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Conforming the measured lifetimes of the 5d 2D3/2,5/2 states in Cs with theory
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We find very good agreement between our theoretically evaluated lifetimes of the 5d 2D3/2 and 5d 2D5/2 states
of Cs with the experimental values reported by DiBerardino et al. [Phys. Rev. A 57, 4204 (1998)], which were
demonstrated to disagree with an earlier rigorous theoretical study [Safronova and Clark, Phys. Rev. A 69,
040501(R) (2004)] and with the other available precise measurement [Hoeling et al., Opt. Lett. 21, 74 (1996)]. In
this work, we carry out calculations of the radiative transition matrix elements using many variants of relativistic
many-body methods, mainly in the coupled-cluster theory framework, and analyze the propagation of electron
correlation effects to elucidate their roles in accurate evaluations of the matrix elements. We also demonstrate
contributions explicitly from Dirac-Coulomb interactions, frequency-independent Breit interaction, and lower
order quantum electrodynamics effects. Uncertainties in these matrix elements due to different possible sources
of errors are estimated. By combining our calculated radiative matrix elements with the experimental values
of the transition wavelengths, we obtain the transition probabilities due to both the allowed and the lower
order forbidden channels. Adding these quantities together, the lifetimes of the above two states are determined
precisely and plausible reasons for the reported inconsistencies between the earlier theoretical calculations and
the experimental results are pointed out.

DOI: 10.1103/PhysRevA.93.022503

I. INTRODUCTION

Alkali-metal atoms in general and Cs atom in particular
are suitable for many important experimental studies because
of the structure of their energy levels. Many sophisticated
measurements can be performed on them using optical
magnetometry techniques [1,2]. These atoms couple extremely
weakly to the environment, allowing potentially long co-
herence times. Some of these experiments involve quantum
computing [3,4], observation of parity nonconservation (PNC)
effects to probe new physics beyond the standard model [5,6],
and exotic properties like the nuclear anapole moment [7,8]
and measurement of the electric dipole moment due to parity
and time reversal symmetry violations [9,10]. In many of these
studies, the role of the many-body calculations of various
atomic properties is crucial [8,10–15]. In fact, one of the
reasons why a number of experiments have been carried out
on alkali-metal atoms is that they can test the capabilities of
the many-body methods employed to evaluate the properties
of the ground and excited states of these atoms to a very high
precision. This bolsters confidence in using the results obtained
from these methods to gain insights into many fundamental
physics phenomena [7,8,10–12]. Earlier results from some
of the methods have been used for this purpose, but in a
few cases, there have been large disagreements between the
theoretical results obtained using these methods and their
corresponding experimental values: especially when studying
properties of the excited states. This provides the opportunity
to investigate the missing underlying physics that may shed
some light on and may open up windows to probing new
physics. One such example is the disagreement between the
calculations and the experimental results for the lifetimes of
the 5d 2D3/2 and 5d 2D5/2 states of Cs [13]. At least two precise
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measurements have been carried out to determine the lifetimes
of the 5d 2D3/2 and 5d 2D5/2 states of Cs [16,17], among
which the lifetime of the 5d 2D5/2 state has been reported
as 1281(9) ns [16] and 1225(12) ns [17], values which are
clearly out of the ranges of their reported error bars. On the
other hand, the difficulty in performing precise calculations of
the excited-state properties lies in the important role played
by the continuum states in the evaluation of the atomic wave
function. Moreover, determination of the wave functions of
excited states with a large orbital angular momentum (l),
e.g., D states, requires a large number of determinantal states
for which an approach like the configuration interaction (CI)
method approximated only at singles and doubles excitations
(CISD method) may not be suitable for estimating their
properties very accurately [18,19]. However, the relativistic
coupled-cluster (RCC) method even at the same level of
singles and doubles approximation (CCSD method) is capable
of estimating many atomic properties within a reasonable
accuracy [20–22]. One of the unique features of the (R)CC
method is that it can capture the higher excited determinantal
states just by approximating the method with only the
singles and doubles excitations, owing to the exponential
structure of the wave function [22–25]. For example, the
CCSD method still accounts for contributions from many
of the triples, quadruples, etc., which can be represented by
determinantal states containing nonlinear terms [24,25]. To
achieve high-accuracy results for excited states with large
l values, inclusion of the contributions from these triple
and quadruple determinantal states is imperative. However,
the CCSD method with only linear terms (LCCSD method)
supplemented with other corrections has often been employed
in calculations of the atomic properties of alkali-metal atoms
to avoid the requirement of large computational resources
to account for the nonlinear RCC terms (e.g., see Ref. [13]
and references therein). Thus, comparative studies of the
theoretical and experimental results of the excited-state atomic
properties of alkali-metal atoms using a many-body method
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would serve as a good test of its capability to describe the
results accurately.

This work is intended to probe again the validity of the
reported experimental values of the lifetimes of the 5d 2D3/2

and 5d 2D5/2 states of Cs which, as mentioned above, are
inconsistently reported in different works [13]. Experimental
values from Refs. [16,17] are discussed in Ref. [13], and a few
more measured values with large error bars are also available in
the literature [26–28]. Similarly, a few more calculations of the
lifetimes of the above states are also reported in the literature
[29–33], among which many of them are estimated using the
nonrelativistic theory and semiempirical approaches. To appre-
ciate the consideration of extra physical effects in the present
work and to realize the reason for observing inconsistencies
among the earlier theoretical and experimental results, here we
briefly discuss the approximation in the method undertaken in
Ref. [13]. In Ref. [13], the SD method, which is equivalent
to the LCCSD method, and the SD method with important
partial triples corrections (SDpT method) were employed to
calculate the electric dipole (E1) matrix elements. These values
were further revamped by scaling the wave functions of the
SD method (SDsc method) and of the SDpT method (SDpTsc
method). Then the scalar dipole polarizabilities of the 6p 2P1/2

and 6p 2P3/2 states of Cs were evaluated in two ways: first,
using the E1 matrix elements only from the SDpT method and,
second, combining the E1 matrix elements extracted from the
measured lifetimes of the 5d 2D3/2 and 5d 2D5/2 states from
Refs. [16] with a few other E1 matrix elements from the SDpT
method. The differential polarizabilities of these 6P states
with respect to the ground state were determined by taking
the precisely measured ground-state dipole polarizability as
401.0(6) ea3

