−B−,γk,ε〉 being a single-photon state
of momentum �k and polarization ε. From here we have that
FvdW

A = −∑
ε

∫
d3k�k d

2dT
|〈A−B−,γk,ε |U(T )|�(0)〉|2.
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Finally, for the sake of completeness we compute the
velocity-dependent vdW force on the excited atom A as it
flies with velocity v parallel to a thin plate (�) parallel to the
xy plane and made of a random distribution of ground-state
atoms of the kind B. The numerical atomic surface density is
denoted by σ , and the distance of atom A to the plate by d—see
Fig. 1(b). For simplicity, we adopt the pairwise summation
approximation, according to which the total force over atom A

is the sum of all the pair forces between atom A and each atom
B. Equipped with our computation of 〈FvdW

A O(v)〉, the problem
becomes simply geometrical, and its result is

〈
FvdW

A O(v)

〉
�

� σ

∫ ∞

−∞
dx

∫ ∞

−∞
dy〈FvdW

A O(v)(x,y,d)〉

= −8πσ
U

21d5

(kA + kB)

�AB

v, kAd � 1,

〈
FvdW

A O(v)

〉
�

� −2πσ
Uk3

A

9d2

kB

�AB

v[sin (2kAd)

− 2c−1�ABd cos (2kAd)], kAd � 1. (17)

In contrast to the result of Ref. [5], 〈FvdW
A O(v)〉� is always a

friction force for kAd � 1, while the direction of the force of
Eq. (79) in Ref. [5] depends on the sign of �AB . However,
this essential discrepancy is due to the particular form of the
effective permittivity adopted by the authors to characterize
the plate there—i.e., a Drude–Lorentz form—and not to an
essential difference between their approach and ours. As a
matter of fact, inserting the polarizability of atom B in the
scattering Green’s function of Eq. (65) in Ref. [5] and adopting
the quasiresonant approximation, a term is obtained of the
same order as that in our Eq. (16) in the nonretarded regime,
although with different numerical prefactors.

IV. RÖNTGEN FORCE

In this section we consider the force induced by the coupling
to the Röntgen momentum and the force due to the time
variation of the Röntgen momentum itself. They correspond
in Eq. (1), respectively, to conservative and nonconservative
forces.

As for the conservative force induced by the inclusion of
the interaction WR

A in Eq. (1), it not only yields an additional
potential energy 〈WR

A 〉 but also contributes to 〈WE
A 〉 through

the insertion of WR
A into the time-evolution operators. Since

WR
A is already linear in 〈QA〉, it provides terms of orders v/c,

(v/c)3, and higher to the conservative force without the need
to consider the quantum nature of the CM d.o.f. within the EM
operators. Thus, an analogous formula to that for 〈WE

A (T )〉 in
Eq. (2) but for the replacement of one of the operators WE

A by
WR

A yields the contribution of WR
A to the interaction energy.

Upon applying the operator − 1
2∇RT

we find, at order O(v/c),

〈
FR-c

A

〉 � −2αf c2

πε0e2�AB

μA
i μB

j μB
p μA

q εi
lmvl∇RT

×
[∫ +∞

−∞
dkk2 Im{Gmj (kRT )}

k − kA − iη

×
∫ +∞

−∞
dk′k′2 Im{Gpq(k′RT )}

k′ − kA − iη

]
+ c.c.,

where the superscript R-c in 〈FR-c
A 〉 denotes “Röntgen-

conservative,” εilm is the three-dimensional Levi–Civita tensor,
and the causal-adiabatic approximation has been considered
with η → 0+. As explained in Ref. [16], the latter amounts to
considering averages in time over a time interval much greater
than |�−1

AB |. Mathematically, this is achieved by replacing each
interaction Hamiltonian W by Weηt within the time integrals,
with η → 0+, and by extending the lower limits of integration
to −∞. In the above equation G(kR) is the dyadic Green’s
function of the magnetic field induced at a distance R by an
electric dipole of frequency ck in free space. Their components
are

Gmj (kR) = eikR

4πcR
(1 + i/kR)εmsjRs/R. (18)

After performing the frequency integrals in the complex plane
we end up with

〈
FR-c

A

〉 = −4παf ck4
A

ε0e2�AB

μA
i μB

j μB
p μA

q εi
lmvl

× ∇RT
Re{Gmj (kART )Gpq(kART )}.

