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We present tables for the bound-state energies for atomic hydrogen. The tabulated energies include the hyperfine
structure and thus this work extends the work of Mohr et al. [P. J. Mohr et al., Rev. Mod. Phys. 84, 1527 (2012)],
which excludes the hyperfine structure. The tabulation includes corrections of the hyperfine structure due to the
anomalous moment of the electron, due to the finite mass of the proton, and due to off-diagonal matrix elements of
the hyperfine Hamiltonian. These corrections are treated incorrectly in most other works. Simple formulas valid
for all quantum numbers are presented for the hyperfine corrections. The tabulated energies have uncertainties
of less than 1 kHz for all states. This accuracy is possible because of the recent precision measurement [R. Pohl
et al., Nature (London) 466, 213 (2010)] of the proton radius. The effect of this radius on the energy levels is
also tabulated and the energies are compared to precision measurements of atomic hydrogen energy intervals.
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I. INTRODUCTION

The current state of the theoretical knowledge of the bound-
state energy levels of atomic hydrogen has been presented in
the CODATA analysis of Ref. [1]. Here we expand on that
work, by also including the hyperfine structure. Because of
a recent precise determination [2,3] of the rms proton charge
radius Rp, obtained from measurements of the n = 2 intervals
in muonic hydrogen, all of the atomic hydrogen energy levels
can now be determined to an accuracy of better than 1 kHz. In
this work we present tables for the energies En�jf of |nljf mf 〉
bound states of atomic hydrogen. These tables also indicate
how the energy of each state is affected by the value of Rp and
by the determination of the Rydberg constant that results from
this Rp value.

The present work was performed because of the need
for precision energy levels for the analysis of an ongoing
measurement of the hydrogen n = 2 Lamb shift, for which
the hyperfine structure and fine structure must be carefully
considered. The tabulation is mostly based on the theoretical
and experimental work of others and is intended as a practical
resource.

II. OVERVIEW

To date, only three intervals in atomic hydrogen have been
measured to an accuracy of better than 1 kHz:

ν(1S1/2f = 1

→ 2S1/2f = 1) : 2 466 061 102 474.806(10) kHz,

ν(1S1/2f = 0 → 1S1/2f = 1) : 1 420 405.751 768(1) kHz,

ν(2S1/2f = 0 → 2S1/2f = 1) : 177 556 .8343(67) kHz,

(1)

where the first and the last values were measured [4,5] by
Hänsch and co-workers and the 1S1/2 hyperfine interval is
based on an analysis by Karshenboim [6] of all measurements
of this interval. The uncertainties in Eq. (1), and in all other
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quantities in this work, are given in parentheses and represent
one-standard-deviation uncertainties in the final digits.

All other measurements of intervals in atomic hydrogen
have uncertainties of greater than 6 kHz. The energies tabulated
in this work (and their uncertainties) are given to an accuracy
of 0.1 kHz. This accuracy is more than sufficient for comparing
to current measurements and foreseeable future improvements
of these measurements. None of our tabulated values, except
those directly derived from Eq. (1), are given to an accuracy
of less than 0.1 kHz, both because it is not necessary at this
time and because, given the experimental uncertainties, some
terms in the atomic hydrogen energies may not have been fully
considered at a higher level of accuracy.

Precise theoretical predictions are needed to determine all
other intervals [other than those of Eq. (1)] to an accuracy of
less than 1 kHz. In addition, precise values of fundamental
constants are required. The most important constant needed is
the Rydberg constant R∞. As will be discussed in Sec. V, this
constant can be obtained from a combination of the theoretical
predictions for the hydrogen atom and the measurements of
Eq. (1).

The second most important constant is the fine-structure
constant α, the value of which is known from a comparison
between theory and measurements of the magnetic moment of
the electron. For this work, we use the CODATA [7] value of

α = 1/137.035 999 139(31), (2)

which is derived almost entirely from the electron magnetic
moment. The proton’s mass, magnetic moment, and rms
charge radius are also needed. The CODATA values for these
quantities are

mp/me = 1836.152 673 89(17), (3)

gp = 5.585 694 702(17), (4)

Rp = 0.8751(61) fm. (5)

A more precise determination of the rms charge radius has
been obtained using measurements [2,3] of the n = 2 levels of
muonic hydrogen by Antognini and co-workers:

Rp = 0.840 87(39) fm. (6)
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This value differs significantly from the CODATA determi-
nation. We use this more precise determination of Rp in this
work, but also tabulate the shifts in the bound-state hydrogen
energies that would result if the CODATA value were used.
The other two required constants are the Compton wavelength
λC and the muon mass mμ, which have CODATA values of

-λC = λC

2π
= 386.159 267 64(18) fm, (7)

mμ/me = 206.768 2826(46). (8)

The constants of Eqs. (2)–(4) and (6)–(8) are all determined
using physical systems other than atomic hydrogen and
therefore should be considered to be external inputs to the
theory. Equations (2)–(4), (7), and (8) are known with sufficient
precision as to lead to uncertainties in the hydrogen energies
of much less than 0.1 kHz. The proton charge radius Rp of
Eq. (6), however, despite its more precise determination, is
still one of the leading causes for uncertainty in the hydrogen
energies.

The binding energy of an |n�jf mf 〉 state of hydrogen can
be written as

En�jf = E(g)
n + E

(fs)
n�j + E

(hfs)
n�jf , (9)

where

E(g)
n = −R

n2

mr

me
(10)

is the gross structure, E
(fs)
n�j is the fine-structure contribution,

and E
(hfs)
n�jf is the hyperfine-structure contribution. The energies

are of course independent of mf in the absence of an external
field. HereR = cR∞, c is the speed of light, R∞ is the Rydberg
constant, mr = memp/M is the reduced mass, M = me + mp,
and me and mp are the electron and proton masses, respectively.
For this work, Planck’s constant h is suppressed and all
energies are given in frequency units.

III. FINE-STRUCTURE ENERGY CONTRIBUTIONS

The values of E
(fs)
n�j are discussed in detail in Ref. [1]:

E
(fs)
n�j = �EM + ES + ER + E

(2)
SE + E

(2)
VP

+E(4) + E(6) + ERR + ESEN + ENS, (11)

where �EM gives the mass-corrected Dirac fine structure, ES

and ER are relativistic recoil corrections, E(2)
SE and E

(2)
VP are self-

energy and vacuum polarization quantum-electrodynamics
(QED) corrections, respectively, E(4) and E(6) are higher-order
QED corrections, ERR and ESEN are small QED corrections
due to the finite mass of the proton, and ENS is the correction for
the size (rms charge radius) of the proton. For completeness,
we include the formulas given in Ref. [1] that give contri-
butions that are significant to this work, leaving out energy
terms and corrections that lead to contributions of less than
0.025 kHz to our tabulated values. Because of the precisely
measured 1S-2S interval of Eq. (1), E(fs) for the 1S state energy
needs to be determined less accurately and is only necessary for
the determination of the Rydberg constant, as will be discussed
in Sec. V.