0 [34], for the Bohr radius a0. These differential
polarizabilities were then compared with the available direct
measurements [35–37]. This comparison demonstrated that
the values obtained using the E1 matrix elements entirely from
the SDpT method match better with the experimental results
than the values obtained using the combination approach.
On this basis it was argued that the measured values of the
lifetimes of the 5D states and the differential polarizabilities
of the 6P states were inconsistent. For this reason it was
assumed that the E1 matrix elements obtained using the
SDpT method are more accurate and the E1 matrix elements
deduced from the measured lifetimes were inappropriate. This
indirectly meant that the measured lifetimes are invalid. Using
the E1 matrix elements from the SD method, the lifetimes
of the 5d 2D3/2 and 5d 2D5/2 states were obtained as 1114
and 1547 ns, respectively [13]. These values were changed
to 966 and 1350 ns for the 5d 2D3/2 and 5d 2D5/2 states,
respectively, when the matrix elements were improved using
the SDsc method. Similarly, the lifetimes of the 5d 2D3/2

and 5d 2D5/2 states were obtained as 1010 and 1409 ns,
respectively, upon the use of the matrix elements from the
SDpT method. Finally, they were obtained as 981 and 1369 ns,
respectively, using the matrix elements from the SDpTsc
method.

In the above analysis, two things need to be carefully
scrutinized further. First, it should be noted that after scaling
the wave functions the results were changed significantly.
It is very difficult to justify the accuracies of the results
from the first principle by scaling the wave functions. Large

differences between the E1 matrix elements obtained before
and those obtained after scaling the wave functions indicate
that it is necessary to consider more physical effects in
the above employed SD or SDpT method to improve the
accuracies of the results. Second, it can be found, using the
sum-over-states approach employed in Ref. [13] to evaluate the
polarizabilities of the 6P states, that the principal contributions
come from the E1 matrix elements among the 6p 2P1/2 →
5d 2D3/2, 6p 2P3/2 → 5d 2D3/2, and 6p 2P3/2 → 5d 2D5/2 tran-
sitions. However, ample contributions also come from the
E1 matrix elements involving other D excited states. Again,
the sum-over-states approach has limitations accounting for
contributions from the core orbitals, higher excited states, and
continuum accurately. In order to verify the accuracies of the
theoretically estimated lifetimes of the 5D states, we would
like to carry out calculations of the E1 matrix elements of the
6p 2P1/2 → 5d 2D3/2, 6p 2P3/2 → 5d 2D3/2, and 6p 2P3/2 →
5d 2D5/2 transitions considering more physical effects than the
LCCSD method: especially through the nonlinear terms of the
CCSD method. However, we also employ other lower order
many-body methods such as the Dirac-Hartree-Fock (DHF)
method, lower order perturbation theory (MBPT method),
and LCCSD method to demonstrate gradual changes in the
results with the propagation of correlation effects through the
higher order terms. We also give the contributions from the
important triple excitations in a variety of procedures and, from
a semiempirical approach, by using the experimental energies
in the calculations of the wave functions in the RCC method.
Again, the Dirac-Coulomb (DC) Hamiltonian was considered
in Ref. [13]. We also estimate corrections due to the higher
order relativistic effects by considering the Breit interaction
and lower order quantum electrodynamics (QED) effects in
the calculations.

Many general implications for studying the lifetimes of
the 5d 2D3/2 and 5d 2D5/2 states in Cs have been discussed
previously. We, however, place emphasis on only two appli-
cations here, for which the present work could be directly
relevant. The most precise PNC measurement has been carried
out in the 6s 2S1/2 → 7s 2S1/2 transition of Cs, but the nuclear
parameters inferred from the nuclear anapole moment deduced
from this measurement disagree with the values given by
the well-established nuclear models [7,8]. This urges further
investigation of PNC effects in atomic systems. In fact,
theoretical study demonstrates that the PNC amplitude in the
6s 2S1/2 → 5d 2D3/2 transition is almost three times higher than
the 6s 2S1/2 → 7s 2S1/2 transition in Cs [14,15]. A plausible
principle for measuring the PNC-induced frequency shift in
the 6s 2S1/2 → 5d 2D3/2 transition of Ba+ has been described
in [38]. Following this, it has also been suggested that the
same principle can be adopted to measure the PNC effect in
the 6s 2S1/2 → 5d 2D3/2 transition of Cs [39]. In another work,
it has been highlighted that the measurement of PNC-induced
light shifts in the S-D5/2 transitions of atomic systems would
provide an unambiguous signature of the existence of the
nuclear anapole moment [40,41]. One of the requirements
for enhancing the signal-to-noise ratio in the PNC-induced
light-shift measurement principle is to have longer lifetimes of
the states involved in the transition [38]. Thus, it is necessary to
ensure reliability of the observed lifetimes of the 5d 2D3/2 and
5d 2D5/2 states in the case where the 6s 2S1/2 → 5d 2D3/2,5/2
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transitions in Cs are undertaken for PNC measurements. In
fact, it has also been advocated that the 5d 2D3/2 and 5d 2D5/2

states of Cs are very suitable for the resonance ionization
spectroscopy process owing to their longer lifetimes [42].
Therefore, it is important that ambiguity in the correctness
of the lifetime values of the 5d 2D3/2 and 5d 2D5/2 states of Cs
is eliminated to establish their real values.