Straightforward evaluation of the Green’s functions at
kART reveals that, in the near field, 〈FR-c

A 〉/〈FvdW
A O(v)〉 ∼

|�AB |kAR2
T /c � 1, whereas in the far field the ratio goes like

∼|�AB |/kA � 1. From this we conclude that the conservative
Röntgen force is always negligible.

As for the nonconservative (R-nc) force,

〈
FR-nc

A

〉 = ∂T 〈�(0)|U†(T )dA × B(RA)U†(T )|�(0)〉 (19)

corresponds to the time derivative of the Röntgen momentum.
It vanishes at zero velocity and an analogous calculation to
the one for 〈FvdW

A O(v)〉 must be performed for v �= 0, i.e., the
CM d.o.f. must be promoted to quantum variables. The only
differences with respect to the calculation of 〈FvdW

A O(v)〉 are the
replacements of an operator WE

A with −dA × B(RA) and of
− 1

2∇RT
with ∂T . This procedure leads to a formula similar to

that in Eq. (10):

〈
FR-nc

A

〉
i
= 2αf c3

πε0e2
ε

rp

i μA
r μB

q μB
mμA

n

∫ +∞

−∞

∫
dk′dkk′2k2

× Re ∂T

∫ T

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′eη(t+t ′+t ′′)

×{[[Im{Gmn(k′RT )}Im{Gpq[k|RT − v(T − t ′′)|]}
+ Im{Gpq(k′RT )}Im{Gmn[k|RT − v(T − t ′′)|]}]
× ieiωAT e−i(T −t)ω′

e−i(t−t ′)ωB e−i(t ′−t ′′)ωe−it ′′ωA]

+ [ω ↔ ω′]}, (20)

where the causal-adiabatic approximation has been applied
with η → 0+. Same as for Eq. (11), the v-dependent Green’s
functions within the integrand can be split into Doppler terms
and lag terms linear in v. The Doppler terms yield a null
contribution to the Röntgen force. The lag terms of the dyadic
Green’s functions are, in addition to the second term of Eq. (11)
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from G[k|RT − v(T − t ′′)|],
δGLag,R

nm (kRT )

= vR(T − t ′′)
keikRT

4πRT

[
αT,nm

kRT

+ 2iβT,nm

(kRT )2 − 3βT,nm

(kRT )3

]
,

a term coming from G[k|RT − v(T − t ′′)|] which is also
proportional to vR(T − t ′′)/RT ,

δGLag,R
pq (kRT ) = vR(T − t ′′)

keikRT

4πcRT

(
1

kRT

+ 2i

k2R2
T

)
εp q

s

Rs
T

RT

,

and two more terms proportional to v⊥(T − t ′′)/RT coming
from the expansion of the unit radial vector within the tensors
α,β in G[k|RT − v(T − t ′′)|] and in G[k|RT − v(T − t ′′)|],

δGLag⊥
nm (kRT ) = (T − t ′′)

keikRT

4πRT

[1/kRT + 3i/(kRT )2

− 3/(kRT )3]

× (
δi
nRT,iR

−1
T δj

mv⊥,j + δi
nv⊥,iδ

j
mRT,jR

−1
T

)
,

δGLag⊥
pq (kRT ) = −(T − t ′′)

keikRT

4πcRT

(
1/kRT + i/k2R2

T

)
εp q

s vs
⊥,

respectively, with v⊥ being the component of v perpendicular
to RT . The reason for the neglect of δGLag⊥ in the calculation
of 〈FvdW

A O(v)〉 is that its contribution does not survive the
orientational average there, whereas it does in 〈FR-nc