From Ref. [1], we obtain

�EM = EM −Mc2−E(g)
n = 2[fnj−1] − [fnj−1]2 mr

M

α2

Rmr

me

+R
n2

mr

me
+ 1 − δ�0

2� + 1

α2Rm2
e

κ�jn3m2
p

, (12)

ES = 2m3
r α

3R
m2

empπn3

{
δ�0

3
λ − 8

3
βn� − δ�0

9
− 7

3
an� − 2δ�0

me

mp

}
,

(13)

ER = 2meα
4R

mpπn3

{
D

(n�)
60 − 11δ�0

60
αλ2 + D

(n�j )
71 αλ

}
, (14)

E
(2)
SE = 2m3

r α
3R

m3
eπn3

{
4δ�0

3
λ − 4βn�

3
+ 10δ�0

9
− (1 − δ�0)

2κ�j (2� + 1)

me

mr

+
(

139

32
− 2 ln 2

)
πδ�0α − δ�0α

2λ2

+A
(n�j )
61 α2λ + G

(n�j )
SE α2

}
, (15)

E
(2)
VP = 2m3

r α
3R

m3
eπn3

{[
− 4

15

(
1 + 1.67

m2
e

m2
μ

)
+ 5π

48
α − 2

15
α2λ

+
(

19

45
− π2

27

)
α2

]
δ�0 + G

(1)(n�j )
VP α2

}
, (16)

E(4) = 2m3
r α

4R
m3

eπ
2n3

{
0.53894δ�0 + 0.3285(1 − δ�0)

κ�j (2� + 1)

me

mr

− 21.554δ�0α − 8δ�0

27
α2λ3 + B

(n�)
62 α2λ2

+B
(n�j )
61 α2λ + B

(n�j )
60 α2

}
, (17)

E(6) = 2m3
r α

5R
m3

eπ
3n3

{
0.418δ�0 − 1.2(1 − δ�0)

κ�j (2� + 1)

me

mr
+ C50α

}
,

(18)

ENS = 4m3
r α

2R2
pR

3m3
e
-λ2
Cn3

{
1 − α2 ln

αRp

n-λC

− 1.8α2

}
δ�0, (19)

ERR = 2m3
r α

4R
mpm2

eπ
2n3

δ�0

{
− 13.47 + 2

3
παλ2 + �RRαλ

}
,

(20)

and

ESEN = 8m3
r α

3R
3m2

pmeπn3

{
δ�0 ln

mp

meα2
− βn�

}
. (21)

Here λ = ln(α−2me/mr), δ�0 is the Kronecker delta,
κ�j = (�−j )(2j+1), fnj = [1+α2(n−δ)−2]−1/2 in Eq. (12)
(with δ = j + 1

2 − [(j + 1
2 )2 − α2]1/2), βn� are the Bethe

logarithms (tabulated in Ref. [8]),

an� = −2

[
ln

2

n
+

n∑
i=1

1

i
+ 1 − 1

2n

]
δ�0 + 1 − δ�0

�(� + 1)(2� + 1)
,

(22)
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D
(n�)
60 =

(
4 ln 2 − 7

2

)
πδ�0 +

[
3 − �(�+1)

n2

]
2π (1 − δ�0)

(4�2 − 1)(2� + 3)
,

(23)

A
(n�j )
61 =

[( n∑
i=1

4

i

)
+ 28

3
ln 2 − 4 ln n − 601

180
− 77

45n2

]
δ�0

+
(

1 − 1

n2

)(
2

15
+ δj (1/2)

3

)
δ�1

+ 8[3n2 − �(� + 1)](1 − δ�0)

3n2�(4�2 − 1)(� + 1)(2� + 3)
, (24)

and

B
(n�)
62 = 16

9

[
1.067 + ψ(n) − ln n − 1

n
+ 1

4n2

]
δ�0

+ 4δ�1

27

n2 − 1

n2
, (25)

with ψ being the digamma function. The values of G
(n�j )
SE of

Eq. (15), G
(1)(n�j )
VP of Eq. (16), and B

(n�j )
61 and B

(n�j )
60 of Eq. (17)

are discussed in Ref. [1] and the tabulated values (along with
values given in Refs. [9–13] and simple extrapolations and
interpolations) are sufficiently precise for the present work.
The values of D

(n�j )
71 are needed only for the lowest-lying states

and have recently been calculated in Ref. [14].
Although many uncertainties to the fine-structure energy

contributions E
(fs)
n�j are detailed in Ref. [1], only four uncer-

tainties dominate and need to be considered in this work.
The first comes from an uncertainty of ±19.7 in the � = 0
coefficients B

(n�j )
60 of Eq. (17), which leads to an uncertainty

of δ�0(2.0 kHz)/n3. The second comes from the uncertainty in
Rp [of Eq. (6)] in Eq. (19), which contributes δ�0(1.0 kHz)/n3.
The third comes from the coefficient C50 of Eq. (18), which
is presumed to be ±30δ�0 and leads to an uncertainty of
δ�0(1.0 kHz)/n3. The fourth comes from the �RR coefficient
of Eq. (20), which is presumed to be ±10, thus leading to an
uncertainty of δ�0(0.7 kHz)/n3. An additional uncertainty in
Eq. (14) has now been resolved by Ref. [14] and does not need
to be included. These four dominant uncertainties all have the
same dependence on n and � and therefore can be added in
quadrature to give a combined uncertainty of δ�0(2.6 kHz)/n3.
All other uncertainties listed in Ref. [1] are more than an order
of magnitude smaller. The values of E

(fs)
n�j for the lowest-lying

states, along with their uncertainties, are listed in Table I.

