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Dynamics and protection of entanglement in n-qubit systems within Markovian and
non-Markovian environments
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We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of
an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and
strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the
environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation.
We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of
nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of
qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits
initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement
versus the total number of qubits in the system.
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I. INTRODUCTION

Entanglement is one of the marvelous aspects of quantum
mechanics which has no corresponding classical equivalence
[1]. This notion has been widely used due to its important role
as a resource for quantum information processing [2–7]. At
the early stages of quantum information studies, the decoher-
ence induced by the environment was recognized as the main
obstacle in preserving the entanglement. Therefore, it seemed
quite logical to avoid interaction with environment as much
as possible. Altogether, the possibility of achieving long-time
entangled states has been put forward in numerous works that
focused on the generation of entangled states via coupling
qubits to a common and dissipative environment [8–11]. Quite
remarkably, it has been also shown that the environment
can play a constructive role in establishing entanglement
between subsystems even without any interaction among
them [12–21]. Actually, the common environment provides an
indirect interaction between the subsystems which leads to the
establishment of entanglement among them. The possibility
of environment-induced entanglement for systems composed
of only two subsystems has been considered by many authors
[12,14]. On the other hand, protecting of entanglement in real
devices is crucial for practical quantum information processing
purposes. Therefore, many attempts have been devoted to
fight against the deterioration of entanglement under impact
of environment [22,23]. In this regard, it is shown that the
evolution of an unstable quantum system can be slowed
down or even frozen if the mentioned system is observed
continuously. This method is known as the quantum Zeno
effect [24]. Actually, it is not necessary that the state of the
system remains frozen in a single state, but it could just evolve
in a multidimensional subspace, namely, the Zeno subspace
[25].
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In this paper, we consider a model in which an arbitrary
number of qubits interacts with a cavity field and the cavity
mode itself interacts with a set of continuum harmonic oscil-
lators. We then intend to study the possibility of environment-
induced entanglement generation between these qubits with
the environment outside the Markovian regime for both weak
and strong couplings corresponding to the bad and good cavity
limits, respectively. We obtain the exact dynamics of various
pairwise entanglements as a function of the environment
correlation time for both coupling regimes. In particular, in
the strong coupling, we show how the entanglement revivals
and oscillations can be induced due to the long memory of
the reservoir. We then show that, when all of the qubits
are initially in a superposition of the single excited states
with the same probability (i.e., a Werner state), the pairwise
entanglement decreases as time goes on for any value of system
size, n, and no stationary entanglement can be achieved in
either of the coupling regimes. However, as will be seen, a
series of nonselective measurements can quench the decay
of entanglement. On the contrary, when the initial state is
considered as a superposition of one excitation of two arbitrary
qubits, the environment not only establishes entanglement
between various pairs of qubits, but also makes it persist up
to stationary state. The achievable stationary entanglement is
independent of the environmental variables and only depends
on the system size and initial conditions. The entanglement
generated for pairs of qubits initially in the ground states is
negligibly smaller than pairs of initially excited and nonexcited
qubits.

The rest of the paper is organized as follows: In Sec. II we
introduce the relevant Hamiltonian describing our system. In
Sec. III by considering the initial state of qubits as a Werner
state, we examine the effect of environment on the pairwise
entanglement. Furthermore, we preserve entanglement from
environment decoherence by quantum Zeno effect. In Sec. IV,
it is illustrated that limiting the number of qubits in the
superposition of one excitation could lead to stationary
entanglement. Finally, the paper ends with concluding remarks
in Sec. V.
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II. MODEL

The system under consideration consists of n qubits with
associated Hilbert space H � C2⊗n dissipating into a common
environment. Let {|0〉,|1〉}⊗n be the orthonormal basis in
which |0〉 (|1〉) is the ground (excited) single qubit state. We
model our dissipative system as a high-Q cavity in which
the qubits interact with the single-mode cavity field which is
characterized by annihilation operator â and frequency ωc via
coupling constant g, and the cavity field itself interacts with
an external field which is considered as a set of continuum
harmonic oscillators with annihilation and creation operators
B̂(η) and B̂†(η) at mode η through coupling coefficient G(η).
From this point of view, one can find that photons in the cavity
can leak out to a continuum of states, which is the source of
dissipation. We show that this model leads to a Lorentzian
spectral density which implies the nonperfect reflectivity of
the cavity mirrors. The correlation between the ith qubit and
the cavity field is characterized by terms like g(σ̂ (i)

