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Entanglement storage by classical fixed points in the two-axis countertwisting model
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We analyze a scheme for storage of entanglement quantified by the quantum Fisher information in the two-axis
countertwisting model. A characteristic feature of the two-axis countertwisting Hamiltonian is the existence of
the four stable center and two unstable saddle fixed points in the mean-field phase portrait. The entangled state
is generated dynamically from an initial spin-coherent state located around an unstable saddle fixed point. At an
optimal moment of time the state is shifted to a position around the stable center fixed points by a single rotation,
where its dynamics and properties are approximately frozen. We also discuss evolution with noise. In some cases
the effect of noise turns out to be relatively weak, which is explained by parity conservation.
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I. INTRODUCTION

The idea of dynamical generation of entangled states
in ultracold atomic systems has its origin in the work of
Kitagawa and Ueda [1]. The concept of spin-squeezed states
was introduced in a collection of qubits. Two different models
for dynamical generation of spin-squeezed states were pro-
posed; namely, the one-axis twisting (OAT) and the two-axis
countertwisting (TACT) Hamiltonians, with the latter giving
the strongest level of squeezing. Later on, it was recognized
that highly entangled states, including the NOON state, can
also be generated by further dynamics. However, due to small
nonlinearities and decoherence, only atomic states appearing
at the beginning of the OAT scenario have been observed [2–7]
so far and used to improve precision in prototypes of atomic
clocks [7] and magnetometers [8]. On the contrary, the TACT
model, being the subject of this paper, has not been realized
experimentally yet. Even though, it still attracts attention of
many physicists, because a high degree of squeezing and
entanglement can be reached on much shorter timescales (or
alternatively smaller nonlinearities) [9].

Apart from difficulties in realizing twisting Hamiltonians
experimentally, there are other problems related to metrologi-
cal schemes. Once the desired entangled state is reached, the
problem which appears is how to save it in a way robust against
decoherence. In many systems, including ultracold atoms, it is
not easy to simply switch off the nonlinearity to avoid further
evolution into possibly less-interesting states. In this paper
we propose a scheme, based on the TACT model, in which
the entangled state is reached and then its entanglement is
preserved for an infinite time even though the nonlinearity is
not reduced, and even more surprisingly, some noise is also
included.

The main idea of the scheme is very simple and utilizes the
structure of the mean-field phase portrait. In our recent paper
[9] we showed that the mean-field phase portrait of the TACT
Hamiltonian consists of two unstable saddle and four stable
center fixed points located symmetrically on the Bloch sphere.
The strong squeezing and entanglement can be reached from
an initial spin-coherent state located around an unstable saddle
fixed point which is reflected in the Heisenberg-like scaling of
the quantum Fisher information. For the initial spin-coherent
state located around a stable center fixed point, the quantum

dynamics is approximately frozen. The scheme we have in
mind joins the qualitatively different dynamics which takes
place in a vicinity of a fixed point. The initial spin-coherent
state located around an unstable fixed point is evolved via the
TACT Hamiltonian to an interesting non-Gaussian state. Next,
the state is rotated in order to locate its important parts around
stable fixed points. As a result, further dynamics is confined
to a narrow region of the phase space around two antipodal
stable fixed points, and the quantum Fisher information will
forever remain at a very high level.

A natural question which arises is how does noise, always
present in experiments, affect the final results of the scheme?
We address this question by investigating the dynamics of the
quantum Fisher information with noise inspired by experi-
ments with ultracold two-level atoms. The serious problem
here is the noise due to external slowly changing fields, which
affects the energy levels and hence causes extra rotation of
the state. These changes are assumed to be so slow that,
during a single experimental run, the fields are constant, but
they vary from shot to shot. Hence, from one experimental
realization to another, one obtains an entangled state landing at
a different position. The state smears out and the entanglement
is reduced while averaging over realizations. The experimental
way around is a so-called spin-echo technique. We incorporate
such noise by adding stochastic terms into the Hamiltonian.
Instead of a single pure state we have a collection of them
for each realization of the noise. The final state is obtained as
a mixture of them. Such the procedure, at least in the OAT
scheme, is also related to other sources of decoherence, i.e.,
particle losses and finite-temperature effects [10]. The effect
of noise on the proposed scheme turns out to be relatively
weak since one ends up with the Heisenberg-like scaling of
the quantum Fisher information. We observe that, depending
on details of the noise, the quantum Fisher information either
decreases down to some universal value or remains at a very
high level, almost unaffected. We explain the latter finding
on the quantum level by showing that it is protected by the
conservation laws of energy and parity.

II. THE MODEL

We consider a collection of N qubits, e.g., particles in two
orthogonal modes. The system is conveniently described by
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using the collective spin operator �̂S whose components written
in the Schwinger representation are

Ŝx = 1
2 (â†b̂ + b̂†â), (1a)

Ŝy = 1
2i

(â†b̂ − b̂†â), (1b)

Ŝz = 1
2 (â†â − b̂†b̂), (1c)

where â†, b̂† are the bosonic creation operators associated with
the two modes.

A representative form of the two-axis countertwisting
Hamiltonian was proposed in Ref. [1]:

Ĥ = �χ (Ŝx Ŝy + Ŝy Ŝx). (2)

An SU(2) rotation of the Hamiltonian ÛĤ Û †, where Û is
a group element, produces a mathematically equivalent form
which appears, e.g., in the Lipkin–Meshkov–Glick model [11].
In this paper we operate on the rotated Hamiltonian

ĤTACT = −�χ (Ŝy Ŝz + ŜzŜy), (3)

with Û = e−iŜyπ/2, as a matter of convenience simplifying the
form of observables of interest.