IV. HYPERFINE STRUCTURE

The hyperfine contributions to the energies are given by

E
(hfs)
n�jf = δ�0

(
f − 3

4

)
�Ehfs

1S + �n

n3

+ (1 − δ�0)
(
Ehfs

diag + �Ehfs
)
. (26)

For � = 0 states, where the structure of the nucleus affects
the hyperfine structure, E

(hfs)
n�jf is determined using the precise

measurement of the ground-state hyperfine interval �Ehfs
1S of

Eq. (1). For n = 2, �2 = 48.922(27) kHz can be determined

TABLE I. Fine-structure energies E
(fs)
n�j for the lowest-lying states

of atomic hydrogen. Uncertainties in units of the final digit of the
value are shown in parentheses. Values given without uncertainties
have uncertainties of less than 0.1 kHz. The values in this table are
determined using the Rydberg constant obtained in Sec. V; however,
using the CODATA value instead would not change the values, since
the resulting changes would be at the level of 1 Hz or less.

State E
(fs)
n�j (kHz) State E

(fs)
n�j (kHz)

1S1/2 −35 625 530.5(26)
2S1/2 −12 636 029.4(3)
2P1/2 −13 693 861.6 2P3/2 −2 724 820.1
3S1/2 −4 552 716.0(1)
3P1/2 −4 867 590.3 3P3/2 −1 617 501.0
3D3/2 −1 622 832.7 3D5/2 −539 495.5
4S1/2 −2 091 332.8
4P1/2 −2 224 408.7 4P3/2 −853 278.9
4D3/2 −855 566.5 4D5/2 −398 533.1
4F5/2 −399 342.4 4F7/2 −170 827.1
5S1/2 −1 123 202.3
5P1/2 −1 191 397.0 5P3/2 −489 379.3
5D3/2 −490 561.2 5D5/2 −256 560.1
5F5/2 −256 977.8 5F7/2 −139 977.9
5G7/2 −140 196.4 5G9/2 −69 996.6
6S1/2 −670 236.8
6P1/2 −709 720.8 6P3/2 −303 461.0
6D3/2 −304 148.6 6D5/2 −168 731.3
6F5/2 −168 974.3 6F7/2 −101 266.0
6G7/2 −101 393.0 6G9/2 −60 768.1
6H9/2 −60 846.8 6H11/2 −33 763.6

directly from the measured interval of Eq. (1). For higher n,
the correction �n is discussed in detail in Ref. [15] and to the
accuracy required here is given by

�n = 8

3
gpα

4Rme

mp

(
1

3
+ 3

2n
− 11

6n2

)
. (27)

For � �= 0, nuclear effects are not significant and the dom-
inant diagonal term Ehfs

diag of the atomic hydrogen hyperfine
Hamiltonian

Hhfs =gpα
2Rme

mp

a3
0

�2

{(
1 + gp − 1

gp

me

mp

) �I · �L
r3

+ (1 + ae)

[
3 �I · r̂ �S · r̂

r3
−

�I · �S
r3

+ 8π

3
δ(�r) �I · �S

]}

(28)

is given by

Ehfs
diag = gp

α2R
n3

m3
r

m3
e

me

mp

f (f + 1) − j (j + 1) − 3
4

(2� + 1)j (j + 1)

{
1 + ae

2κ�j

+ gp − 1

gp

me

mp

2κ�j − 1

2κ�j

+ α2

[
3(2j + 1)2 − 1

2(2j + 1)2j (j + 1)

+ 3

n(2j + 1)
+ 3 − 8κ�j

2n2(2κ�j − 1)

]}
. (29)

The ae = (ge − 2)/2 electron anomalous moment cor-
rections do not apply to the �I · �L term in the hyperfine
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TABLE II. Hyperfine-structure energies E
(hfs)
n�jf for the lowest-

lying states of atomic hydrogen. All values are uncertain by less
than 0.1 kHz. The precisely measured values are given for the 1S and
2S states.

State f E
(hfs)
n�jf (kHz) f E

(hfs)
n�jf (kHz)

1S1/2 0 −1 065 304.313 8260(8) 1 355 101.437 9420(3)
2S1/2 0 −133 167.6257(51) 1 44 389.2086(17)
2P1/2 0 −44 379.0 1 14 790.5
2P3/2 1 −14 781.3 2 8870.3
3S1/2 0 −39 457.0 1 13 152.3
3P1/2 0 −13 149.4 1 4382.4
3P3/2 1 −4379.7 2 2628.2
3D3/2 1 −2629.2 2 1577.4
3D5/2 2 −1576.9 3 1126.4
4S1/2 0 −16 645.9 1 5548.6
4P1/2 0 −5547.4 1 1848.8
4P3/2 1 −1847.7 2 1108.8
4D3/2 1 −1109.2 2 665.5
4D5/2 2 −665.3 3 475.2
4F5/2 2 −475.3 3 339.5
4F7/2 3 −339.4 4 264.0

Hamiltonian and this leads to the 2κ�j denominator of the
ae term. The ae correction is included (for the 2P states) in
Ref. [16], is included to first order in α in Ref. [17], but is
included incorrectly (without the 2κ�j in the denominator) in
Ref. [18]. The tabulation of Ref. [19] correctly includes the
ae correction for the P states (following the prescription of
Ref. [16]), but, because this prescription is specific to P states,
gives only an estimate (along with an estimated uncertainty)
for higher-� states. Given the size of the hyperfine structure, it
is sufficient for this work to approximate ae by its lowest-order
term: α/2π .

The correction proportional to [(gp−1)/gp](me/mp) results
from the interaction of the proton’s orbital motion with its spin.
This term is included (for the 2P states) in Ref. [16], but is
given incorrectly for the 2P state in Eqs. (27) and (28) of
Ref. [20] for muonic hydrogen, where the term is even more
important. The term is correctly included for muonic hydrogen
in Table II of Ref. [20] and in Ref. [21]. The term is omitted in
Ref. [17], Ref. [22], and Ref. [18]. This mass-correction term
contributes 13 kHz to the 2P1/2 hyperfine structure and thus
must certainly be included at the accuracy of this work. The
correction is included correctly for P states in the tabulation of
Ref. [19] (following the prescription of Ref. [16]), but, since
this prescription is specific to P states, only an estimate (along
with an estimated uncertainty) is given for higher-� states. The
general form for this correction (as a function of n, �, and j )
does not seem to appear previously in the literature.

The correction proportional to α2 in Eq. (29) is a relativistic
correction that is given in Ref. [17]. Higher-order corrections
are also considered in that work, but are insignificant at the
level of this work.