+ â + σ̂
(i)
− â†)

in which σ̂
(i)
+ (σ̂ (i)

− ) is the raising (lowering) operator of the ith
qubit, and the interaction between the cavity and the external
fields can be governed by the Hamiltonian

ĤI = ωcâ
†â +

∫ ∞

0
ηB̂†(η)B̂(η)dη

+
∫ ∞

0
{G(η)â†B̂(η) + H.c.}dη. (1)

In [12] we demonstrated that, by assuming that the surrounding
environment possesses such a narrow bandwidth that only
a particular mode of the cavity can be excited [26], one
is able to extend integrals over η back to −∞ and take
G(η) as a constant (equal to

√
κ/π). This procedure allows

us to diagonalize the Hamiltonian (1) using the dressed
operator Â(ω) = α(ω)â + ∫

β(ω,η)B̂(η)dη, where α(ω) and
β(ω,η) (in general ∈ C) are obtained such that Â(ω) is an
annihilation operator which obeys the commutation relation
with its conjugate as [Â(ω),Â†(ω

′
)] = δ(ω − ω′) [27,28]. The

bosonic operator â can be shown to be a linear combination of
the dressed operator Â(ω) as follows [12,26]:

â =
∫

α∗(ω)Â(ω)dω (2)

with

α(ω) =
√

κ/π

ω − ωc + iκ
. (3)

From this point of view, one can dedicate that, the qubits
dissipate into a common environment which is now described
by the annihilation and creation operators Â(ω) and Â†(ω),
respectively. Thus, the interaction between a generic qubit
with the surrounding environment is governed by terms like
g

∫
[σ̂ (i)

+ α∗(ω)Â(ω) + H.c.]dω. Henceforth, the total Hamilto-
nian of our system can be rewritten in terms of the dressed
operators as follows:

Ĥ = ĤS + ĤEnv + ĤInt, (4)

where ĤS is the Hamiltonian of the qubits coupled, via the
interaction Hamiltonian ĤInt to the common environment with

the qualifier Hamiltonian ĤEnv. In the dipole and rotating-wave
approximations, and in units of � = 1, they can be written as

ĤS = ωqb

2

n∑
i=1

σ̂ (i)
z , (5a)

ĤEnv =
∫

ωÂ†(ω)Â(ω)dω, (5b)

ĤInt = g

n∑
i=1

∫ [
σ̂

(i)
+ α∗(ω)Â(ω) + H.c.

]
dω, (5c)

in which σ̂ (i)
z are inversion population operators of the ith

qubit. In writing Hamiltonian (5) we have assumed that all
qubits have the same resonance frequency, namely, ωqb and
also the coupling constant between all qubits and the cavity
field is the same, say g.

The time-dependent Schrödinger equation with Hamilto-
nian (4) can be solved when the environment initially is in
a vacuum state and the system of qubits is in an arbitrary
superposition of single excitation of qubits. In paticular, we
shall address the cases in which the system of qubits is in a
Werner state and in a superposition of one excitation of two
arbitrary qubits in the two next sections, separately. It should be
noted that, solving the time-dependent Schrödinger equation
analytically with arbitrary initial state seems to be a very hard
task, if not impossible.

III. SYSTEM OF n QUBITS INITIALLY IN A
WERNER STATE

In this section, we assume that the set of qubits initially is
in a Werner state [29] and there is no excitation in the cavity
before the occurrence of interaction. Therefore

|ψ(0)〉 = |w〉|0〉R, (6)

in which |w〉 := 1/
√

n
∑n

k=0 |1k〉 is the Werner state where
|1k〉 ≡ |01, . . . ,1k, . . . ,0n〉 and |0〉R = Â(ω)|1ω′ 〉δ(ω − ω′) is
the multimode vacuum state, where |1ω〉 is the multimode state
representing one photon at frequency ω and vacuum state in
all other modes. Consequently, the time evolution of the state
of the system may be proposed as

|ψ(t)〉 = E(t)eiωqbt |w〉|0〉R +
∫

�ω(t)eiωt |1ω〉|G〉dω, (7)

in which |G〉 := |0〉⊗n and

|E(t)|2 ≡ P0(t) = |〈ψ(0) |ψ(t)〉|2 (8)

is the survival probability of the initial state. Following the
approach which recently has been presented in [12] and
after lengthy but straightforward manipulations, the following
integro-differential equation for the amplitude E(t) can be
obtained:

Ė(t) = −
∫ t

0
f (t − t1)E(t1)dt1, (9)

in which the correlation function f (t − t1) reads as

f (t − t1) =
∫

dω J (ω)eiδω(t−t1), (10)
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where δω = ωqb − ω. Here, in deriving (9), we have assumed
that the qubits interact with the cavity field in the exact
resonance condition, i.e., ωqb − ωc = 0. At this stage, it should
be noted that according to Eq. (3), the spectral density obeys
the Lorentzian distribution, i.e.,

J (ω) = 1

π

ng2κ

(ω − ωc)2 + κ2
. (11)

This result has been indeed directly obtained from our model-
ing of dissipative cavity and implies the nonperfect reflectivity
of the cavity mirrors [30]. This leads to an exponentially
decaying correlation function, with κ as the decay rate factor
of the cavity; consequently, the cavity correlation time is
τB ≈ κ−1. On the other hand, it can be shown that the
relaxation time τR over which the state of the system consisting
of only one qubit changes is τR ≈ g−1 [31]. Altogether, by
choosing special values of κ , it is possible to extract the ideal
cavity and the Markovian limits. The former is obtained when
κ → 0, which leads to J (ω) = ng2δ(ω − ωc) corresponding
to a constant correlation function. In this situation, the system
reduces to an n-qubit Jaynes-Cummings model [32] with
the vacuum Rabi frequency R = √

ng. Moreover, for small
correlation times and by taking κ much larger than any other
frequency scale, the Markovian regime may be obtained. For
the other generic values of κ , the model interpolates between
these two limits.

The Laplace transform technique helps to solve the integro-
differential equation (9) for the surviving amplitude which
arrives us at

E(t) = e−κt/2
[

cosh (nt/2) + κ

n

sinh (nt/2)
]
, (12)

where n =
√

κ2 − 4g2n. As seen, the obtained solution is
quite exact with no approximation. From Eq. (12), it is clear
that letting t tend to infinity, E(∞) −→ 0. Therefore, looking
at (7), one can realize that |ψ(∞)〉 ∝ |G〉, which implies that
when all qubits are initially in a superposition of single excited
states with the same probability, no stationary entanglement
can be achieved.

A. Dynamics of entanglement

Using (7) the explicit form of the reduced density operator
for the system of qubits can be derived by tracing over
environment variables as follows:

ρ(t) = |E(t)|2|w〉〈w| + [
1 − |E(t)|2]|G〉〈G|. (13)

The coefficient of the last term arises from the fact that
Tr[ρ(t)] = 1. In what follows, we use concurrence as a suitable
measure to quantify the amount of entanglement between
various pairs of qubits which is defined as [33]

C(t) = max
{
0,

√
�1 −

√
�2 −

√
�3 −

√
�4

}
, (14)

where {�j }4
j=1 are the eigenvalues (in decreasing order) of

the Hermitian matrix ρ(σy

1 ⊗ σ
y

2 ρ∗σy

1 ⊗ σ
y

2 ) with ρ∗ as the
complex conjugate of ρ in the standard basis and σ

y

k := i(σk −
σ
†
k ) in the same basis. The concurrence varies between 0 (when

the qubits are separable) and 1 (when they are maximally
entangled). To analyze the pairwise entanglement between any
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(a) Bad cavity limit, R = 0.1

(b) Good cavity limit, R = 10

FIG. 1. Pairwise concurrence Cpair as a function of τ when the
initial state of the system is a Werner state, in the bad cavity limit,
i.e., R = 0.1 (top plot) and good cavity limit, R = 10 (bottom plot)
with n = 2 (dot-dashed blue line), n = 4 (dashed red line), and n = 8
(solid green line).

two generic qubits, we compute partial trace of (13) over all
other qubits and obtain the following reduced density operator:

ρpair(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
|E(τ )|2

n

|E(τ )|2
n

0

0
|E(τ )|2

n

|E(τ )|2
n

0

0 0 0 1 − 2|E(τ )|2
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where the relevant concurrence reads as Cpair(τ ) = 2|E(τ )|2/n,
in which the dimensionless scaled time τ has been defined as
τ = κt . Keeping in mind (8), it is readily found that Cpair(τ ) =
2P0(τ )/n, which implies that the pairwise concurrence directly
depends on the survival probability of the initial state. Looking
at Eq. (12), it is clear that the weak- and strong-coupling
regimes can be distinguished. The weak- (strong-) coupling
regime can be obtained by R2 < (4n)−1 [R2 > (4n)−1], in
which we have defined the dimensionless parameter R = g/κ .
The quantity Cpair(τ ) is shown in Fig. 1 in both regimes. In the
weak-coupling regime, the relaxation time is greater than the
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reservoir correlation time and the behavior of P0 is essentially
a Markovian exponential decay. The concurrence disappears
faster when the system size is larger. The strong-coupling
regime is richer and represents the revival and oscillation of
entanglement. This revival phenomenon is due to the long
memory of the reservoir. In this case, the reservoir correlation
time is greater than the relaxation time and non-Markovian
effects become dominant. The concurrence periodically van-
ishes at discrete times tm = 2[mπ − arctan(′

n/κ)]/′
n with

m integers and ′
n =

√
4ng2 − κ2. However, no stationary

entanglement is seen for both coupling regimes. It means that,
at sufficiently long times, we are left with an ensemble of
noncorrelated qubits.

B. Protecting of entanglement

Here we consider the action of a series of N nonselective
measurements, each performed at time intervals T = t/N in
order to check whether the system is still in its initial state.
After every measurement, the system is projected back to
its initial state and then the temporal evolution starts anew.
The survival probability of the initial state after the first
observation is 〈ψ0|ρ(T )|ψ0〉 = |E(T )|2. The sequence of the
N measurements repeatedly brings the system into its initial
state with the surviving probability P

(N)
0 (t ≡ NT ) = |E(T )|2N

which can be rewritten after some manipulations as

P
(N)
0 (t) = exp [−�z(T )t], (16)

with an effective decay rate defined as �z(T ) =
− log[|E(T )|2]/T . It is clear that, for a finite time t = NT and
in the limits T → 0 and N → ∞, one obtains �z(T ) → 0,
i.e., the decay is completely suppressed. It is clear that the
projective measurements not only affect the probability P0(t),
but also modify the time evolution of the entanglement.
More explicitly, according to Eqs. (8) and (16), the modified
concurrence reads as

C(N)
pair(t) = 2 exp [−�z(T )t]

n
, (17)

whose effective dynamics now depends on T . This result can
also be directly obtained from the density matrix describing the
system that has been observed N times, i.e., |ψ(t)(N)〉〈(N)ψ(t)|,
by tracing over the reservoir degrees of freedom and over all
other qubits.

Figure 2 illustrates a comparison between the dynamics
of pairwise concurrence in the absence and presence of the
nonselective measurements when the system size is n = 4 for
various intervals T . As is clear, the presence of measurements
extinguishes the decaying behavior of the entanglement and
also washes out the entanglement sudden death. This decay
suppression depends directly on the interval times T . Indeed,
by decreasing the interval times the system remains in its initial
state in longer times. It is worth noting that this quantum Zeno
effect desperately depends on the environment features, the
resonance condition, and the system size. For instance, in the
good cavity limit and for large values of interval time T , an
anti– [34] quantum Zeno [35] effect may be obtained. This
effect may enhance the decay of entanglement. On the other
hand, when the system size is increased, smaller interval times
are needed to protect entanglement via quantum Zeno effect.
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(a) Bad cavity limit, R = 0.1

(b) Good cavity limit, R = 10

FIG. 2. Pairwise concurrence as function of τ for the system
size n = 4, in the absence of measurements (solid blue line) and in
the presence of measurements for (a) weak coupling (R = 0.1) with
intervals κT = 5 (dashed red line), 1 (dot-dashed green line) and 0.1
(dotted black line) and (b) strong coupling (R = 10) with intervals
κT = 0.004 (dashed red line), 0.001 (dot-dashed green line) and
0.0005 (dotted black line).