II. THEORY

In the Cs atom, it is obvious to assume that the dominant
emission transition probabilities for an electron to jump from
the 5d 2D3/2 and 5d 2D5/2 states are due to the E1 channel to
the low-lying 6p 2P1/2 and 6p 2P3/2 stats. Since the aim of the
present work is to explain the cause of disagreement between
the previous theoretical calculations and the experimental
results, we intend to show how low the transition probabilities
really are due to the forbidden channels from the above two
states. Thus, we also determine the transition probabilities
due to the next dominant magnetic dipole (M1) and electric
quadrupole (E2) channels from the 5d 2D3/2 state to the ground
state 6s 2S1/2 and from the 5d 2D5/2 state to the ground and
5d 2D3/2 states. The general expressions for evaluating these
transition probabilities between the |�i〉 → |�f 〉 transitions
are given by

AE1
if = 2.0261 × 10−6

λ3
if gi

SE1
if , (1)

AM1
if = 2.6971 × 10−11

λ3
if gi

SM1
if , (2)

and

AE2
if = 1.1195 × 10−22

λ5
if gi

SE2
if , (3)

where the quantity SO
if = |〈�i ||O||�f 〉|2 is known as the

line strength for the corresponding reduced matrix element
|〈�i ||O||�f 〉| of a transition operator O. These quantities are
given later in the paper, in atomic units (a.u.). In the above
expressions, gi = 2Ji + 1 is the degeneracy factor of state
|�i〉 with the angular momentum of state Ji and the transition
wavelength (λif ) is used, in nanometers (nm), and when
substituted, the transition probabilities (AO

if s) are obtained in
units of the inverse of a second (s−1). The lifetime (τi) of
atomic state |�i〉 is determined (in s) by taking the reciprocal
of the total emission transition probabilities due to all possible
channels, i.e.,

τi = 1∑
O,f AO

if

, (4)

where the summations over O and f correspond to all the
decay channels and all the lower states, respectively.

The reduced matrix elements for the E1, M1, and E2
transition operators in terms of the single-particle orbitals are
given by

〈κf ||e1||κi〉 = 3

k
〈κf ||C(1)||κi〉

∫ ∞

0
dr

(
j1(kr)

× [Pf (r)Pi(r) + Qf (r)Qi(r)] + j2(kr)

×
{

κf − κi

2
[Pf (r)Qi(r) + Qf (r)Pi(r)]

+ [Pf (r)Qi(r) − Qf (r)Pi(r)]

})
, (5)

〈κf ||m1||κi〉 = 6

αk

(κf + κi)

2
〈−κf ||C(1)||κi〉

∫ ∞

0
dr

× j1(kr)[Pf (r)Qi(r) + Qf (r)Pi(r)], (6)

and

〈κf ||e2||κi〉 = 15

k2
〈κf ||C(2)||κi〉

∫ ∞

0
dr

(
j2(kr)

× [Pf (r)Pi(r) + Qf (r)Qi(r)] + j3(kr)

×
{

κf − κi

3
[Pf (r)Qi(r) + Qf (r)Pi(r)]

+ [Pf (r)Qi(r) − Qf (r)Pi(r)]

})
, (7)

where P (r) and Q(r) denote the large and small components
of the radial parts of the single-particle Dirac orbitals, respec-
tively, the κs are their relativistic angular momentum quantum
numbers, α is the fine-structure constant k = α(εf − εi) with
the orbital energies εs, and jl(kr) is the spherical Bessel
function. The reduced Racah coefficients of rank k are given
by

〈κf ||C(k)||κi〉 = (−1)jf +1/2
√

(2jf + 1)(2ji + 1)

×
(

jf k ji

1/2 0 −1/2

)
π (lκf

,k,lκi
), (8)

with

π (l,k,l′) =
{1 for l + k + l′ = even,

0 otherwise (9)

for the orbital momentum lκ of the corresponding orbital
having the relativistic quantum number κ .

For the first time, we use a different type of analytical basis
function having the quadratic type of exponents to express
the single-particle wave functions (defined as quadratic-type
orbitals) to calculate the above reduced matrix elements. Using
these functions, the radial components of the orbitals are
expressed as

P (r)〉 =
Nl∑

ν=1

cP
ν N P

ν rle−ηνr
4

and

Q(r) =
Nl∑

ν=1

cQ
ν NQ

ν rl

(
d

dr
+ κ

r

)
[rle−ηνr

4
], (10)

where Nl represents the total number of quadratic-type orbitals
considered in the calculations, ην is an arbitrary coefficient
suitably chosen to obtain wave functions accurately, cP (Q)

ν

values are the linear combination coefficients, andN P (Q)
ν is the

normalization constant of the νth basis function for the large
(small) component of the wave function. It can be noted that
the kinetic balance condition between the large and the small
components has been implemented above. The normalization
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TABLE I. List of the parameters considered to define the basis
functions using quadratic-type orbitals in the present calculations.

s p d f g

Nl 34 33 32 31 30
η0 2.0 × 10−8 2.5 × 10−8 2.5 × 10−8 2.1 × 10−1 2.1 × 10−7

ζ 4.67 4.78 4.93 7.08 8.25

constants are given by

N P
ν = 2(2ην)

2l+1
8 �

(
2l + 1

4

)−1/2

(11)

and

NQ
ν =

[
(l + κ)2

4(2ην)
2l−1

4

�

(
2l − 1

4

)
− 2(l + κ)

(2ην)
2l−1

4

×�

(
2l + 3

4

)
+ 4

(2ην)
2l−1

4

�

(
2l + 7

4

)]−1

. (12)

For convenience, the ην parameters are constructed to satisfy
the even tempering condition between the two parameters η0

and ζ as

ην = η0ζ
ν−1. (13)

In Table I we list the η0 and ζ parameters used in the present
calculations.

III. MANY-BODY METHODS

In our previous work [20], we have described the general
procedures of our MBPT(2) and RCC methods from which
we have calculated the wave functions and transition matrix
elements of the Fr atom in the approach of Bloch’s formalism
[23]. We also adopt these methods here, along with a few more
variants of the RCC methods, by approximating the levels of
excitations and nonlinear terms in the expression of the wave
function. We apply these methods in order to investigate the
reason for the discrepancies between the previous theoretical
study and the experimental results [13]. We discuss these
methods briefly below to illustrate distinctly the roles of the
higher order correlation effects in enhancing the accuracies of
the calculations of the transition matrix elements.