The smaller �Ehfs contribution comes from an off-diagonal
element of the hyperfine Hamiltonian. This element causes a
very slight mixing between the |n,�,j = � − 1

2 ,f = �,mf 〉
state and the |n,�,j = � + 1

2 ,f = �,mf 〉 state and its contri-

bution to the energy can be determined to sufficient accuracy
by the expression from second-order perturbation theory

�Ehfs = |〈n�jf = �mf |Hhfs|n�j ′f = �mf 〉|2

E
(fs)
n�j − E

(fs)
n�j ′

= 2α2R
n3

m2
e

m2
p

g2
p

(j − �)δf �

(2� + 1)4
. (30)

This expression for �Ehfs was first given (for the 2P states) in
Ref. [16]. This expression differs from the one given there in
that it is generalized to allow for any value of n, �, and j and is
simplified using analytic expressions for the 6-J symbols. The
general form does not appear to be presented in the literature
and an incorrect form (with an incorrect dependence on �)
is used in the tabulation of Ref. [19]. The magnitude of the
off-diagonal contributions calculated in Ref. [19] is too large
by a factor of �2(� + 1)2(2� + 1)2/36 (a factor of 25, 196, 900,
and 3025 for D, F , G, and H states, respectively).

The values of E
(hfs)
n�jf of Eq. (26) are listed in Table II. The

tabulated values include the contributions of Eq. (30). In all
cases the values can be determined to an uncertainty of less
than the 0.1 kHz accuracy tabulated in this work.

V. GROSS STRUCTURE

The gross structure E(g) of Eq. (10) requires a precise
value for the Rydberg constant. This value can be obtained
by equating the precise measured value of Eq. (1) for the
1S1/2f = 1 → 2S1/2f = 1 interval to Eq. (9), with the values
of E

(fs)
n�j and E

(hfs)
n�jf obtained in the previous sections:

2 466 061 102 474.806(10) kHz

= 3

4
Rmr

me
+ 22 989 501.2(2.2) kHz

− 310 712.2294(17) kHz. (31)

The number in the second line of Eq. (31) is due to the
difference of E

(fs)
n�j for the two states and includes the correlated

error for the difference. The second term is due to the difference
of E

(hfs)
n�jf for the two states and is given by the difference of the

1S and 2S hyperfine-interval measurements of Eq. (1) divided
by 4. Solving for the Rydberg constant gives

R = cR∞ = 3 289 841 960 248.9(3.0) kHz, (32)

where the 3.0 kHz uncertainty is dominated by the uncertainty
in the E(fs) term. Equation (32) differs considerably from the
CODATA value of 3 289 841 960 355(19) kHz. The difference
is almost entirely due to the fact that the value from Antognini
and co-workers of Rp [Eq. (6)] is used, whereas the CODATA
compilation uses the value of Eq. (5). A very small contribution
to the difference comes from the recent improvement [14] in
the determination of E(fs) from the determination of D

(n�j )
71 .

The uncertainty in the value from Antognini and co-workers
of Rp [Eq. (6)] contributes 1.2 kHz to the 3.0 kHz uncertainty
in Eq. (32), with the rest of the uncertainty resulting from the
other (theoretical) uncertainties discussed in the last paragraph
of Sec. III.
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TABLE III. Total binding energies for the lowest-lying S (� = 0)
states, with uncertainties in the last digits given in parentheses. Values
given without uncertainties have uncertainties of less than 0.1 kHz.
The last column gives the change δR in the binding energy that would
result if Rp is increased by 0.034 23 fm (the difference between the
CODATA value and that of Antognini and co-workers [2,3]).

n E(nS1/2f =0) (kHz) E(nS1/2f =1) (kHz) δR(kHz)

1 −3 288 087 922 416.0(4) −3 288 086 502 010.2(4) −15.3
2 −822 025 577 092.2(4) −822 025 399 535.4(4) −15.3
3 −365 343 617 904.3(2) −365 343 565 294.9(2) −8.5
4 −205 505 309 952.5(1) −205 505 287 757.9(1) −5.3
5 −131 523 180 988.2(1) −131 523 169 624.6(1) −3.6
6 −91 335 431 601.7(1) −91 335 425 025.6(1) −2.6
7 −67 103 520 641.6(1) −67 103 516 500.4(1) −1.9
8 −51 376 096 003.6 −51 376 093 229.3 −1.5
9 −40 593 435 126.6 −40 593 433 178.1 −1.2
10 −32 880 666 896.5 −32 880 665 476.0 −1.0
11 −27 174 094 155.3 −27 174 093 088.1 −0.8
12 −22 833 779 830.0 −22 833 779 008.0 −0.7
13 −19 455 996 185.2 −19 455 995 538.7 −0.6
14 −16 775 829 289.9 −16 775 828 772.2 −0.5
15 −14 613 608 126.8 −14 613 607 705.9 −0.4
16 −12 843 989 064.0 −12 843 988 717.2 −0.4
17 −11 377 372 464.9 −11 377 372 175.8 −0.4
18 −10 148 333 775.8 −10 148 333 532.3 −0.3
19 −9 108 198 599.8 −9 108 198 392.7 −0.3
20 −8 220 148 221.6 −8 220 148 044.1 −0.3

VI. TOTAL BINDING ENERGIES

Using Eq. (9), along with the Rydberg constant of Eq. (32),
the values of E

(fs)
n�j of Sec. III, and E

(hfs)
n�jf of Sec. IV, allows

for a determination of the energies of all bound states of
atomic hydrogen. Energies for � = 0, 1, and 2 are given in
Tables III, IV, and V, respectively, with higher-� energies
given in Table VI. The uncertainties listed are dominated by
the uncertainties in E(fs) (both due to the fine structure of the
state and due to the effect of E(fs) on the determination of the
Rydberg constant). The uncertainties listed take into account

the correlation between these two ways that E(fs) enters the
determination of the energies.

The final column in the tables gives the shift that the energy
levels would experience if the CODATA value of Rp were
used instead of the value from Antognini and co-workers. In
referring to Eq. (19), one might assume that the value of Rp

would affect only � = 0 states. However, this is not the case,
since the value of Rp also affects the determination of the
Rydberg constant [see Eq. (31)] and therefore the energies of
all states are affected.

VII. COMPARISON TO MEASURED VALUES

Table VII gives a compilation of the most precise mea-
surements to date of atomic hydrogen intervals. Many of
these measurements reported values that were corrected for
the hyperfine structure. Given the inconsistency of hyperfine
corrections applied in the literature (including inconsistent or
incorrect application of anomalous moment corrections, of
finite mass corrections, and of corrections due to off-diagonal
hyperfine-structure contributions), we have, where possible,
given the actual intervals (or linear combination of intervals)
measured.

