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We introduce a class of three-dimensional color codes, which we call stacked codes, together with a fault-
tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into stacked
codes and back. The stacked code allows for the transversal implementation of a non-Clifford π/8 logical gate,
which when combined with the logical Clifford gates that are transversal in the 2D color code give a gate set that
is both fault-tolerant and universal without requiring nonstabilizer magic states. We then show that the layers
forming the stacked code can be unfolded and arranged in a 2D layout. As only Clifford gates can be implemented
transversally for 2D topological stabilizer codes, a nonlocal operation must be incorporated in order to allow for
this transversal application of a non-Clifford gate. Our code achieves this operation through the transformation
from a 2D color code to the unfolded stacked code induced by measuring only geometrically local stabilizers
and gauge operators within the bulk of 2D color codes together with a nonlocal operator that has support on
a one-dimensional boundary between such 2D codes. We believe that this proposed method to implement the
nonlocal operation is a realistic one for 2D stabilizer layouts and would be beneficial in avoiding the large
overheads caused by magic state distillation.
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I. INTRODUCTION

Quantum error correction is a necessary tool for the
suppression of logical error rates, enabling sufficiently long
coherence times for logical computations. Among the most
promising quantum coding architectures are two-dimensional
(2D) local topological stabilizer codes. These are stabilizer
codes where each stabilizer measurement couples qubits
that are geometrically local on a 2D lattice. Such schemes
are favored due to their relative experimental simplicity of
arranging and measuring local stabilizers, typical high error
threshold rates, and the ability to vary the distance of the
code in a smooth manner rather than through jumps as in
concatenated coding schemes.

To perform universal quantum computation, a fault-tolerant
architecture must specify not only a quantum code but also a
means to implement a universal set of quantum logic gates.
The most desirable form of logical operation is a transversal
gate, that is, a gate where each physical qubit of the code is
transformed independently and identically, ensuring that there
is no coupling between the different qubits in the code and
thereby restricting the propagation of errors. Unfortunately,
there are no quantum codes that allow for the implementation
of a universal logical gate set using only transversal gates, as
shown by Eastin and Knill [1].

The set of transversal gates is even more restricted when
considering 2D topological stabilizer codes: Only Clifford
gates (a nonuniversal and classically efficiently simulatable
gate set) can be implemented transversally, as originally shown
by Bravyi and König [2] for 2D topological stabilizer codes and
subsequently generalized to 2D topological subsystem codes
[3]. As an example, 2D color codes are local topological sta-
bilizer codes that have many interesting properties, including
transversal logical Hadamard and phase gates [4], a distinct
advantage not shared by the 2D toric code. Additionally,
they possess a transversal controlled-NOT (CNOT) gate as
they are in the CSS code family and as such can implement

any Clifford gate transversally. Unfortunately, due to the
restrictions described above, they do not possess a transversal
logic gate outside of the Clifford group. Traditional techniques
to bypass this problem and obtaining a fault-tolerant non-
Clifford gate rely on preparing a special ancillary state [5],
called a magic state, which can lead to large ancilla qubit
overhead [6].

A recent avenue of research for addressing these limitations
is to consider the interplay between 2D and three-dimensional
(3D) topological stabilizer codes. The basis of this approach
is a technique for sidestepping the Eastin-Knill no-go theorem
through the use of gauge operator measurements to transform
from one stabilizer code, with its set of transversal logic gates,
to another stabilizer code with a different set of transversal
gates [7]; see also [8]. Applied to topological stabilizer
codes, one approach involves mapping a 2D color code to
a 3D color code by performing an appropriate set of gauge
stabilizer measurements between the 2D code and a specially
prepared 3D code ancilla state [7,9]. The mapping of the
quantum information into a 3D color code allows for the
application of a transversal π/8 gate [10] (often referred to
as the T gate), which is a non-Clifford gate, thus completing
the universal gate set. A drawback of such a method is
that the required operations are geometrically local only in
three dimensions, which may be incompatible with some
experimental approaches.