IV. SYSTEM OF n QUBITS INITIALLY IN A
SUPERPOSITION OF ONE EXCITATION OF TWO

ARBITRARY QUBITS

In this section, we address the case in which the initial
state of the qubits is in a superposition of one excitation of two
arbitrary qubits. Again, we assume that there is no excitation in
the cavity before the occurrence of interaction. Therefore, the
initial state of the whole system+environment can be written
as

|ψ(0)〉 = (c01|1k〉 + c02|1l〉)|0〉R, (18)

in which |1i〉 and |0〉R have been defined before in the
paper. We assume that the initial state is characterized by the
separability parameter s as follows:

c01 =
√

1 − s

2
, c02 =

√
1 + s

2
eiϕ, (19)

with −1 � s � 1, and in particular s = ±1 (s = 0) corre-
sponds to a separable (maximum entangled) initial state.
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Accordingly, the quantum state of the entire sys-
tem+environment at any time can be written as

|ψ(t)〉 = [c1(t)|1k〉 + c2(t)|1l〉 + c3(t)|E/k/l 〉]eiωqbt |0〉R
+

∫
cω(t)eiωt |1ω〉|G〉dω, (20)

in which we have defined the normalized state |E/k/l 〉 :=
1√
n−2

∑n
j �=k,l |1j 〉. Following the procedure presented in ob-

taining expression (12), one may straightforwardly obtain
the following analytical expressions for the time-dependent
amplitudes:

c1(t) = (n − 1)c01 − c02

n
+ c01 + c02

n
E(t), (21a)

c2(t) = (n − 1)c02 − c01

n
+ c01 + c02

n
E(t), (21b)

c3(t) =
√

n − 2

n
(c01 + c02)[−1 + E(t)]. (21c)

From Eq. (12), it is clear that letting t tend to infinity,
then E(∞) → 0, which leads to the nonzero values of the
coefficients ci(∞). Therefore, unlike the case with initial
Werner state, the environment not only can create entangle-
ment between various pairs of qubits, but also it may make it
persist in being stationary. According to (21), this stationary
state does not depend on the environment features such as the
cavity damping rate or coupling constant and only depends
on the initial conditions as well as the size of system, n. This
is due to the fact that we have assumed that the coupling
constant is the same for all qubits. It can be shown that, by
choosing different coupling constants associated with different
qubits, the stationary entanglement depends also on the cavity
damping rate and coupling constants.

Using Eq. (20), the explicit form of the reduced density
operator for the system of qubits at any time can be derived by
tracing over environment variables which results in

ρ(t) = |c1(t)|2|k〉〈k| + |c2(t)|2|l〉〈l| + |c3(t)|2|E/k/l 〉〈E/k/l |
+ (c1(t)c∗

2(t)|k〉〈l| + c1(t)c∗
3(t)|k〉〈E/k/l |

+ c2(t)c∗
3(t)|l〉〈E/k/l | + H.c.)

+ [1 − |c1(t)|2 − |c2(t)|2 − |c3(t)|2]|G〉〈G|. (22)

In the next two subsections, we shall compare the various
pairwise entanglements resulting from initially two qubits (kth
and lth) which are in a superposition of maximally entangled
state (i.e., s = 0) and when only one qubit (namely, kth qubit)
is initially in the excited state (i.e., s = −1).

A. Maximum entangled initial state

In this subsection, we assume that the system of qubits is
initially in a maximum entangled state of two qubits (namely,
kth and lth). This can easily be done by setting s = 0 and
ϕ = 0 in (19). To analyze the pairwise entanglement between
qubits k and l (initially in a superposition of excited states),
we compute partial trace of (22) over all other qubits and
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(a) Bad cavity limit, R = 0.1

(b) Good cavity limit, R = 10

FIG. 3. Pairwise concurrence Ck,l as a function of τ for s = ϕ = 0
in the bad cavity limit, i.e., R = 0.1 (top plots) and good cavity limit,
R = 10 (bottom plots) with n = 2 (dot-dashed blue lines), n = 6
(dashed red lines), and n = 12 (solid green lines).

obtain

ρk,l(τ ) = |c1(τ )|2|10〉〈10| + |c2(τ )|2|01〉〈01|
+ c1(τ )c∗

2(τ )|10〉〈01| + c∗
1(τ )c2(τ )|01〉〈10|

+ [
1 − |c1(τ )|2 − |c2(τ )|2]|00〉〈00|, (23)

which leads to the following concurrence:

Ck,l(τ ) = 2|c1(τ )||c2(τ )|. (24)

Figure 3 illustrates the time evolution of the concurrence
Ck,l(τ ) as a function of the scaled time τ for weak- and
strong-coupling regimes for a maximally entangled initial
state (i.e., s = 0 and ϕ = 0). In the weak-coupling regime,
concurrence falls down from its maximum initial value and
monotonically decreases until it reaches its stationary value.
In the strong-coupling regime, an oscillatory behavior along
with decaying of entanglement is clearly seen such that for
n = 2 the entanglement sudden death occurrs. As mentioned
before, both strong- and weak-coupling regimes lead to the
same stationary state. The surprising aspect here is that for
n = 2 the entanglement between two qubits vanishes under the
contamination of the environment, but adding a greater number
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of qubits maintains the entanglement stored between these two
qubits. In general, when the system size n becomes larger,
the stationary entanglement increases and the concurrence
achieves its stationary value sooner.