Note that the hyperfine structure for the 4P1/2, 4P3/2, 4D5/2,
6D5/2, 8D3/2, 8D5/2, 12D3/2, and 12D5/2 states (with splittings
of 7396.2, 2956.5, 1140.5, 337.9, 221.8, 142.6, 65.7, and
42.2 kHz, respectively) is not resolved in the measurements of
Table VII and therefore it is crucial to know both the hyperfine
splittings and the relative strength of transitions to determine
the energy splittings. References [18,23] give explicit values
for the expected strength of the two hyperfine transitions
( 2

9 and 7
9 ) and give an explicit correction for how much this

linear combination differs from the hyperfine centroid of the
D states. References [25,26,29] do not give such explicit
corrections since their fits include the hyperfine structure.
We therefore list the hyperfine centroid values given in those
works. A further analysis of the work of Ref. [29] may be
necessary, as they appear to use a simplified form for the
presumed hyperfine intervals for their fits [33].

TABLE IV. Continuation of Table III for the lowest-lying P (� = 1) states.

n E(nP1/2f =0) (kHz) E(nP1/2f =1) (kHz) E(nP3/2f =1) (kHz) E(nP3/2f =2) (kHz) δR (kHz)

2 −822 026 546 135.9(7) −822 026 486 966.4(7) −822 015 547 496.7(7) −822 015 523 845.1(7) −26.8
3 −365 343 906 471.0(3) −365 343 888 939.2(3) −365 340 647 611.9(3) −365 340 640 604.0(3) −11.9
4 −205 505 431 929.9(2) −205 505 424 533.7(2) −205 504 057 100.4(2) −205 504 054 143.9(2) −6.7
5 −131 523 243 500.5(1) −131 523 239 713.6(1) −131 522 539 588.6(1) −131 522 538 074.9(1) −4.3
6 −91 335 467 797.2(1) −91 335 465 605.8(1) −91 335 060 441.3(1) −91 335 059 565.3(1) −3.0
7 −67 103 543 442.8(1) −67 103 542 062.8(1) −67 103 286 915.7(1) −67 103 286 364.0(1) −2.2
8 −51 376 111 281.9 −51 376 110 357.4 −51 375 939 428.9 −51 375 939 059.3 −1.7
9 −40 593 445 858.7 −40 593 445 209.3 −40 593 325 160.9 −40 593 324 901.3 −1.3
10 −32 880 674 721.0 −32 880 674 247.6 −32 880 586 732.3 −32 880 586 543.1 −1.1
11 −27 174 100 034.5 −27 174 099 678.8 −27 174 033 927.3 −27 174 033 785.2 −0.9
12 −22 833 784 358.7 −22 833 784 084.8 −22 833 733 439.4 −22 833 733 329.9 −0.7
13 −19 455 999 747.3 −19 455 999 531.9 −19 455 959 697.9 −19 455 959 611.8 −0.6
14 −16 775 832 142.0 −16 775 831 969.5 −16 775 800 076.2 −16 775 800 007.3 −0.5
15 −14 613 610 445.7 −14 613 610 305.5 −14 613 584 375.1 −14 613 584 319.0 −0.5
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TABLE V. Continuation of Tables III and IV for the lowest-lying D (� = 2) states.

n E(nD3/2f =1) (kHz) E(nD3/2f =2) (kHz) E(nD5/2f =2) (kHz) E(nD5/2f =3) (kHz) δR (kHz)

3 −365 340 651 193.1(3) −365 340 646 986.5(3) −365 339 566 803.7(3) −365 339 564 100.3(3) −11.9
4 −205 504 058 649.5(2) −205 504 056 874.8(2) −205 503 601 172.2(2) −205 503 600 031.7(2) −6.7
5 −131 522 540 392.4(1) −131 522 539 483.7(1) −131 522 306 163.9(1) −131 522 305 580.0(1) −4.3
6 −91 335 060 910.1(1) −91 335 060 384.3(1) −91 334 925 361.2(1) −91 334 925 023.3(1) −3.0
7 −67 103 287 212.4(1) −67 103 286 881.3(1) −67 103 201 852.2(1) −67 103 201 639.4(1) −2.2
8 −51 375 939 628.3 −51 375 939 406.5 −51 375 882 443.7 −51 375 882 301.1 −1.7
9 −40 593 325 301.3 −40 593 325 145.5 −40 593 285 138.7 −40 593 285 038.6 −1.3
10 −32 880 586 834.9 −32 880 586 721.3 −32 880 557 556.4 −32 880 557 483.4 −1.1
11 −27 174 034 004.5 −27 174 033 919.1 −27 174 012 007.1 −27 174 011 952.2 −0.9
12 −22 833 733 498.9 −22 833 733 433.2 −22 833 716 555.3 −22 833 716 513.1 −0.7

The third column of Table VII gives the prediction of this
work for each of the measured intervals (or linear combination
of intervals). Eleven of the 15 entries in the table show
agreement to within 1.5 standard deviations with the values
given in this work. Three more of the entries agree to within 2
standard deviations. One measurement (the 2S to 8D5/2

interval, which is the most precise measurement in the table)
disagrees by more than 3 standard deviations. The overall level
of agreement between the measured values and the values of
this work can be assessed by calculating a χ2 value for the
agreement for the 15 entries in the table. The resultant χ2 of
30.6 shows that the agreement is not good. The χ2 distribution
for 15 degrees of freedom has a probability of 0.10% for χ2

being 30.6 or larger. This discrepancy is dominated by the 2S

to 8D5/2 interval. If it were not included, the χ2 value would
be 20.7.

The discrepancy between column 2 and column 3 of
Table VII could be eliminated if either the measurement
or theoretical uncertainties are underestimated. In order to

make the agreement acceptable, the theoretical uncertainty of
column 3 could be increased by a factor of 30. This could be
achieved by assuming an uncertainty (cf. the last paragraph of
Sec. III) of (80 kHz)δ�0/n3. An overlooked contribution of this
size seems unlikely given the many decades of careful work on
atomic hydrogen theory. In order to get acceptable agreement,
the measurement uncertainties could be increased by a factor
of 1.5. An increase in experimental uncertainties by a factor
of 1.5 is far more plausible than an increase in theoretical
uncertainties by a factor of 30, especially given the large
contribution of systematic effects in the measurements and
given the fact that the measurement uncertainty is, in all cases,
a very small fraction of the natural width of the transition.
Karshenboim [34] discusses the tension between the most
precise measurements in Table VII (including similar mea-
surements in deuterium) and suggests that the tension might
indicate an underestimation of experimental uncertainties.