In Bloch’s prescription the atomic wave function of a state
|�v〉 of Cs with valence orbital v is expressed as [23]

|�v〉 = 
v|�v〉, (14)

where 
v and |�v〉 are referred to as the wave operator and the
reference state, respectively. For computational simplicity we
choose the working reference state as the DHF wave function
|�c〉 for the closed-shell configuration [5p6], which is common
to the ground and the excited states that are involved in the
estimations of the lifetimes of the 5D states of Cs. Then the
actual reference state is constructed from it as |�v〉 = a†

v|�c〉
for the respective state with valence orbital v. First, the
calculations are performed using the DC Hamiltonian, which

(in a.u.) is given by

H =
∑

i

⎡
⎣cαi · pi + (βi − 1)c2 + Vn(ri) +

∑
j>i

1

rij

⎤
⎦, (15)

where α and β are the usual Dirac matrices and Vn(r)
represents the nuclear potential. We evaluate the nuclear
potential considering the Fermi-charge distribution defined by

ρn(r) = ρ0

1 + e(r−b)/a
(16)

for the normalization factor ρ0, the half-charge radius b, and
a = 2.3/4(ln3) is related to the skin thickness. We have used
a = 2.3/4(ln3) and b = 5.6707 fm, which is determined using
the relation

b =
√

5

3
r2

rms − 7

3
a2π2, (17)

with the root mean square (rms) charge radius of the nucleus
determined using the formula

rrms = 0.836A1/3 + 0.570 (18)

(in fm) for the atomic mass A.
Contributions from the frequency-independent Breit inter-

action are estimated by adding the corresponding interaction
term, given by

VB(rij ) = − 1

2rij

{αi · αj + (αi · r̂ij)(αj · r̂ij)}. (19)

We have also estimated corrections from the lower order
QED effects by considering the following potentials with H

in a formalism similar to that described in Ref. [43], but for
the nuclear Fermi-charge distribution given above. The lower
order vacuum polarization (VP) effects are considered at the
approximations of the Uehling [VU(r)] and Wichmann-Kroll
[VWK(r)] potentials, which are given by

VU(r) = −2α2

3r

∫ ∞

0
dx x ρn(x)

∫ ∞

1
dt

√
t2 − 1

×
(

1

t3
+ 1

2t5

)
[e−2ct |r−x| − e−2ct(r+x)] (20)

and

VWK(r) = −8Z2α4

9r
0.092

∫ ∞

0
dx x ρn(x)

× (0.22{arctan[1.15(−0.87 + 2c|r − x|)]
− arctan[1.15(−0.87 + 2c(r + x))]}
+ 0.22{arctan[1.15(0.87 + 2c|r − x|)]
− arctan[1.15(0.87 + 2c(r + x))]}
− 0.11{ln[0.38 − 0.87c|r − x| + c2(r − x)2]

− ln[0.38 − 0.87c(r + x) + c2(r + x)2]}
+ 0.11{ln[0.38 + 0.87c|r − x| + c2(r − x)2]

− ln[0.38 + 0.87c(r + x) + c2(r + x)2]}), (21)

with the atomic number of the system Z. The contribution from
the self-energy (SE) interaction is accounted for by evaluating
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contributions together from the electric form factor, given by

V ef
SE(r) = −A(Z)(Zα)4e−Zr + B(Z,r)α2

r

∫ ∞

0
dxxρn(x)

×
∫ ∞

1
dt

1√
t2 − 1

{(
1

t
− 1

2t3

)

×
[

ln(t2 − 1) + 4 ln

(
1

Zα
+ 1

2

)]
− 3

2
+ 1

t2

}

× [e−2ct |r−x| − e−2ct(r+x)], (22)

and from the magnetic form factor, given by

V
mg

SE (r) = iα

4πc
γ · ∇r

∫ ∞

0
d3x ρn(x)

×
{(∫ ∞

1
dt

e−2tcR

Rt2
√

t2 − 1

)
− 1

R

}
, (23)

where A(Z) = 0.074 + 0.35Zα, B(Z,r) = {1.071 − 1.97
[(Z − 80)α]2 − 2.128[(Z − 80)α]3 + 0.169[(Z−80)α]4}cr/
[cr + 0.07(Zα)2], and R = |r − x|.

Following the form of the reference states in our approach,

v can now be divided as


v = 1 + χc + χv, (24)

where χc and χv are responsible for carrying out the excitations
from |�c〉 and |�v〉, respectively, due to the residual interaction
Vr = H − H0 for the DHF Hamiltonian H0. In a perturbative
series expansion, we can express

χc =
∑

k

χ (k)
c and χv =

∑
k

χ (k)
v , (25)

where the superscript k refers to the number of times Vr

is considered in the MBPT method [denoted the MBPT(k)
method]. The kth-order amplitudes for the χc and χv operators
are obtained by solving the equations [23][

χ (k)
c ,H0

]
P = QVr

(
1 + χ (k−1)

c

)
P (26)

and

[
χ (k)

v ,H0
]
P = QVr

(
1 + χ (k−1)

c + χ (k−1)
v

)
P −

k−1∑
m=1

χ (k−m)
v

×PVr

(
1 + χ (m−1)

c + χ (m−1)
v

)
P, (27)

where the projection operators P = |�c〉〈�c| and Q = 1 − P

describe the model space and the orthogonal space of the
DHF Hamiltonian H0, respectively. The energy of state |�n〉
is evaluated using an effective Hamiltonian,

H eff
v = PavH
va

†
vP . (28)

Using the normal-order Hamiltonian HN = H − PHP in
place of H in the above expression, the attachment energy
of a state with valence orbital v is evaluated.