In what follows, we consider the effect of noise on the
quantum dynamics. A source of the noise is closely related
to experimental conditions. In applications to Bose–Einstein
condensates the noise was effectively modeled as a linear
combination of spin components added to an unperturbed
Hamiltonian [4,10,12]. To adopt the same approach we first
introduce the family of Hamiltonians

Ĥ �γ = ĤTACT + � �γ · �̂S, (4)

where �γ = (γx,γy,γz). In this convention the unperturbed
Hamiltonian, denoted by Ĥ�0, is equal to ĤTACT. We assume
that the parameters γj are time independent but vary randomly
from one experimental realization to another, mimicking a
stationary random dephasing environment. We assume that
they are normally distributed with the Gaussian probability
density

P (γj ) = 1

σj

√
2π

e
− γ 2

j

2σ2
j , (5)

where σj is the standard deviation.
In the presence of noise a quantum state of the system

is described by a density matrix operator ρ̂(t) which is
constructed as a statistical average over stochastic realizations,

ρ̂(t) =
∫

d �γ
∏
j

P (γj )|ψ �γ (t)〉〈ψ �γ (t)|. (6)

Here, the pure states |ψ �γ 〉 are the solutions of the Schrödinger
equation

i�∂t |ψ �γ (t)〉 = Ĥ �γ |ψ �γ (t)〉. (7)

The initial state for the evolution is the spin-coherent state
located along the X axis of the Bloch sphere with radius N/2.

In a standard way one can expand it in the Fock-state basis [9],

|ψ �γ (0)〉 = 2−N/2
N∑

k=0

(
N

k

)1/2

|k,N − k〉, (8)

which is the eigenstate of the Ŝx operator with the eigenvalue
N/2. The spin-coherent state can be visualized on the Bloch
sphere as a disk of diameter

√
N/2.

In order to quantify the amount of quantum correlations
that are useful for atomic interferometry we concentrate on
the quantum Fisher information (QFI). In our system, linear
interferometry can be viewed as rotation around a given axis
�n through an unknown angle θ , followed by measurement of
some observable Ô. The task of interferometry is to estimate
θ having outcomes of measurements of Ô. The Cramér–Rao
bound [13] states that the uncertainty of an estimation is limited
by the inequality 
θ � [F (Ô,�n)]−1/2, where F (Ô,�n) is the
Fisher information associated with the chosen interferometric
direction �n and the chosen observable Ô. The higher the QFI
the better the interferometric precision. Possible outcomes of
measurements of Ô are the eigenvalues μ. The probability
of measuring μ is equal to p(μ) = Tr{ρ̂ P̂μ}, where P̂μ

is the operator projecting onto a subspace of eigenvectors
corresponding to the eigenvalue μ. The conditional probability
of measuring μ in the state rotated around �n through an angle
θ reads p(μ|θ ) = Tr{e−iθ Ŝ�n ρ̂ eiθŜ�n P̂μ}. For θ = 0, the Fisher
information is

F (Ô,�n) ≡ lim
θ→0

∑
μ

1

p(μ|θ )

(
dp(μ|θ )

dθ

)2

. (9)

The QFI is the largest possible value of F (Ô,�n) [13]; namely,
for any �n and Ô it is known that

FQ � F (Ô,�n). (10)

It was recognized that the QFI is a measure of multiparticle
entanglement [14,15]. The entanglement is necessary to beat
the shot-noise limit with FQ = N which is characteristic for
uncorrelated particles [16–20]. The upper bound for precise
measurements with FQ = N2 is attainable by maximally
entangled states, e.g., the NOON state [21]. The value of the
QFI is

FQ = 4λmax, (11)

where λmax is the maximal eigenvalue of the covariance matrix
[14–16]

�ij [ρ̂] = 1

2

∑
l,m

(pl − pm)2

pl + pm

Re[〈l|Ŝi |m〉〈m|Ŝj |l〉], (12)

where pl and |l〉 are eigenvalues and the corresponding
eigenvectors of the system density matrix ρ̂, respectively. For
a pure state the covariance matrix (12) reduces to

�ij = 1
2 〈Ŝi Ŝj + Ŝj Ŝi〉 − 〈Ŝi〉〈Ŝj 〉, (13)

and the QFI is determined by its maximal eigenvalue. Alter-
natively, the quantum Fisher information for a pure state can
be calculated from

FQ = 4 max
�n


2Ŝ�n, (14)
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where Ŝ�n = nxŜx + nyŜy + nzŜz and the maximization is over
all vectors (nx, ny, nz) satisfying the constraint n2

x + n2
y +

n2
z = 1.

Time evolution of a quantum system can be traced by using
a quasidistribution function in the phase space. It was shown
that the classical Liouvillian flow highly resembles the Husimi
function evolution (as long as the curvature of the phase space
does not play a significant role) [22]. Let us first analyze the
classical phase portrait in order to understand the quantum
dynamics and the idea for entanglement storage.