Another way to analyze the discrepancy between column 2
and column 3 of Table VII is to determine the required change

TABLE VI. Continuation of Tables III–V for the lowest-lying (� � 3) states.

n � E(n�j = � − 1
2 f = � − 1) E(n�j = � − 1

2 f = �) E(n�j = � + 1
2 f = �) E(n�j = � + 1

2 f = � + 1) δR (kHz)

4 3 −205 503 601 791.5(2) −205 503 600 976.7(2) −205 503 373 140.3(2) −205 503 372 536.9(2) −6.7
5 3 −131 522 306 484.4(1) −131 522 306 067.2(1) −131 522 189 415.0(1) −131 522 189 106.0(1) −4.3
6 3 −91 334 925 548.0(1) −91 334 925 306.5(1) −91 334 857 799.4(1) −91 334 857 620.6(1) −3.0
7 3 −67 103 201 970.3(1) −67 103 201 818.3(1) −67 103 159 306.5(1) −67 103 159 193.9(1) −2.2
8 3 −51 375 882 523.1 −51 375 882 421.2 −51 375 853 941.6 −51 375 853 866.2 −1.7
9 3 −40 593 285 194.6 −40 593 285 123.0 −40 593 265 120.9 −40 593 265 067.9 −1.3
5 4 −131 522 189 594.9(1) −131 522 189 354.5(1) −131 522 119 365.0(1) −131 522 119 173.9(1) −4.3
6 4 −91 334 857 904.1(1) −91 334 857 765.0(1) −91 334 817 261.8(1) −91 334 817 151.2(1) −3.0
7 4 −67 103 159 372.6(1) −67 103 159 285.1(1) −67 103 133 778.7(1) −67 103 133 709.0(1) −2.2
8 4 −51 375 853 986.1 −51 375 853 927.4 −51 375 836 840.1 −51 375 836 793.4 −1.7
9 4 −40 593 265 152.2 −40 593 265 111.0 −40 593 253 110.0 −40 593 253 077.2 −1.3
6 5 −91 334 817 329.4(1) −91 334 817 238.9(1) −91 334 790 237.1(1) −91 334 790 161.9(1) −3.0
7 5 −67 103 133 821.4(1) −67 103 133 764.4(1) −67 103 116 760.4(1) −67 103 116 713.0(1) −2.2
8 5 −51 375 836 868.8 −51 375 836 830.6 −51 375 825 439.2 −51 375 825 407.5 −1.7
9 5 −40 593 253 130.2 −40 593 253 103.4 −40 593 245 102.8 −40 593 245 080.6 −1.3
7 6 −67 103 116 790.3(1) −67 103 116 750.2(1) −67 103 104 604.6(1) −67 103 104 570.3(1) −2.2
8 6 −51 375 825 459.3 −51 375 825 432.5 −51 375 817 295.9 −51 375 817 272.9 −1.7
9 6 −40 593 245 117.0 −40 593 245 098.1 −40 593 239 383.5 −40 593 239 367.4 −1.3
8 7 −51 375 817 310.8 −51 375 817 290.9 −51 375 811 188.4 −51 375 811 171.0 −1.7
9 7 −40 593 239 394.0 −40 593 239 380.0 −40 593 235 094.1 −40 593 235 081.9 −1.3
9 8 −40 593 235 102.2 −40 593 235 091.4 −40 593 231 757.9 −40 593 231 748.3 −1.3
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TABLE VII. Comparison to measurements. Column 2 gives the measured interval (or linear combination of intervals) and column 3 gives
the predicted interval from this work. The final column gives the amount by which the proton radius would have to change in order to give
agreement between column 2 and 3. Uncertainties in units of the final digit of the value are shown in parentheses.

Interval (or combinations of intervals) Measurement (kHz) This work (kHz) �Rp (fm)

(2S1/2f = 1 → 4S1/2f = 1) − 1
4 (1S1/2f = 1 → 2S1/2f = 1) 4 836 176(10)a 4 836 158.8(3) +0.059(34)

2
9 (2S1/2f = 1 → 4D5/2f = 2) + 7

9 (2S1/2f = 1 → 4D5/2f = 3) 6 523 655(24)b 6 523 631.6(2) +0.093(95)

− 1
4 (1S1/2f = 1 → 2S1/2f = 1)

2S1/2f = 1 → 8S1/2f = 1 770 649 306 316.4(86)c 770 649 306 306.1(4) +0.025(21)
3
8 (2S1/2f = 1 → 8D3/2f = 1) + 5

8 (2S1/2f = 1 → 8D3/2f = 2) 770 649 460 060.8(83)d 770 649 460 045.7(4) +0.038(21)
5

12 (2S1/2f = 1 → 8D5/2f = 2) + 7
12 (2S1/2f = 1 → 8D5/2f = 3) 770 649 517 195.0(64)e 770 649 517 174.9(4) +0.051(16)

3
8 (2S1/2f = 1 → 12D3/2f = 1) + 5

8 (2S1/2f = 1 → 12D3/2f = 2) 799 191 666 083.5(93)f 799 191 666 077.6(4) +0.014(22)
5

12 (2S1/2f = 1 → 12D5/2f = 2) + 7
12 (2S1/2f = 1 → 12D5/2f = 3) 799 191 683 014.5(70)g 799 191 683 004.7(4) +0.023(16)

1S1/2f = 1 → 3S1/2f = 1 2 922 742 936 729(13)h 2 922 742 936 715.0(2) +0.069(65)

(2S1/2f = 1 → 6S1/2f = 1) − 1
4 (1S1/2f = 1 → 3S1/2f = 1) 4 240 346(21)i 4 240 331.0(3) +0.047(65)

5
12 (2S1/2f = 1 → 6D5/2f = 2) + 7

12 (2S1/2f = 1 → 6D5/2f = 3) 4 740 197(11)j 4 740 192.5(3) +0.015(35)

− 1
4 (1S1/2f = 1 → 3S1/2f = 1)

1
4 (2S1/2f = 1 → 4P1/2f = 0) + 3

4 (2S1/2f = 1 → 4P1/2f = 1) 4 697 560.0(149)k 4 697 534.0(2) +0.104(59)

− 1
4 (1S1/2f = 1 → 2S1/2f = 1)

3
8 (2S1/2f = 1 → 4P3/2f = 1) + 5

8 (2S1/2f = 1 → 4P3/2f = 2) 6 068 664.0(105)l 6 068 664.1(2) −0.001(42)

− 1
4 (1S1/2f = 1 → 2S1/2f = 1)