In the (R)CC theory ansatz, the wave functions of the
considered states are expressed as

|�v〉 ≡ 
v|�v〉 = eT {1 + Sv}|�v〉, (29)

with χc = eT − 1 and χv = eT Sv − 1, where T and Sv are
the CC excitation operators that excite electrons from the core
and core along with the valence orbitals in the virtual space,

respectively. In this work, we have considered only single
and double excitations, denoted by the subscripts 1 and 2,
respectively, in the CCSD method by expressing

T = T1 + T2 and Sv = S1v + S2v. (30)

In the LCCSD method, only the linear terms are retained as in
the SD method in Ref. [13]. The amplitudes of these operators
are evaluated using the equations

〈�∗
c |HN |�c〉 = 0 (31)

and

〈�∗
v|

(
HN − �Ev

)
Sv|�v〉 = −〈�∗

v|HN |�v〉, (32)

where |�∗
c〉 and |�∗

v〉 are the excited-state configurations, here
up to doubles, with respect to DHF states |�c〉 and |�v〉,
respectively, and HN = (HNeT )l with subscript l represents
the linked terms only. Here �Ev = H eff

v − H eff
c is the at-

tachment energy of the electron in the valence orbital v with
H eff

c = PH (1 + χc)P . Following Eq. (28), the expression for
�Ev is given by

�Ev = 〈�v|HN {1 + Sv}|�v〉. (33)

We also include contributions from the important triply
excited configurations by defining perturbative operators as

T
pert

3 = 1

6

∑
abc,pqr

(HNT2)pqr

abc

εa + εb + εc − εp − εq − εr

(34)

and

S
pert
3v = 1

4

∑
ab,pqr

(HNT2 + HNS2v)pqr

abv

εa + εb + εv − εp − εq − εr

, (35)

where {a,b,c} and {p,q,r} represent the occupied and virtual
orbitals, respectively, and the εs are their corresponding orbital
energies. Since the final results reported in Ref. [13] use the
SDpT method and scale the wave functions, we would like
to determine the roles of the triply excited configurations in
the evaluation of transition matrix elements. However, the
exact procedure using which triple excitations accounted in
the SDpT method is not clear to us, so we try to estimate
these contributions in various ways. When the S

pert
3v operator

is considered as a part of the Sv operator to estimate only the
energies using Eq. (33) after obtaining the RCC amplitudes,
this is referred to as the L/CCSD(T) method. However, when
it is required to estimate both the energies and the amplitudes
of the Sv operators simultaneously in the iterative procedure
through Eqs. (32) and (33), we call this the L/CCSD[T]
method. To explore the roles of the core correlations through
the triple excitations, we consider the T

pert
3 operator as a part of

the T operator when solving Eq. (31). This is referred to as the
L/CCSDpTc method, and when, along with this approach, the
S

pert
3v operator is considered in Eqs. (32) and (33), we refer to

this as the L/CCSDpT method. But we consider both the T
pert

3

and the S
pert
3v operators in Eqs. (31) and (32) only to ameliorate

the amplitudes of the T1 and S1v operators for computational
ease.

After obtaining the amplitudes of the MBPT and RCC
operators using the equations described earlier, the transition
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matrix element of an operator O between state |�i〉 and state
|�f 〉 is evaluated using the expression

〈�f |O|�i〉√〈�f |�f 〉〈�i |�i〉
= 〈�f |
†

f O
i |�i〉√
〈�f |
†

f 
f |�f 〉〈�i |
†
i 
i |�i〉

.

(36)

This gives rise to a finite number of terms for the MBPT(2) and
LCCSD-variant methods, but it involves two nonterminating
series in the numerator and denominator, eT †

OeT and eT †
eT ,

respectively, in the CCSD-variant methods. As described in our
previous works [20,44,45], we adopt iterative procedures to
account for the contributions from these nontruncative series.
For a comprehensive understanding, we also give intermediate
results keeping k number of T and/or T † operators in these
series using the CCSD method to evaluate the matrix elements,
and we refer to this approach as the CCSD(k) method. Finally,
our CCSD results correspond to the calculations using the
CCSD(∞) method. We also estimate the contributions due to
triple excitations by considering both the T

pert
3 and the S

pert
3v

operators along with their complex conjugates in Eq. (36) of
the L/CCSD method and refer to this approach as the L/CCSDt3

method.

IV. RESULTS AND DISCUSSION

Before presenting the transition matrix elements obtained
with various methods, we would first like to validate the
methods by carrying out calculations of the attachment
energies of the considered states of Cs and comparing them
against their corresponding experimental values. Although it
is understood that the nature of the radial parts of the wave
functions could be different for accurate evaluation of the
energies and transition matrix elements, it can be noted from
Eqs. (27) and (32) that the energy-evaluating expressions are
also coupled with the wave-function-determining equations.
Hence, accurate evaluation of the energies using a method
can be an indication for verifying the validity of the method
in addition to accounting for more physical effects in the
method. For this purpose, we list the energies obtained with
various methods, described previously, in Table II using the DC
Hamiltonian and compare them with the experimental values
[46]. We find that the CCSD method gives rise to fairly accurate
results for all the states considered. It is also noted that the
MBPT(2) values are more accurate than the LCCSD values, but
the partial triple effects bring the LCCSD results closer to the
experimental values. When these partial effect contributions
are added to the CCSD results, the results become far off
from the experimental results. This, therefore, implies that the
neglected triples effects, which can contribute mainly through
the T2 and S2v amplitude-determining equations, may cancel
out some of these overestimated triple excited contributions
to give, finally, more precise results than accounting for them
only through the singles excitations. We also observe that the
triples effects through the valence orbital excitations are the
dominant ones over the core-triple excitations. Nevertheless,
it would be pertinent to consider full triple excitations in
this situation rather than adapting them through the partial
effects. Therefore, we consider the results from the CCSD

TABLE II. Demonstration of trends of the calculated energies (in
cm−1) using various relativistic methods considered in the present
work with the DC Hamiltonian. Relativistic corrections are given
separately from the CCSD method. These results are compared with
the experimental values [46]. Uncertainties in the experimental values
are not mentioned, as they are more precise than the quoted values up
to the second decimal places. Boldface font is to highlight accuracies
in the results obtained from the calculations with respect to the
experimental values.