III. MEAN-FIELD PHASE PORTRAITS

In the mean-field description (the limit of large system
size, N � 1) one replaces bosonic creation and annihilation
operators by c numbers [23],

â →
√

N
√

ρae
iϕa , b̂ →

√
N

√
ρbe

iϕb , (15)

were ρa + ρb = 1 due to conservation of the total particle
number. Two canonical variables; namely, the population
difference z = ρa − ρb and relative phase ϕ = ϕb − ϕa are
sufficient to describe classical dynamics [24]. Conventionally,
z ∈ [−1,1] and ϕ ∈ [−π,π [, reflecting the spherical topology
of the phase space. Mean-field counterparts of spin operators
take the form

Sx = N

2

√
1 − z2 cos ϕ, (16a)

Sy = N

2

√
1 − z2 sin ϕ, (16b)

Sz = N

2
z, (16c)

and the quantum Hamiltonian (4) transforms into its
classical counterpart

H = −�χ
N2

2
z
√

1 − z2 sin ϕ + �
N

2
zγz

+�
N

2

√
1 − z2

(
γx cos ϕ + γy sin ϕ

)
. (17)

In principle, one can follow time evolution of the classical
system by solving Hamilton’s equations ϕ̇ = (2/�N )(∂H/∂z),
ż = −(2/�N )(∂H/∂ϕ):

ϕ̇

Nχ
= − 1 − 2z2

√
1 − z2

sin ϕ

− z√
1 − z2

(γ̃y sin ϕ + γ̃x cos ϕ) + γ̃z, (18a)

ż

Nχ
= z

√
1 − z2 cos ϕ

−
√

1 − z2(γ̃y cos ϕ − γ̃x sin ϕ), (18b)

with γ̃j = γj/Nχ . The dynamics can be qualitatively
deduced by looking at the phase portrait which consists of
trajectories in the phase space tangent to the velocity field
(ϕ̇,ż). In Fig. 1 we show phase portraits for typical cases. A
characteristic feature of the TACT Hamiltonian is the existence
of unstable saddle and stable center fixed points [9]. When
�γ = �0, the phase portrait has four stable center fixed points
located at (z,ϕ) = (±1/

√
2, ± π/2) and two unstable saddle

fixed points at (z,ϕ) = (0,0) and (z,ϕ) = (0,−π ) [compare
with Fig. 1(a)]. A nonzero value of γ̃j shifts locations of
fixed points, and a bifurcation occurs when |γ̃j | = 1 (or
γj = N ). A striking feature is the stability of the phase portrait
against weak perturbations (γj < N), i.e., if a fixed point was
of unstable-saddle type, it will remain unstable saddle (the
same applies for stable centers). For |γ̃j | > 1 the mean-field
dynamics enters a Rabi-like regime with two stable fixed points
remaining in the phase portrait.

Explicit analytical expressions for the positions of particu-
lar fixed points are given in Appendix A.

IV. STOCHASTIC EVOLUTION OF QUANTUM
FISHER INFORMATION

Time evolution of the QFI in the unperturbed case �γ = �0
was analyzed in Ref. [9] (shown also by the red solid line in
Fig. 2). We briefly recall its regular behavior for short times
by using the Husimi function in the phase-space picture. The
initial coherent state located around the unstable saddle fixed
point [visualized in Fig. 1(a) by the red disk] is stretched
along the prime meridian towards the second unstable fixed
point located at the opposite side of the Bloch sphere. The
QFI grows up from FQ = N and reaches the first maximum
at χt = ln(2πN )/2N with the Husimi density cumulated
around the two poles of the Bloch sphere (see Fig. 3). At
subsequent moments of time, the QFI decreases, reaching
a minimum at χt = ln(2πN )/N when separated pieces of

1.0

0.5

0.0

− 0.5

− 1.0

z

− π − π/2 0 π/2 π
ϕ

− π − π/2 0 π/2 π
ϕ

− π − π/2 0 π/2 π
ϕ

− π − π/2 0 π/2 π
ϕ

− π − π/2 0 π/2 π
ϕ

)e()c()b()a( (d)

FIG. 1. Mean-field phase portraits for (a) γ̃x = γ̃y = γ̃z = 0; (b) γ̃x = 0.4, γ̃y = γ̃z = 0; (c) γ̃x = 1, γ̃y = γ̃z = 0; (d) γ̃y = 0.4, γ̃x = γ̃z = 0;
(e) γ̃z = 0.4, γ̃x = γ̃y = 0. Red disks visualize the initial spin-coherent state.
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FIG. 2. Time evolution of the QFI for �γ = �0 (solid red line) and for �γ 
= �0 (gray lines), for N = 50 atoms and M = 2 × 103 trajectories.
The noise term is nonzero along the (a) Z, (b) Y , or (c) X axis, with σj = χ (dotted lines), σj = 5χ (dot-dashed lines), σj = 15χ (dashed
lines), σj = 50χ (dot-dot-dashed lines). Insets in panels (c) show the QFI at χt = ln(2πN )/N as a function of σx (left) and γx (right).

the Husimi distribution meet together at the opposite side of
the Bloch sphere around the second unstable fixed point. The
stretching and separation of the Husimi function takes place
once again, but this time along the equator towards the initial
fixed point. The QFI grows up, reaching the second maximum
at χt � 1.75 ln(2πN )/N . Thereafter, the dynamics becomes
irregular and overall results depend on the total number of
particles.