2S1/2f = 0 → 2P3/2f = 1 10 029 586(12)m 10 029 595.6(3) +0.029(36)

2P1/2f = 1 → 2S1/2f = 0 909 887(9)n 909 874.2(3) +0.038(27)

2P1/2f = 1 → 2S1/2f = 0 909 904(20)o 909 874.2(3) +0.089(60)

aReference [18] with its hfs correction of −38 838 kHz subtracted out to give the original measured value.
bReferences [18,23] with their hfs correction of −33.511 kHz subtracted out. The 4D5/2 hfs is not resolved in the measurement.
cReferences [24,25] with their hfs correction of 43 695.6 kHz subtracted out to give the original measured value.
dReferences [24,25] with their hfs correction of 44 389.2 kHz subtracted out. The 8D3/2 hfs is not resolved in the measurement.
eReferences [24,25] with their hfs correction of 44 389.2 kHz subtracted out. The 8D5/2 hfs is not resolved in the measurement.
fReferences [25,26] with their hfs correction of 44 389.2 kHz subtracted out. The 12D3/2 hfs is not resolved in the measurement.
gReferences [25,26] with their hfs correction of 44 389.2 kHz subtracted out. The 12D5/2 hfs is not resolved in the measurement.
hReference [27].
iReferences [25,28] with their hfs correction of −42 742.1 kHz subtracted out to give the original measured value.
jReferences [25,28] with their hfs correction of −41 098.1 kHz subtracted out. The 8D5/2 hfs is not resolved in the measurement.
kReference [29] with its hfs correction of −33 291 kHz subtracted out. The 4P1/2 hfs is not resolved in the measurement.
lReference [29] with its hfs correction of −33 291 kHz subtracted out. The 4P3/2 hfs is not resolved in the measurement.
mReference [30] with its hfs correction of −118 386 kHz subtracted out to give the original measured value.
mReference [31].
oReference [32].

�Rp in the proton radius (from its value from Antognini and
co-workers) that would lead to agreement between the values
in these columns. These �Rp values are given in the final
column of Table VII, along with their uncertainties (which
are dominated by the measurement uncertainties of column
2). The listed values of �Rp are almost all positive and their
weighted average (with an acceptable χ2 value of 7.3 for 14
degrees of freedom) is 0.035(7) fm (which is 4.9 standard
deviations from zero). Thus, the atomic hydrogen data would
be consistent with the theoretical predictions if Rp were 4%
larger than the value from Antognini and co-workers.

This 4% discrepancy has been the topic of great interest
since the muonic measurement of Rp was published [3].
A similar discrepancy has been found between the value

for Rp from Antognini and co-workers and that obtained
from electron proton scattering [35–37] (although our recent
analysis [38] of the scattering data does not support the notion
of this discrepancy). The 4% discrepancy for Rp is often
referred to as the proton size puzzle and many works have
discussed the puzzle (see Refs. [39–41] for reviews of this
body of work).

VIII. SUMMARY

We presented clear formulas and tabulations of the bound-
state energy levels for atomic hydrogen. The tabulation
includes a more precise value for the proton charge radius. The
hyperfine structure corrections due to the anomalous moment
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and the finite mass of the proton and due to off-diagonal matrix
elements of the hyperfine Hamiltonian were clearly laid out,
along with general formulas for their dependence on n, �, j ,
and f . The energy of all bound states of atomic hydrogen can
now be determined to a precision of better than 1 kHz.
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C. A. Gayoso, R. Böhm, D. Bosnar, L. Debenjak, L. Doria
et al., Phys. Rev. C 90, 015206 (2014).

[37] G. Lee, J. R. Arrington, and R. J. Hill, Phys. Rev. D 92, 013013
(2015).

[38] M. Horbatsch and E. A. Hessels, Phys. Rev. C 93, 015204 (2016).
[39] R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, Annu. Rev.

Nucl. Part. Sci. 63, 175 (2013).
[40] J. C. Bernauer and R. Pohl, Sci. Am. 310 (2), 32 (2014).
[41] C. E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015).