Method 6s 2S1/2 6p 2P1/2 6p 2P3/2 5d 2D3/2 5d 2D5/2

DHF 27983.73 18752.17 18350.36 14096.82 14121.80
MBPT(2) 32020.63 20362.23 19777.17 16681.89 16568.09
LCCSD 32425.64 20566.54 19965.95 17882.53 17718.94
LCCSD(T) 31812.61 20335.35 19762.15 17439.99 17325.21
LCCSDpTc 32425.66 20566.54 19965.95 17882.53 17718.94
LCCSD[T] 31834.43 20340.48 19766.15 17505.35 17381.71
LCCSDpT 31758.84 20310.25 19741.51 17374.41 17281.31
CCSD 31463.22 20159.54 19600.28 16537.86 16445.08
CCSD(T) 31090.05 20011.04 19470.48 16259.53 16149.22
CCSDpTc 31428.69 20149.29 19591.82 16504.24 16414.53
CCSD[T] 31064.13 20013.07 19472.02 16272.98 16214.82
CCSDpT 31001.99 19993.26 19455.22 16223.73 16170.23

Relativistic corrections

Breit −0.40 −7.50 −1.32 20.17 23.62
VP 3.63 −0.03 −0.09 −0.40 −0.36
SE −17.92 −1.09 0.95 2.11 2.15
Breit + QED −14.86 −8.62 −0.47 21.87 25.42
Experiment 31406.47 20228.20 19674.26 16907.21 16809.62

method, which accounts for all the nonlinear terms within the
considered level of excitations, as the recommended calculated
values for further use.

We have also explicitly estimated the contributions due
to the Breit interaction (“Breit”), the VP effect (“VP”), and
the SE effect (“SE”) using the CCSD method; they are listed
towards the bottom of Table II. In addition, we also determine
these corrections considering all these relativistic corrections
together with respect to the contributions from the DC
Hamiltonian in the CCSD method (“Breit + QED”). We find
slight changes in the results obtained with the Breit + QED
approach versus those obtained when the corrections estimated
independently are added up. We observe that among all these
relativistic corrections, the SE effect is large in the ground
state while the Breit interaction gives larger corrections in the
other considered states.

After analyzing the energies obtained with various methods
with respect to the experimental values, in Table III we list
the E1 matrix elements of the transitions that are required to
estimate the lifetimes of the 5d 2D3/2 and 5d 2D5/2 states of Cs.
We compare these results with the values reported recently by
other groups using different relativistic many-body methods
[13,14]. In addition to the methods we have employed to
evaluate the energies, we also list the E1 matrix elements using
the L/CCSDt3 and L/CCSDex methods in the Table III. We find
reasonable agreement between the results obtained using our
DHF and LCCSD methods and those obtained with the DHF
and SD methods in Ref. [13]. However, there are significant
differences in the results when the higher order effects are
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TABLE III. Our E1 reduced matrix elements (in a.u.) from various
methods and comparison with the other relativistic calculations.
Relativistic corrections to our results are quoted separately and the
recommended values are also listed.

Method 5d3/2 → 6p1/2 5d3/2 → 6p3/2 5d5/2 → 6p3/2

DHF 9.012 4.078 12.233
MBPT(2) 7.535 3.404 10.273
LCCSD 6.566 2.954 9.011
LCCSDt3 6.569 2.952 9.015
LCCSDpTc 6.566 2.954 9.011
LCCSD[T] 6.472 2.909 8.899
LCCSDpT 6.687 3.009 9.137
LCCSDex 6.305 2.828 8.683
CCSD(2) 7.292 3.291 9.931
CCSD(4) 7.301 3.295 9.941
CCSD(∞) 7.301 3.295 9.941
CCSDt3 7.304 3.293 9.945
CCSDpTc 7.326 3.307 10.018
CCSD[T] 7.258 3.275 9.934
CCSDpT 7.357 3.320 10.056
CCSDex 7.348 3.318 10.050

Relativistic corrections

Breit −0.009 −0.005 0.022
VP ∼0.0 ∼0.0 0.039
SE −0.001 −0.001 0.037
Breit + QED −0.010 −0.005 0.020

Estimated uncertainties

Basis 0.048 0.023 0.022
Triples 0.003 0.002 0.004
Scaling 0.047 0.023 0.109

Recommended values

Recommended 7.291(67) 3.288(33) 9.961(111)

From Ref. [13]

DHF 8.9784 4.0625 12.1865
MBPT(3) 6.9231 3.1191 9.4545
SD 6.5809 2.9575 9.0238
SDsc 7.0634 3.1871 9.6588
SDpT 6.9103 3.1112 9.4541
SDpTsc 7.0127 3.1614 9.5906

From Ref. [14]

�(2) 6.744 3.037 9.254
λ�(2) 7.039 3.173 9.629
�(∞) 6.927 3.121 9.481
λ�(∞) 7.032 3.170 9.616

considered. Similarly, our results differ substantially from the
calculations reported in Ref. [14], in which a combination of
the correlation potential method (kth order is denoted �(k))
and the time-dependent Hartree-Fock method with Brueckner
orbitals is employed. Moreover, the E1 matrix elements quoted
in Ref. [13] are improved hugely using the SDsc and SDpTsc
methods, where the wave functions are scaled to account
for the omitted contributions. Large differences in the results
obtained before and after scaling the wave functions demand
the inclusion of the omitted contributions more accurately.
In Ref. [14] too, the final results are quoted using the λ�(k)