In the presence of noise, the QFI is determined by the system
density matrix according to Eq. (12). A numerical procedure
for obtaining ρ̂(t) is based on a discrete limit of Eq. (6):

ρ̂(t) = 1

M

M∑
i=1

ρ̂i(t), (19)

where ρ̂i(t) = |ψi(t)〉〈ψi(t)| and |ψi(t)〉 is a solution of the
Schrödinger equation (7) for given �γi . The optimal ensemble
size M can be determined, e.g., by looking at the von Neumann
entropy: when its value stabilizes as a function of M then the
structure of the density matrix does not change.

Numerical results for the QFI with nonzero noise term
along a chosen axis of the Bloch sphere are shown in Fig. 2.
Illustrative analysis of the QFI using the phase-space picture is
hindered in the mixed-state case. Nevertheless, the information
extracted from each realization of �γi is valuable to the overall
behavior of the QFI in a noisy system. Due to convexity of the
QFI [20,25,26], a convex mixture of quantum states contains
fewer quantum correlations than the ensemble average:

FQ[ρ̂(t)] <
1

M

M∑
i=1

FQ[|ψi(t)〉]. (20)

If the QFIs for particular realizations of �γi lie below the
unperturbed value then the QFI of the noisy system decreases.
This is what we observe in the early stage of the evolution
for χt < ln(2πN )/2N . On the other hand, if the QFIs
for particular realizations of �γi exceed the value for the
unperturbed case in some time interval, then the inequality
(20) does not exclude the possibility that the QFI value may
be larger as compared with the noiseless case. This effect
is observed for noise along the X axis and time χt around
ln(2πN )/N [see Fig. 2(c)].

As a general principle, the stronger the noise, the greater the
reduction of the QFI value. Suppression of the QFI is observed

for nonzero γz [Fig. 2(a)] and nonzero γy [Fig. 2(b)]. When
|γy, z| � χ

√
N then the initial state remains within the range

of the unstable fixed point, and the evolution of the QFI is
close to the noiseless case. When |γy, z| is of the order of or
larger than χ

√
N then the position of the unstable fixed point

shifts, and effectively the initial state is no more within its
range; see Figs. 1(d) and 1(e). This prevents the first spreading
and separation which leads to a decreased value of the QFI. A
different situation takes place for a nonzero γx and γy, z = 0.
The positions of unstable fixed points do not change, and the
time evolution is always initialized at the unstable fixed point;
see Fig. 1(b). As a result, the first part of the evolution is
very close to the noiseless case. The impact of the linear term
enhances at later times due to modification of the classical
trajectories; see Fig. 1(b). The noise-enhanced effect is spotted
around χt = ln(2πN )/N , as can be observed in Fig. 2(c).
In order to give ground for comparison we show the QFI
at χt = ln(2πN )/N for the noisy system (left panel) and a
particular realization of noise (right panel) in the insets of
Fig. 2(c). A sufficiently large γx opens a new path for the
evolution. The separated pieces of the distribution function
have no occasion to localize around the second unstable fixed
point; they turn around the stable fixed points and meet earlier
at the initial saddle fixed point. Consequently, the state remains
in the two elongated pieces for a longer time, increasing the
value of the QFI around χt � ln(2πN )/N .

When γj > N unstable fixed points disappear in the phase
portrait and the QFI is never larger than N in the limit γj → ∞.

V. STORAGE SCHEME

The regular part of the evolution and exceptional behavior
of the Husimi function give a possibility of a stabilization
scheme with nearly stationary value of the QFI at a relatively
high level. The scheme consists of three steps. The quantum
system is evolved until the QFI reaches the first maximum at
τ = ln(2πN )/2Nχ . Then an instantaneous pulse, e.g., of laser
light, rotates the state through π/4 around the X axis,

|ψ�0(τ+)〉 = eiŜxπ/4|ψ�0(τ−)〉, (21)

where τ+ and τ− denote the time just after and before the rota-
tion, respectively. Later on (t � τ+), the dynamics is governed
by the TACT Hamiltonian without any manipulations. The idea
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FIG. 3. Illustration of the storage scheme by classical stable fixed
points. The initial state for the evolution is the spin-coherent state
located around the unstable fixed point. At the optimal moment of
time τ = ln(2πN )/2Nχ (the first maximum of the QFI), the position
of the state is shifted by the single rotation Û = eiŜxπ/4 to regions
around the two stable fixed points. Thereafter, the dynamics is limited
to a narrow region of the phase space around the two antipodal stable
fixed points.

of the scheme can be understood as illustrated in Fig. 3. As we
know from previous considerations, shortly before the pulse
the Husimi function is highly stretched with the two maxima
localized around the two poles of the Bloch sphere. Rotation
of the state throws the two maxima into stable regions of
the phase space. Thereafter, the dynamics is trapped around
the two antipodal stable fixed points. An animation for time
evolution of the Husimi function is in Ref. [28].
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FIG. 4. (a) Evolution of the QFI: red dashed line by the TACT
Hamiltonian, black solid line by the TACT Hamiltonian with
the rotation Û = eiŜxπ/4 at t = τ = ln(2πN )/2Nχ . Both for the
noiseless system and N = 50. (b) QFI with noise and the rotation
at τ in time for σx = χ/10, σy, z = 0 (blue dashed line), σy = χ/10,
σx, z = 0 (red solid line), σz = χ/10, σx, y = 0 (green dotted line) and
N = 50, M = 2 × 103.