022513-8

http://dx.doi.org/10.1063/1.4724320
http://dx.doi.org/10.1063/1.4724320
http://dx.doi.org/10.1063/1.4724320
http://dx.doi.org/10.1063/1.4724320
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1126/science.1230016
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.102.213002
http://dx.doi.org/10.1103/PhysRevLett.102.213002
http://dx.doi.org/10.1103/PhysRevLett.102.213002
http://dx.doi.org/10.1103/PhysRevLett.102.213002
http://dx.doi.org/10.1016/j.physrep.2005.08.008
http://dx.doi.org/10.1016/j.physrep.2005.08.008
http://dx.doi.org/10.1016/j.physrep.2005.08.008
http://dx.doi.org/10.1016/j.physrep.2005.08.008
http://arxiv.org/abs/arXiv:1507.07956v1
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevA.41.1243
http://dx.doi.org/10.1103/PhysRevA.74.062517
http://dx.doi.org/10.1103/PhysRevA.74.062517
http://dx.doi.org/10.1103/PhysRevA.74.062517
http://dx.doi.org/10.1103/PhysRevA.74.062517
http://dx.doi.org/10.1103/PhysRevA.72.014103
http://dx.doi.org/10.1103/PhysRevA.72.014103
http://dx.doi.org/10.1103/PhysRevA.72.014103
http://dx.doi.org/10.1103/PhysRevA.72.014103
http://dx.doi.org/10.1103/PhysRevA.69.064103
http://dx.doi.org/10.1103/PhysRevA.69.064103
http://dx.doi.org/10.1103/PhysRevA.69.064103
http://dx.doi.org/10.1103/PhysRevA.69.064103
http://dx.doi.org/10.1088/0305-4470/36/15/103
http://dx.doi.org/10.1088/0305-4470/36/15/103
http://dx.doi.org/10.1088/0305-4470/36/15/103
http://dx.doi.org/10.1088/0305-4470/36/15/103
http://dx.doi.org/10.1139/p02-100
http://dx.doi.org/10.1139/p02-100
http://dx.doi.org/10.1139/p02-100
http://dx.doi.org/10.1139/p02-100
http://dx.doi.org/10.1103/PhysRevLett.115.233002
http://dx.doi.org/10.1103/PhysRevLett.115.233002
http://dx.doi.org/10.1103/PhysRevLett.115.233002
http://dx.doi.org/10.1103/PhysRevLett.115.233002
http://dx.doi.org/10.1103/PhysRevA.73.062503
http://dx.doi.org/10.1103/PhysRevA.73.062503
http://dx.doi.org/10.1103/PhysRevA.73.062503
http://dx.doi.org/10.1103/PhysRevA.73.062503
http://dx.doi.org/10.1103/PhysRev.163.134
http://dx.doi.org/10.1103/PhysRev.163.134
http://dx.doi.org/10.1103/PhysRev.163.134
http://dx.doi.org/10.1103/PhysRev.163.134
http://dx.doi.org/10.1103/PhysRevA.83.052501
http://dx.doi.org/10.1103/PhysRevA.83.052501
http://dx.doi.org/10.1103/PhysRevA.83.052501
http://dx.doi.org/10.1103/PhysRevA.83.052501
http://dx.doi.org/10.1103/PhysRevA.52.2664
http://dx.doi.org/10.1103/PhysRevA.52.2664
http://dx.doi.org/10.1103/PhysRevA.52.2664
http://dx.doi.org/10.1103/PhysRevA.52.2664
http://dx.doi.org/10.1016/j.adt.2010.05.001
http://dx.doi.org/10.1016/j.adt.2010.05.001
http://dx.doi.org/10.1016/j.adt.2010.05.001
http://dx.doi.org/10.1016/j.adt.2010.05.001
http://dx.doi.org/10.1134/S1063778808010146
http://dx.doi.org/10.1134/S1063778808010146
http://dx.doi.org/10.1134/S1063778808010146
http://dx.doi.org/10.1134/S1063778808010146
http://dx.doi.org/10.1016/j.aop.2010.11.012
http://dx.doi.org/10.1016/j.aop.2010.11.012
http://dx.doi.org/10.1016/j.aop.2010.11.012
http://dx.doi.org/10.1016/j.aop.2010.11.012
http://dx.doi.org/10.1088/0953-4075/43/11/115002
http://dx.doi.org/10.1088/0953-4075/43/11/115002
http://dx.doi.org/10.1088/0953-4075/43/11/115002
http://dx.doi.org/10.1088/0953-4075/43/11/115002
http://dx.doi.org/10.1103/PhysRevLett.78.440
http://dx.doi.org/10.1103/PhysRevLett.78.440
http://dx.doi.org/10.1103/PhysRevLett.78.440
http://dx.doi.org/10.1103/PhysRevLett.78.440
http://dx.doi.org/10.1007/s100530070043
http://dx.doi.org/10.1007/s100530070043
http://dx.doi.org/10.1007/s100530070043
http://dx.doi.org/10.1007/s100530070043
http://dx.doi.org/10.1103/PhysRevLett.82.4960
http://dx.doi.org/10.1103/PhysRevLett.82.4960
http://dx.doi.org/10.1103/PhysRevLett.82.4960
http://dx.doi.org/10.1103/PhysRevLett.82.4960
http://dx.doi.org/10.1140/epjd/e2010-00249-6
http://dx.doi.org/10.1140/epjd/e2010-00249-6
http://dx.doi.org/10.1140/epjd/e2010-00249-6
http://dx.doi.org/10.1140/epjd/e2010-00249-6
http://dx.doi.org/10.1103/PhysRevLett.76.384
http://dx.doi.org/10.1103/PhysRevLett.76.384
http://dx.doi.org/10.1103/PhysRevLett.76.384
http://dx.doi.org/10.1103/PhysRevLett.76.384
http://dx.doi.org/10.1103/PhysRevLett.75.2470
http://dx.doi.org/10.1103/PhysRevLett.75.2470
http://dx.doi.org/10.1103/PhysRevLett.75.2470
http://dx.doi.org/10.1103/PhysRevLett.75.2470
http://dx.doi.org/10.1103/PhysRevLett.72.1172
http://dx.doi.org/10.1103/PhysRevLett.72.1172
http://dx.doi.org/10.1103/PhysRevLett.72.1172
http://dx.doi.org/10.1103/PhysRevLett.72.1172
http://dx.doi.org/10.1103/PhysRevLett.46.232
http://dx.doi.org/10.1103/PhysRevLett.46.232
http://dx.doi.org/10.1103/PhysRevLett.46.232
http://dx.doi.org/10.1103/PhysRevLett.46.232
http://dx.doi.org/10.1098/rsta.1979.0004
http://dx.doi.org/10.1098/rsta.1979.0004
http://dx.doi.org/10.1098/rsta.1979.0004
http://dx.doi.org/10.1098/rsta.1979.0004
http://dx.doi.org/10.1103/PhysRevA.91.012515
http://dx.doi.org/10.1103/PhysRevA.91.012515
http://dx.doi.org/10.1103/PhysRevA.91.012515
http://dx.doi.org/10.1103/PhysRevA.91.012515
http://dx.doi.org/10.1103/PhysRevLett.105.242001
http://dx.doi.org/10.1103/PhysRevLett.105.242001
http://dx.doi.org/10.1103/PhysRevLett.105.242001
http://dx.doi.org/10.1103/PhysRevLett.105.242001
http://dx.doi.org/10.1103/PhysRevC.90.015206
http://dx.doi.org/10.1103/PhysRevC.90.015206
http://dx.doi.org/10.1103/PhysRevC.90.015206
http://dx.doi.org/10.1103/PhysRevC.90.015206
http://dx.doi.org/10.1103/PhysRevD.92.013013
http://dx.doi.org/10.1103/PhysRevD.92.013013
http://dx.doi.org/10.1103/PhysRevD.92.013013
http://dx.doi.org/10.1103/PhysRevD.92.013013
http://dx.doi.org/10.1103/PhysRevC.93.015204
http://dx.doi.org/10.1103/PhysRevC.93.015204
http://dx.doi.org/10.1103/PhysRevC.93.015204
http://dx.doi.org/10.1103/PhysRevC.93.015204
http://dx.doi.org/10.1146/annurev-nucl-102212-170627
http://dx.doi.org/10.1146/annurev-nucl-102212-170627
http://dx.doi.org/10.1146/annurev-nucl-102212-170627
http://dx.doi.org/10.1146/annurev-nucl-102212-170627
http://dx.doi.org/10.1038/scientificamerican0214-32
http://dx.doi.org/10.1038/scientificamerican0214-32
http://dx.doi.org/10.1038/scientificamerican0214-32
http://dx.doi.org/10.1038/scientificamerican0214-32
http://dx.doi.org/10.1016/j.ppnp.2015.01.002
http://dx.doi.org/10.1016/j.ppnp.2015.01.002
http://dx.doi.org/10.1016/j.ppnp.2015.01.002
http://dx.doi.org/10.1016/j.ppnp.2015.01.002