approach with the scaling parameter λ. Our CCSD method
includes more physical effects through its formulation [23–25]
and this is also partly justified by the comparison of energies
in Table II. We consider results from the CCSD method to
be more reliable since it includes all the nonlinear terms
within the considered levels of approximations and accounts
for the pair-correlation and core-polarization effects to all
orders [22]. These nonlinear terms take care of most of the
contributions from the triple and quadrupole excitations; more
importantly, both the singly and the doubly excited amplitudes
see these effects on equal footing. To show the effectiveness
of these nonlinear terms, we also evaluate the E1 matrix
elements considering the same linear form of the RCC terms
in Eq. (36) through our CCSD(2) method, which naturally
appears in the LCCSD method, and the amplitudes from
the CCSD method. As reported in Table III, the differences
between the results from the LCCSD and those from the
CCSD(2) methods are quite large. This supports our above
assertion. Compared to the results from the MBPT(2) method,
the results obtained using the (LCC)SD and MBPT(3) methods
from our calculations and in Ref. [13] are smaller but the
CCSD values are closer. This could be because of the fact
that there are strong cancellations in the correlation effects
among the higher order terms. This trend is similar to the
calculations of the energies as listed in Table II. We also
note that the amount of contributions estimated through the
partial triples effects by us and that given in Ref. [13] are
very different. This may be owing to the fact that triples
effects are incorporated differently in the two works. The
differences between the LCCSD and the LCCSDpT results
in our calculations are larger than the differences between the
CCSD and the CCSDpT results. This means that the partial
triples effects change the results of the LCCSD approximation
more than those of the CCSD method. In contrast, we find
that the differences between the LCCSD and the LCCSDpTc

results are much smaller than the differences between the
CCSD and the CCSDpTc results, implying that large core
correlations are incorporated through the nonlinear terms of the
RCC theory. We also observe relatively small changes in the
results obtained using the CCSD(2), CCSD(4), and CCSD(∞)

approximations. Thus, the roles of the nonlinear terms of the
CCSD method are more effective in the determination of the
wave functions than the property evaluation. We also observe
that both the Breit and the QED corrections are of a decent size
for determining the precise value of the E1 matrix element of
the 5d 2D5/2 → 6p 2P3/2 transition. In fact it is interesting to
note here that, unlike in the energy calculations, the total sum
of the relativistic corrections to the above E1 matrix element
obtained from the Breit interaction, VP effect, and SE effect is
quite different than the total sum when they are estimated
considering all these interactions (Breit + QED approach)
together in the CCSD method. In the other transitions, these
corrections are found to be slight in magnitude.

In order to satisfactorily address the issues related to the
inconsistencies between the previously estimated theoretical
results for the lifetimes of the 5d 2D3/2 and 5d 2D5/2 states of
Cs and the experimental values, it is also essential to estimate
the uncertainties associated with the E1 matrix elements
carefully. Obviously, it can be argued that our calculations have
uncertainties from three major sources: (a) using a finite basis
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TABLE IV. Reduced matrix elements (in a.u.) due to the E2 and M1 transitions given by different methods. Relativistic corrections and
recommended values along with the uncertainties are listed at the bottom. The most accurate calculations are highlighted in boldface font.

5d3/2 → 6s1/2 5d5/2 → 6s1/2: 5d5/2 → 5d3/2

Method M1 E2 E2 M1 E2

DHF ∼0.0 43.844 53.707 1.549 44.287
MBPT(2) 3.2 × 10−5 34.287 42.217 1.549 29.127
LCCSD 8.8 × 10−5 31.149 38.642 1.547 23.774
LCCSDt3 8.8 × 10−5 31.165 38.623 1.547 23.782
LCCSDpTc 8.8 × 10−5 31.149 38.642 1.547 23.774
LCCSD[T] 8.9 × 10−5 30.698 38.153 1.547 23.033
LCCSDpT 8.7 × 10−5 31.979 39.541 1.548 24.497
LCCSDex 9.1 × 10−5 30.053 37.436 1.548 21.741
CCSD(2) 7.6 × 10−5 35.301 43.437 1.547 28.878
CCSD(4) 2.1 × 10−4 35.331 43.468 1.551 28.897
CCSD(∞) 2.2 × 10−4 34.400 42.441 1.551 29.037
CCSDt3 2.2 × 10−4 34.416 42.422 1.551 29.045
CCSDpTc 2.1 × 10−4 34.523 42.598 1.551 29.248
CCSD[T] 2.2 × 10−4 34.172 42.203 1.551 28.620
CCSDpT 2.0 × 10−4 34.897 42.960 1.551 29.323
CCSDex 2.2 × 10−4 34.530 42.600 1.551 29.622

Relativistic corrections

Breit ∼0.0 −0.031 −0.047 ∼0.0 −0.105
VP ∼0.0 −0.004 −0.004 ∼0.0 0.003
SE ∼0.0 0.019 0.024 ∼0.0 −0.012
Breit + QED ∼0.0 −0.015 −0.028 ∼0.0 −0.116

Estimated uncertainties

Basis ∼0.0 0.106 0.112 ∼0.0 0.289
Triples 2.0 × 10−5 0.016 0.019 0.001 0.008
Scaling ∼0.0 0.130 0.159 ∼0.0 0.585

Recommended values

Recommended 2.2(2) × 10−4 34.385(168) 42.413(195) 1.550(1) 28.921(653)

size, (b) making approximations in the levels of excitations
in the RCC theory, and (c) employing an ab initio approach
for calculating the wave functions. Among these three, the
first two sources of uncertainties are quite understandable.
To fathom the uncertainty due to the ab initio approach,
one can follow from Eq. (32) that both the wave-function-
and the energy-determining equations are coupled. Therefore,
uncertainties associated with both solutions either will cancel
each other out or will be added up in the final result. If
the experimental energy is used in Eq. (32) (which may be
treated as a semiempirical approach), then the uncertainty
associated with the energy can be removed (assuming that
the experimental energy is more precise). We estimate the
uncertainties due to the truncated basis size (“Basis”) by
carrying out calculations with the high-lying orbitals using the
MBPT(2) method, which are neglected in the RCC calculations
to circumvent the computational limitations. Uncertainty due
to the neglected triples (“Triples”) are accounted for by
taking the difference between the CCSD and the CCSDt3

results. To estimate the uncertainties due to the ab initio
calculations (“Scaling”), we consider the differences in the
results between the CCSD and the CCSDex methods. It is
worth mentioning here that most of the partial triples effects
seen in our calculations are present inherently within the above
estimated differences. Therefore, almost all possible major

uncertainties in our CCSD results are taken into account. By
accounting for all these uncertainties in quadrature, we list the
recommended values of the E1 matrix elements towards the
end of Table III. The absolute values are given after adding the
relativistic corrections to the CCSD results.