Time evolution of the QFI is shown in Fig. 4(a). A roughly
stationary value was obtained owing to the rotation. This result
does not depend much on the number of particles, and the
average value of the QFI remains at the level FQ � 0.75N2.
We emphasize that a deviation from the optimal time τ or angle
of rotation up to 20% does not spoil the “freezing” scheme, but
rather lowers the value of the QFI, at worst to FQ ∼ 0.7N2.

In fact, within the scheme not the state itself is saved but
rather its useful entanglement quantified by the QFI. Before
the rotation, the QFI given by Eq. (14) is maximized for �n =
(0,0,1), which leads to FQ(τ−) = 4
2Ŝz(τ−). The optimal
direction after the pulse is �n = (0,1/

√
2,1/

√
2). For t � τ+,

the QFI given by the definition (14) fulfills inequality

FQ(t) � 4〈Ŝy Ŝz + ŜzŜy〉(t),
where we have used the fact that 〈Ŝy〉(t) = 〈Ŝz〉(t) = 0 (from
the symmetry arguments) and the variance 
2〈Ŝy − Ŝz〉(t) is
non-negative. The operator Ŝy Ŝz + ŜzŜy is equal to −HTACT,
so it is a constant of motion. Conservation of energy
implies 〈Ŝy Ŝz + ŜzŜy〉(t) = 〈Ŝy Ŝz + ŜzŜy〉(τ+). On the other
hand, 4〈Ŝy Ŝz + ŜzŜy〉(τ+) = 4〈Ŝ2

z 〉(τ−) − 4〈Ŝ2
y 〉(τ−). Just be-

fore the pulse, the state is still squeezed along the Y axis, hence
the variance 
2Ŝy(τ−) is relatively small. Finally, we have

FQ(t) � FQ(τ−) − 4
2Ŝy(τ−) ≈ FQ(τ−). (22)

It follows that, after the rotation, the QFI needs to stay at least
at the level from the moment of pulse.

A. The effect of noise

In the following we analyze the effect of weak noise on the
scheme. We limit the regime of parameters in such a way that
most γi in an ensemble leave the initial state within the range
of the unstable fixed point. We also demand that the fidelity
function between the unperturbed state and the density matrix
coming from the stochastic dynamics,

Fσj
(t) = 〈ψ�0(t)|ρ̂σj

(t)|ψ�0(t)〉

=
∫ ∞

−∞
dγjP (γj )|〈ψ�0(t)|ψγj

(t)〉|2, (23)

at t = τ will stay close to 1. The latter defines weak noise. The
conditions for the σi parameters are the following:

(i) σy, z/χ �
√

N/2 and σx/χ < N, (24a)

(ii) σx,y,z/χ � 2
√

2N/ ln(2πN ). (24b)

For large N the second condition is stronger than the first.
For example, N = 50 requires σx,y,z/χ � 3.5.

Time evolution of the QFI with the rotation at t = τ for
the system with noise is shown in Fig. 4(b). Two qualitatively
different cases can be distinguished. For γx 
= 0 and γy, z = 0,
stabilization of the QFI around 〈FQ〉x/N2 � 0.75 is observed,
where 〈.〉x denotes here average in time. The overall shape
of the curve stays very close to the result for the unperturbed
system even for a very long period of time. This behavior
does not depend on the parity of N . In the second case, for
γy 
= 0 and γx, z = 0 (or γz 
= 0 and γx, y = 0), initial decaying
followed by stabilization of the QFI is observed. The decay
time depends both on N and σy, z, while the average level of
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FIG. 5. The Wigner function with noise and the rotation at τ for
(a) σx = χ/10, σy, z = 0 and (b) σy = χ/10, σx, z = 0, both at t =
30 ln(2πN )/Nχ and N = 50, M = 104. The QFI has the meaning of
the speed of change of statistics due to rotation on the Bloch sphere.
A small rotation of the state results in small shifts of the distribution
of quasiprobability; here the SU(2) Wigner function [27]. Thus the
appearance of small thin structures in the Wigner function leads to a
high value of the QFI, as rotating the state perpendicularly to them
would strongly affect the state and the quasiprobability distribution.
The high narrow fringes, and also the high value of the QFI, remain
even in the case with noise along the X axis, but they are mostly
smeared out by noise along Y or Z axis.

the QFI stabilization is typically ≈0.2N2, irrespective of σy, z.
We noticed that the stable value of the QFI oscillates in the
same way even for different values of σy,z.

These observations agree with the geometrical considera-
tion based on the Wigner function, as illustrated and discussed
in Fig. 5.

B. Noise along the Z or Y axis

A distinguishing feature of the QFI is the decaying character
observed for γz 
= 0 and γx, y = 0 (or γy 
= 0 and γx, z = 0).
The half-decay time behaves as τ1/2 ∝ 1/(Nσy, z) according
to our numerical simulations; see Fig. 6(a). Understanding
the decay process goes hand in hand with the eigensystem of
the density matrix since formula (12) for the QFI with noise
requires its knowledge. As shown in the inset of Fig. 6(a) by the
red solid line, during the initial decay the QFI the spectrum is
dominated by a single eigenvalue pl ≈ 1. For such a spectrum,
the covariance matrix (12) can be simplified to