Letting t tend to infinity in Eq. (24), we found the behavior
of stationary entanglement versus system size n as

Ck,l(∞) = (n − 2)2

n2
. (25)

With the help of Eq. (22), we compute the reduced density
operator between the kth qubit and another generic qubit j

(initially in the ground state) as

ρk,j (τ ) = |c1(τ )|2|10〉〈10| + |c3(τ )|2
n − 2

|01〉〈01|

+ 1√
n − 2

[c1(τ )c∗
3(τ )|10〉〈01|+c∗

1(t)c3(τ )|01〉〈10|]

+ (1 − |c1(τ )|2 − |c3(τ )|2
n − 2

)|00〉〈00|. (26)

At last, the relevant concurrence using (26) results in

Ck,j (τ ) = 2√
n − 2

|c1(τ )||c3(τ )|, (27)

which is valid for n > 2. According to (27) it can be shown
that the pairwise entanglement starts from zero and increases
up to its stationary entanglement. The stationary entanglement
can be determined from Eq. (27) by letting t go to infinity as
follows:

Ck,j (∞) = 2(n − 2)

n2
. (28)

It is obvious that the maximum stationary entanglement
C(max)

k,j = 0.25 is achieved for system size n = 4.
The other possible case which we study is the entanglement

between two generic qubits j and m initially in the ground state
(j,m �= k,l). The corresponding reduced density operators
read as

ρj,m(τ ) = |c3(τ )|2
n − 2

(|10〉 + |01〉)(〈10| + 〈01|)

+
(

1 − 2
|c3(τ )|2
n − 2

)
|00〉〈00|. (29)

The corresponding concurrence can be easily obtained as

Cj,m(τ ) = 2

n − 2
|c3(τ )|2, (30)

which is valid for n > 2. A glance at Fig. 4 reveals the
dynamical behavior of the Cj,m(τ ) in the bad and good
cavity limits for s = 0. It is evident that the entanglement
sudden death phenomenon has occurred in the good cavity
limit. It is apparent from the information supplied that, in
the latter regime, the amount of revived entanglement has
become considerably comparable to 1 at short times and for
small system sizes. It is also interesting to notice that both
coupling regimes lead to the same stationary entanglement
which vanishes for large system sizes. In fact, by letting t go to
infinity in Eq. (30) and computing the stationary concurrence
as Cj,m(∞) = 4

n2 , one can easily observe that, for large system
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(a) Bad cavity limit, R = 0.1

(b) Good cavity limit, R = 10

FIG. 4. Pairwise concurrence Cj,m as a function of τ for s = ϕ =
0 in the bad cavity limit, i.e., R = 0.1 (top plots) and good cavity
limit, R = 10 (bottom plots) with n = 4 (dot-dashed blue lines),
n = 8 (dashed red lines), and n = 12 (solid green lines).

sizes, the latter concurrence is by far more negligible compared
to the other stationary concurrences.

Altogether, by comparing various stationary entanglements
which have appeared, it can be concluded that when the system
of qubits initially is in the maximum entangled state of two
qubits, we have the graph depicted in Fig. 5 as the steady state.
The ticker line in Fig. 5 implies the fact that, at the steady state,

FIG. 5. Pictorial representation of the leading stationary correla-
tions from an initially Werner state. Red (blue) circles represent qubits
initially in the superposition of excited states (ground states). Solid
lines represent the quantum correlations between qubits at steady
state.
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FIG. 6. Pairwise concurrence Ck,j as a function of τ for s = −1
in the bad cavity limit, i.e., R = 0.1 (top plots) and good cavity limit,
R = 10 (bottom plots) with n = 4 (dot-dashed blue lines), n = 8
(dashed red lines), and n = 12 (solid green lines).

the correlation between the initially excited qubits is stronger
than the correlation between any other two qubits.