It can be assumed that contributions from the forbidden
transition probabilities to the estimations of the lifetimes of
the 5d 2D3/2 and 5d 2D5/2 states of Cs are negligibly small.
However, it is necessary to demonstrate exactly how small
they are in the scenario where the aim is to investigate in-
consistencies among the theoretical and experimental results.
For this purpose, we also estimate these quantities explicitly
for the lower order M1 and E2 forbidden channels. We list
these forbidden transition amplitudes from the 5d 2D3/2 and
5d 2D5/2 states in Table IV using the same methods that
were employed to calculate the E1 matrix elements. We
also list the uncertainties to these quantities adopting the
procedure described in the previous paragraph. The trends
of these matrix elements obtained with different many-body
methods are similar to the E1 results except for the M1 matrix
element between the 5d 2D3/2 → 6s 2S1/2 transition—which
is, nonetheless, found to be negligibly small. The relativistic
corrections are also found to be quite small. The recommended
values are listed at the end of the table following the same
procedure as given for the E1 matrix elements in Table III.
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TABLE V. Transition wavelengths (in nm) and probabilities (AO
if ) due to different decay channels (Os; in s−1) from the 5d 2D3/2 and

5d 2D5/2 states of Cs from various works. Uncertainties are listed within parentheses. We also compare our results with the other available
theoretical and experimental values. Only results from the SDpTsc method are quoted from Ref. [13].

Transition λif (nm) AO
if (s−1) τi (ns)

Ji → Jf [46] O This work Others This work Others Experiment

5d 2D3/2 → 6p 2P1/2 3011.15 E1 986229(18209) 804000 [13] 907(16) 981 [13] 909(15) [16]
5d 2D3/2 → 6p 2P3/2 3613.96 E1 116015(2341) 94000 [13] 909 [29] 890(90) [26]
5d 2D3/2 → 6s 2S1/2 689.69 E2 21.21(20) 1061 [30] 1250(115) [27]
5d 2D3/2 → 6s 2S1/2 M1 ∼0 952 [31]

970 [32]
856 [33]

5d 2D5/2 → 6p 2P3/2 3490.84 E1 787636(17652) 646000 1270(28) 1369 [13] 1281(9) [16]
5d 2D5/2 → 6s 2S1/2 685.08 E2 22.24(21) 1283 [29] 1225(12) [17]
5d 2D5/2 → 5d 2d3/2 102469.52 E2 ∼0 1434 [30] 890(90) [26]
5d 2D5/2 → 5d 2d3/2 M1 ∼0 1370 [31] 1250(115) [27]

1342 [32] 1260(80) [28]
1190 [33]

Using the recommended transition matrix elements listed
in Tables III and IV and the experimental wavelengths quoted
in Table V from the database of Ref. [46], we determine the
transition probabilities due to all the considered channels from
the 5d 2D3/2 and 5d 2D5/2 states of Cs. These values are listed
in Table V along with their uncertainties and compared with
the values due to the E1 channel obtained using the SDpTsc
procedure from Ref. [13]. We find large differences between
the results from the two works. From the total probabilities
of these results, we find that the lifetime of the 5d 2D3/2 state
is 907(16) ns, versus the 981 ns reported in Ref. [13]. This
is in quite good agreement with the experimental value of
909(15) ns reported in Ref. [16]. Similarly, we obtain the
lifetime of the 5d 2D5/2 state as 1270(28) ns, versus 1369 ns in
Ref. [13]. Our result again agrees well with the experimental
value of 1281(9) ns reported in Ref. [16]. In Table V, we
also list the estimated lifetimes of these states from some
of the previous theoretical and other experimental results.
Most of these theoretical estimations were carried out using
the nonrelativistic theory [29–33]. Nevertheless, theoretically
estimated values in Ref. [29] are very close to our values and
the experimental results in Ref. [16]. Other theoretical results
are far away from our calculations. Also, other experimental
values for the lifetimes of the above 5D states have large error
bars [26–28] except for the 5d 2D5/2 state, with 1225(12) ns
reported in Ref. [17]. This lies outside the range of the error bar
of the value reported in Ref. [16]. Since we have overestimated
the uncertainties in our theoretical analysis to provide more
reliable results, we anticipate that error bars in our calculations
will be smaller than what has actually been reported. From this
point of view, our results support the experimental values of
the lifetimes of the 5D states of Cs reported in Ref. [16]. Our

calculations also demonstrate that the branching ratios for an
electron to jump from the 5d 2D3/2 state to the lower 6p 2P1/2

state is about 90%, while that to jump to the 6p 2P3/2 state is
about 10%. On the other hand, an electron can jump from the
5d 2D5/2 to the 6p 2P3/2 state with almost 100% probability.

V. CONCLUSION

We have employed a variety of relativistic many-body
methods, mostly in the CC theory framework, to calculate the
energies of the first five low-lying states and the transition
matrix elements due to both allowed and forbidden decay
channels of the 5d 2D3/2 and 5d 2D5/2 states in Cs. Trends of the
results from these methods are discussed and the importance
of considering the nonlinear terms in the CC methods for
accurate determination of the matrix elements is highlighted.
Corrections due to both the Breit interaction and lower order
QED effects in these quantities are demonstrated explicitly.
Earlier reported inconsistencies between the theoretical and
the experimental values of the lifetimes of the above two states
seem to be resolved. Branching ratios due to various channels
are also given. Though the forbidden transition probabilities
are found to be extremely low, our calculated line strengths
due to these transitions could be quite useful if the proposed
measurements of PNC effects in the 6s 2S1/2 → 5d 2D3/2,5/2

transitions in Cs take place in the future.
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