�ij � pl

2
(〈Ŝi Ŝj + Ŝj Ŝi〉 − 2〈Ŝi〉〈Ŝj 〉), (25)

where the quantum average is calculated over the eigenstate |l〉
corresponding to pl . Moreover, we observe that the dominant
eigenvalue pl coincides with the fidelity (23), marked by the
black dashed line in the inset of Fig. 6(a). This means that
the eigenstate |l〉 is nothing else but just the unperturbed state
|ψ�0(t)〉. If this is the case, then the covariance matrix (25) is
equal to the covariance matrix for the unperturbed evolution
multiplied by the decaying weight pl . The initial decay of the
QFI in the case with noise is then determined by the pl , being
equal to the fidelity (23). In order to compute the decay rate
of the QFI we move on to the analysis of the fidelity function.
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FIG. 6. (a) The half-decay time τ1/2 of the QFI for γy 
= 0 and
γx, z = 0 (open symbols), and γz 
= 0 and γx, y = 0 (filled symbols).
Dashed line is the best fit τ1/2 = 0.977(Nσy, z)−1.096 to the numerical
data. (b) Averaged values of the QFI after the rotation and noise along
the X axis. In insets: solid lines are a few of the largest eigenvalues of
the system density matrix while the dashed line is the fidelity function
(23) in time. Parameters are the same as in Fig. 4(b).

The state after the rotation is

|ψ �γ (t)〉r = e−iĤ �γ T eiŜxπ/4|ψ �γ (τ−)〉, (26)

where T = t − τ . For noise along the Z axis one has

|r〈ψγz
(t)|ψ�0(t)〉r |2 �

∑
k, k′

|ck|2|ck′ |2e−iγzT (k−k′), (27)

where ck are decomposition coefficients in the Fock-state
basis of the state (26) at T = 0. Formula (27) can be
found by splitting the exponential e−iĤ �γ T into the product
e−iĤ�0T e−i�γzŜzT . This can be done for T < T ∗, where T ∗ �
(6)1/3(�3χγ 2

z N )−1/3 is determined using the Zassenhause
formula and the Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy for expectation values of operator prod-
ucts [9,29]. Integration over γz gives [30]

Fσz
(T ) = 2

N∑
n=1

e−T 2σ 2
z n2/2

N∑
k=n

|ck|2|ck−n|2 +
N∑

k=0

|ck|4. (28)

It is clear that the fidelity function is a monotonically decaying
function from Fσz

(0) = 1 to Fσz
(+∞) = ∑

k |ck|4. Moreover,
it is a dimensionless quantity and therefore a function of an
independent dimensionless combination that we can form from
σz, T , and N . It is evident from Eq. (28) that the half-decay
time τ1/2 should be proportional to the inverse of σz, but the
question is about the dependence with respect to N . In order
to get some insight into our case we first analyze a simpler
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case with |ck|2 = 1/(N + 1). It can be shown that the fidelity
function for relatively large N is well described by

Fσz
(T ) = 1

λ

[√
π Erf(λ) − 1

λ

(
1 − e−λ2)]

, (29)

with λ = NσzT /
√

2; see Appendix B for analytical calcula-
tions. Our case is harder to analyze because the weights |ck|2
are distributed in a numerically known way. Nevertheless, we
performed numerical calculations for different N and σz and
extracted the same scaling of the fidelity function (28) for short
times. The same holds for the exact fidelity function defined
by Eq. (23).

When t � τ , then other eigenvalues of the system density
matrix become relevant and the analysis spoils out. One cannot
simplify the covariance matrix � by using Eq. (25) any more. In
the limit t → ∞, all eigenvalues of the system density matrix
stabilize at some nonzero level, which leads to a nonzero QFI
at long times.

Analogous reasoning can be applied for noise along Y axis,
but this time one should decompose the state in the eigenbasis
of Ŝy .

C. Noise along the X axis and almost optimal
interferometric scheme

The evolution with noise along the X axis turned out to be
very peculiar: even for quite strong noise, i.e., σx ≈ χ , still the
QFI only slightly oscillates at the average level 〈FQ〉x/N2 =
0.75 [see Fig. 6(b)] and it is not damped even for the longest
time that we were able to study numerically (up to t = 2000τ ).
In order to present our understanding of the robustness of the
QFI against noise along the X axis, we use the inequality (10)
to bound FQ from below, by computing analytically F (Ô,�n)
for well chosen �n and Ô.

As the rotation axis �n we choose, as in the case with unitary
dynamics, the direction �n = (0, 1√

2
, 1√

2
) after the pulse, and

�n = (0,0,1) before the pulse. The main problem is to find a
good observable Ô, such that the statistics of the measurements
would be both sensitive to rotation around �n and robust against
noise along the X axis. We suggest

Ô := �̂ := P̂+ − P̂−, (30)

where P̂+ = ∑
n=N,N−2,... |n〉x x〈n|, P̂− = ∑

n=N−1,N−3,...

|n〉x x〈n|, and |n〉x is the eigenstate of Ŝx with the eigenvalue
n − N/2. The two eigenvalues of the operator �̂ are equal to
μ± = ±1. The operator �̂ can be written as (−1)Ŝx−N/2, so it
is proportional to the parity operator. This operator has been
discussed many times in the context of interferometry because
its measurements can saturate the Cramér–Rao bound [31–33],
which have been partially demonstrated in experiments
[34,35]. Here, this choice is dictated by symmetries of
the Hamiltonian. The operator �̂ commutes not only with
the Hamiltonian ĤTACT, but also with its versions used to
simulate noise along the X axis, i.e., ĤTACT + γxŜx , and
with the operator of the pulse eiπŜx/4. Moreover, it commutes
with the density matrix averaged over the distribution of γx .
Furthermore, the equation [H(γx ,0,0),�̂] = 0 combined with the
definition of the parity �̂ = P̂+ − P̂− and the decomposition
of the identity I = P̂+ + P̂− implies that the projectors P̂± are