A 〉. Finally,
performing the time and frequency integrals of Eq. (20), we
are left with

〈
FR-nc

A

〉
i
= −2k5

Aαf c2π

�2
ABε0e2

ε
rp

i

μA
r μB,qμB

mμA
n

(T − t ′′)
{
6Gmn(kART )

× [
δGLag,R

pq (kART ) + δGLag⊥
pq (kART )

]
+ kA

[
Gmn(kRT )

[
δGLag,R

pq (kRT )

+ δGLag⊥
pq (kRT )

]]′
k=kA

} + {G → δG,δG → G},
(21)

where the prime on the big square brackets denotes the
derivative with respect to k of the functions therein. Note
that, in contrast to its cancellation found in Ref. [5] for an
atom in an incoherent superposition of states, vanishing of
〈FR-nc

A 〉 does not hold for an atom in a metastable excited state.
On physical grounds, a nonvanishing value of the Röntgen
momentum must be expected for a polarizable atom A in
motion and subject to the electric and magnetic fields induced
by a second atom B at rest [20]. Less obvious is the fact that
the Röntgen momentum varies in time.

Straightforward evaluation of the Green’s functions
in the equation above reveals that, in the near field,
〈FR-nc

A 〉/〈FvdW
A O(v)〉 ∼ k2

AR2
T � 1 and hence it is negligible.

On the contrary, in the retarded regime, after performing
the orientational average over the random orientation of the
electric dipoles, we find

〈
FR-nc

A

〉 � 2k6
AU

9R2
T �AB

sin (2kART )[2vR − v⊥], kART � 1,

(22)
whose radial component equals 〈FvdW

A O(v)〉.

Finally, as we did for the velocity-dependent vdW force we
compute here the Röntgen force on the excited atom A as it
flies with velocity v parallel to a thin plate (�) of ground-state
atoms of the kind B, at a distance d. Assuming that kAd � 1,
we obtain

〈
FR-nc

A

〉
�

� πσ
−2Uk5

A

9d�AB

v[cos (2kAd) + 2 sin (2kAd)/kAd].

(23)

The dominant term in this equation comes from the integration
over the plane of the component of 〈FR-nc

A 〉 which is parallel
to v⊥. Interestingly, this term is an order kAd or ωA/�AB

greater than the velocity-dependent vdW force in the retarded
regime.

V. CONCLUSIONS

We performed the time-dependent calculation of the
velocity-dependent forces acting on an excited atomic dipole
that moves at constant velocity with respect to ground-state
atoms of a different kind, in the quasiresonant approximation
at zero temperature. With this aim, we used time-dependent
quantum perturbation theory. Both the interaction with a single
ground-state atom and with a thin plate made of a random
distribution of independent atoms were evaluated. We find that,
at leading order, these interactions are linear in the velocity and
no relativistic corrections enter at this order.

In either case, the total force consists of a conservative
van der Waals component and a nonconservative Röntgen
component. For their computation, the position and kinetic
momentum vectors of the CM of the atoms have been
promoted to quantum variables. We have shown that relativistic
corrections to the van der Waals force enter at order (v/c)5.

In the nonretarded regime, the van der Waals force domi-
nates, being always antiparallel to the velocity—hence it can
be referred to as quantum friction. On physical grounds, this
force corresponds to the velocity-dependent recoil experienced
by the excited atom during the processes of absorption and
emission of the photons that it exchanges with the ground-state
atoms, which takes place at a rate |�AB |. This force is indeed
proportional to vωA,B/c�AB and hence to the emission rate
of the excited atom which is induced by the ground-state
atoms.

On the contrary, in the retarded regime the velocity-
dependent forces oscillate in space, the van der Waals and
the Röntgen forces are of the same order in the atom-atom
interaction, and the Röntgen component dominates in the
atom-surface interaction. The latter corresponds to the time-
variation of the Röntgen momentum, which is also mediated
by the periodic exchange of quasiresonant photons.
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