B. One initial excitation

In this subsection, we assume that only the kth qubit is
initially in the excited state (i.e., s = −1). In order to analyze
the pairwise entanglement between qubit k and another generic
qubit j , it is enough to set s = −1 in Eqs. (24) or (27). The
dynamical behavior of Ck,j (τ ) is shown in Fig. 6 in both strong-
and weak-coupling regimes for some values of system size n. It
is easy to show that at the steady state, the pairwise concurrence
takes the form

Ck,j (∞) = 2(n − 1)

n2
. (31)

On the other hand, the entanglement between two other generic
qubits, initially in the ground state, has similar behavior to
Fig. 4. In particular, its corresponding stationary concurrence
takes the form Cj,m(∞) = 2

n2 which vanishes for large system

FIG. 7. Pictorial representation of the leading stationary concur-
rence when initially only one qubit is in the excited state. Solid lines
represent the quantum correlations between qubits at steady state.

sizes. Therefore, we have a star graph as the steady state (see
Fig. 7).

V. CONCLUDING REMARKS

To sum up, we have studied an exactly solvable model
describing an arbitrary number of qubits dissipating into
a common environment where both Markovian and non-
Markovian effects corresponding to the bad and good cavity
limits, respectively, are present. In the weak-coupling regime
the pairwise entanglement decays (and sometimes increments)
exponentially and goes up to its stationary value only asymp-
totically. On the other hand, in the strong-coupling regime,
the memory effect of the environment allows entanglement to
oscillate before a stationary value is reached.

We found that, for initially a Werner state, the pairwise
entanglement has a decaying behavior with no stationary
value for both strong- and weak-coupling regimes. However,
we showed that a series of nonselective measurements can
preserve the entanglement initially stored in the system of
qubits which is known as quantum Zeno effect. Moreover, it
should be noted that this effect depends on the time intervals,
the environment features, as well as the presence or absence
of detuning. An anti-Zeno quantum effect which enhances the
decay of entanglement can occur for some situations. This
investigation is left for future work.

We also studied the possibility of achieving stationary
pairwise entanglement states by limiting the number of qubits
initially in the superposition of only one excitation of qubits.
More specifically, we addressed the case in which the system is
initially in the superposition of one excitation of two arbitrary
qubits. In this case, the stationary entanglement is independent
of environment properties and depends on the system size
n and the initial conditions which are characterized by the
separability parameter s. This is because of the assumption that
the coupling constant of all qubits is the same. Although the
interaction of the system and environment, with Bell state as its
initial state, leads to vanishing of the entanglement for system
size n = 2, as an interesting result increasing the number of
qubits satisfactorily preserves the initial entanglement (see
Fig. 3).

The stationary pairwise entanglement Ck,l(∞) [here the
kth and lth qubits are initially in the superposition of
one excitation; see Eq. (18)] monotonically increases with
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the system size n. It is even possible to achieve the maximum
pairwise entanglement in enough large system sizes.

The entanglement can also be created and persists at a
steady state for pairs of initially excited and nonexcited qubits
(see Fig. 6). It is also possible to create entanglement between
pairs of qubits initially in the ground state (see Fig. 4).
However, in such a case the amount of entanglement is
negligibly smaller than the previous cases and also is nearly
independent of the separability parameter.

It is worth noticing that, when only one qubit is initially in
the excited state (i.e., s = 1 or −1), we have a star graph as
the steady state for large systems in both weak- and strong-
coupling regimes. This is quite in consistent with previous
works (see, for example, [13]). On the other hand, when two
qubits are initially in a maximum entangled state, we are left
with a bipartite graph with strong correlation between the two
qubits (which are initially in a maximum entangled state).
This differs from the case where initially two qubits are in the
excited states simultaneously. In this case, at the steady state

we have a bipartite graph but without any correlation between
the two qubits which are initially excited [13]. Altogether, this
subject can be of interest from the perspective of quantum
complex networks [36].

The observed aspects could be verified and confirmed in
experiments which focused on trapped ions coupled to the
dissipative bath of vacuum modes of the radiation field via
optical pumping [37]. Also, the system of superconducting
Josephson circuits as qubits and a transmission line as
cavity [38] could be a suitable candidate as an experimental
implementation to explore the contents of this work. The
present work can also be relevant for driving cavity QED
experiments with noninteracting qubits inside a cavity [39]. In
addition, the continuous miniaturization of physical devices
compels us to consider dissipative models with a common
environment, regardless of the presence or absence of direct
subsystem interactions [40]. Therefore, we expect the pre-
sented analytical results would be the first step towards that
goal.
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