0.0 1.0 2.0 3.0 4.0 5.0

χt 2N/ ln(2πN)

0.0

0.2

0.4

0.6

0.8

1.0

F
Q
/N

2

σx = χ

σx = 10χ

σx = 15χ

FIG. 7. Comparison between the QFI (solid lines) and the
Fisher Information F (�̂,�n) associated with specific choice of the
interferometric direction and measurements of the parity operator
(dot-dashed lines fitting closely to the solid lines). From top to bottom:
σx = χ , σx = 10χ , and σx = 15χ .

also constants of motion. The initial state (8) can be written as
|N,0〉x , so it is entirely contained in the “+” subspace; namely,
P̂+|N,0〉x = |N,0〉x . As the projectors are constants of motion,
even for the nonzero γx , one has ρ̂(t) = P̂+ρ̂(t)P̂+. This
implies that p(μ+|θ = 0) = 1 and p(μ−|θ = 0) = 0 because
of the identity P̂+P̂− = 0.

According to the definition (9), to compute F (�̂,�n) one has
to find the derivatives dp(μ|θ)

dθ
|θ=0 = −iTr{[Ŝ�n,ρ̂]P̂μ}. By using

the cyclic property of trace we conclude that Tr{[Ŝ�n,ρ̂]P̂−} =
0, which implies dp(μ−|θ)

dθ
|θ=0 = 0. As the sum of the probabil-

ities is equal to 1, we have dp(μ+|θ)
dθ

|θ=0 = − dp(μ−|θ)
dθ

|θ=0 = 0.
By using these observations, we simplify the Fisher

information to

F (�̂,�n) = lim
θ→0

1

p(μ−|θ )

(
dp(μ−|θ )

dθ

)2

= 2 lim
θ→0

d2p(μ−|θ )

dθ2
,

(31)
where the last equality follows from L’Hôpital’s rule for the
0/0 type of expression. The remaining part is the second
derivative, which can be written as

lim
θ→0

d2p(μ−|θ )

dθ2
= −Tr{[Ŝ�n,[Ŝ�n,ρ̂]]P̂−} = 2〈Ŝ�nP̂−Ŝ�n〉. (32)

Finally, rewriting P̂− as I − P̂+ and using the fact that, for our
�n one has P̂μŜ�nP̂μ = 0, we find that

F (�̂,�n) = 2 lim
θ→0

d2p(μ−|θ )

dθ2
= 4
2Ŝ�n, (33)

which due to Eq. (10) gives the final inequality

FQ � 4
2Ŝ�n . (34)

This result, valid in the case with noise along the X direction,
has important consequences. First of all, in the case without
noise we have FQ = 4
2Ŝ�n = F (�̂,�n), which shows that the
parity is the optimal measurement. As shown in Fig. 7, also
in the case with noise the measurements of the parity is almost
the optimal one, even though we deal with mixed states. After
the pulse, in the case with noise 
2Ŝ�n is of the order of the
squared extension of the state on the Bloch sphere. Because
the dynamics is frozen in a proximity of the stable fixed points,
and the distance between them is of the order of N , we expect
that FQ has to retain the order of magnitude of N2.
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In deriving the final formulas (33) and (34) we used only
arguments based on symmetries, so these results are valid for
any distribution of γx and also for other types of noise along
X; for instance, with γx being a stochastic time-dependent
function.

VI. CONCLUSIONS

The short-time quantum dynamics generated by the TACT
Hamiltonian is determined by its mean-field phase portrait.
The mean-field phase portrait consists of four stable center
and two unstable saddle fixed points located symmetrically on
the Bloch sphere. In the evolution of the initial spin-coherent
state, which is located around an unstable fixed point, states
with the Heisenberg-like scaling of the QFI appear. Weak
stochastic time-independent noise terms in the Hamiltonian,
which mimic the stationary random dephasing environment, do
not modify the topology of the phase portrait but shift positions
of fixed points and change shapes of classical trajectories. The
stochastic evolution reduces the value of the QFI in general, but
noise-enhanced effects are also possible in some time interval.

The unique configuration of fixed points in the phase
portrait of the TACT model allows for the freezing of
entanglement quantified by the QFI. In the scheme we have
proposed, a high stationary value of the QFI has been achieved
by a single rotation of the state which locates it around stable
fixed points. After the rotation, the QFI have to stay at least
at the level of the rotation time due to conservation of energy.
The effect of noise on the scheme turned out to depend on
the direction of the noise. When the noise is along the Y or
Z axis, the QFI decreases in time as 1/(Nσy, z). The scaling
law for the time-dependent fidelity to the unperturbed state
determines the decay rate of the QFI. On the contrary, the
QFI does not decay when the noise is along the X axis, and
the level of its stabilization becomes closer to the unperturbed
case while increasing the number of particles. We have shown
that the parity conservation makes the scheme robust against
noise along the X axis. The last finding is quite general
since it concerns any noise along the X axis, including a
time-dependent γx .

A similar storage scheme may be applied to another models
in vicinity of symmetrically located stable and unstable fixed
points. In the one-axis twisting model for example, a single
rotation of the NOON state may locate it around stable fixed
points leading to a high value of the QFI. A qualitative
outcome of the scheme might be the same whenever an
additional conservation law is not compatible with the decay
mechanism. Nevertheless, generation of desired NOON-like
states is strongly hindered by noise. From this point of view the
TACT Hamiltonian with the shortened by N timescale is quite
promising, although it remains an experimental challenge.
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APPENDIX A: FIXED POINTS OF PHASE PORTRAIT

Below we give explicit analytical expressions for the
positions of particular fixed points:

(i) |γ̃x | < 1 and γ̃y = γ̃z = 0 [Fig. 1(b)]. The locations of
the four stable center fixed points are (z,ϕ) = (±zx,ϕx) and
(z,ϕ) = (±zx,π − ϕx), where zx = (1 − γ̃ 2

x )1/2/
√

2 and ϕx =
arctan[(1 − γ̃ 2

x )1/2/γ̃x

√
2], while the positions of unstable

saddle fixed points do not change as compared with the �γ = 0
case.

(ii) |γ̃x | � 1 and γ̃y = γ̃z = 0 [Fig. 1(c)]. The two stable
fixed points are located at (z,ϕ) = (0,0) and (z,ϕ) = (0,−π ).

(iii) |γ̃y | < 1 and γ̃x = γ̃z = 0 [Fig. 1(d)]. The locations
of the four stable fixed points are (zy±, ± π/2) and the
positions of the two unstable fixed points are (z,ϕ) = (γ̃y,0)
and (z,ϕ) = (γ̃y,−π ). The locations of unstable fixed points
move vertically while changing γ̃y .

(iv) |γ̃y | � 1 and γ̃x = γ̃z = 0. The two stable fixed points
are located at (z,ϕ) = (zy−, ± π/2).

(v) |γ̃z| < 1 and γ̃x = γ̃y = 0 [Fig. 1(e)]. The locations of
the four stable fixed points are (±zz+,−π/2) and (±zz−,π/2)
while the positions of the two unstable fixed points are (z,ϕ) =
(0,arcsinγ̃z) and (z,ϕ) = (0,π − arcsinγ̃z). The positions of
unstable fixed points move horizontally.

(vi) |γ̃z| � 1 and γ̃x = γ̃z = 0. The two stable fixed points
are located at (z,ϕ) = (±zz+, − sign[γ̃z]π/2).

In these expressions,

zy± = (γ̃y/4) ±
√

γ̃ 2
y + 8/4, (A1)

zz± = ∣∣4 − γ̃ 2
z ± |γ̃z|

√
γ̃ 2

z + 8
∣∣1/2

/
√

8. (A2)

APPENDIX B: SCALING OF FIDELITY FUNCTION
WITH NOISE ALONG Z AXIS

We analyze properties of a general function defined as

FN (t) = 2
N∑

n=1

e−t2σ 2n2/2
N∑

k=n

pkpk−n +
N∑

k=0

p2
k , (B1)

where σ is a real constant and pk are positive weights satisfying

N∑
k=0

pk = 1. (B2)

Equation (B1) reproduces the fidelity function (28) for pk =
|ck|2, σ = σz, and t = T . When the coefficients pk are evenly
distributed with pk = 1/(N + 1) then function (B1) takes
the form

FN (t) = 2

(N + 1)2

[
(N + 1)

N∑
n=1

e−t2σ 2n2/2

−
N∑

n=1

ne−t2σ 2n2/2

]
+ 1

N + 1
. (B3)

There are two discrete sums over the Gaussian functions
which can be evaluated using the Euler–Maclaurin integration
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formula [36]. In general one has

N∑
n=1

f (n) =
N+1∫
0

dkf (k) − 1

2
[f (0) + f (N + 1)]

+
∞∑

m=1

B2m

(2m)!

[
f (2m−1)(N + 1) − f (2m−1)(0)

]
,

(B4)

where B2m are the Bernoulli numbers and f (m)(x) denotes the
mth derivative of f calculated at x.

After some manipulations, for the first sum we get

N∑
n=1

e−t2σ 2n2/2 =
√

π Erf
(

tσ√
2
(N + 1)

)
√

2tσ

− 1

2

[
1 + e−t2σ 2(N+1)2/2

]
+ R1(t,σ,N ),

(B5)

where R1(t,σ,N ) is an error term which grows in time and
saturates at the level of 0.5, irrespective of N . In fact, one can

calculate it exactly in the form of an infinite sum. Similarly,
for the second sum we get

N∑
n=1

ne−t2σ 2n2/2 =1 − e−t2σ 2(N+1)2/2

t2σ 2

− 1

2
(N + 1)e−t2σ 2(N+1)2/2 + R2(t,σ,N ),

(B6)

with the error term R2(t,σ,N ) which tends to 0 for growing
time. The dominant part of Eq. (B1) gives us

FN (t) = 1

λ

[√
π Erf(λ) − 1

λ

(
1 − e−λ2

)]
, (B7)

with λ = Nσt/
√

2. Because the error terms depend on time t

and the function (B7) decays to 0, there exists a time t∗ after
which error terms start to play a significant role. However, they
are additionally damped by the size N , so the time t∗ lengthens
once we increase the size N .
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