In this paper, we present a method for fault-tolerantly
performing a universal set of quantum logic gates within a 2D
architecture. Our method translates between error correcting
codes—a 2D color code, and a special class of 3D color
code—to allow for the transversal application of different sets
of logical gates. Specifically, we present a mapping from 2D
color codes to a 3D code, which we call the stacked code, by
pairing multiple copies of the 2D color code, generalizing the
work of Ref. [8]. Multiple 2D color codes can be pairwise
stacked in this manner to increase the overall distance of
the newly created stacked code to equal the distance of
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the 2D color code. We show that the stacked code admits
a transversal π/8 logic gate, and that the transformation
from the 2D color code to the stacked code and back can
be performed fault tolerantly. Furthermore, by unfolding the
stacked code and tiling the original 2D color codes in a 2D
layout, this code maintains its properties. The transformation
from 2D color code to stacked code in this 2D layout can be
performed with a sequence of local gauge measurements in
the bulk of the 2D color codes and Bell pairing measurements
along the boundary of neighboring 2D codes. In order to not
violate the Bravyi-König no-go theorem, the measurements
pairing the different 2D color codes are necessarily nonlocal,
but in a very limited way. Specifically, these measurements
can be performed along one-dimensional (1D) strips form-
ing the boundary between neighboring 2D codes in a 2D
arrangement.

A recent result by Bravyi and Cross [11] presents a very
similar construction to the one we present here. Specifically,
they detail a fault-tolerant 2D construction for universal
quantum computation that relies on the same type of pairing
of 2D color codes (which they call doubled color codes) and
measurements between the different layers of color codes, as
we propose, to implement a gate outside the Clifford group.
Importantly, the results of Ref. [11] go beyond our construction
to show how to reduce the nonlocal joint logical Pauli operators
that have to be measured into a sequence of local measurements
by proposing a “subdivision gadget.” They further supplement
their findings by proposing a decoding method to address
for the correlated noise that is introduced by the action of
the non-Clifford π/8 gate. In addition, Jones, Brooks, and
Harrington recently proposed a method to implement a similar
form of construction for the [4.8.8] color code [12], as opposed
to the hexagonal color code studied here and in Ref. [11]. In
their construction, they propose a method for measuring the set
of nonlocal joint logical Pauli operators through a series a local
measurements inspired by lattice surgery methods [13,14]. Our
results complement those of Refs. [11,12] by providing an
explicit presentation of the properties of this 2D structure as a
type of 3D color code with stabilizers that can be inferred by
measurements only of local 2D stabilizers and gauge operators,
as well as weight-O(d) 1D operators on the boundaries of 2D
codes.

Our paper is structured as follows. In Sec. II, we introduce
the stacked code and demonstrate how to transform from the
2D color codes to this stacked code. We prove minimum error
distance and other properties of the stacked code, and we show
how to implement the non-Clifford logical gate fault tolerantly
by transformating from a 2D color code to the stacked code
and back. In Sec. III, we show how to unfold the stacked
code into a 2D layout, and present a method to implement
the transversal π/8 logic gate by an appropriate set of local
2D gauge measurements and nonlocal 1D strip measurements.
We also compare our scheme to the recent result of Bravyi and
Cross. Finally, in Sec. IV, we present a theoretical argument
measuring the degree of nonlocality of our operations with
respect to a higher-distance 2D code. Some brief concluding
remarks are given in Sec. V, and details on transversal
gate operations in the stacked code are relegated to the
Appendix.

II. TRANSFORMING TO THE STACKED CODE

In this section, we describe a transformation to map the
logical qubit encoded in a 2D color code into a particular
form of 3D color code, which we call a stacked code. This
stacked code will allow for the transversal implementation
of a logical π/8 gate (defined by diag[e−iπ/8,eiπ/8]), which
together with the transversal logical gates in the 2D color code
form a universal gate set. We introduce this transformation
by generalizing the technique of Anderson et al. [8], which
mapped a seven-qubit Steane code (also a d = 3 2D color
code) to a 15-qubit quantum Reed-Muller code (also a d = 3
3D color code). Our generalization applies to hexagonal
color codes of any distance, and gives rise to a 3D color
code of distance d = 3. We then show to further generalize
this transformation to yield a stacked code with arbitrary
distance d.

A. Transforming 2D color codes to 3D: distance 3 protection

Consider a [[n,1,d]] hexagonal color code family [15], with
n = (3d2 + 1)/4, defined by X and Z stabilizer generators
expressed as plaquette operators GPi

= ⊗ν∈Pi
Xν and HPi

=
⊗ν∈Pi

Zν , where the tensor product is over vertices ν defining
a hexagonal plaquette Pi , with appropriate modification at the
boundaries. Our construction will use multiple copies of such
codes with stabilizer generators {G(l)

Pi
} and {H (l)

Pi
}, where l is a

label for the particular copy of the 2D color code. For any such
code, one can identify a set of weight-2 Z-type edge operators
{H (l)

ei
}, see Fig. 1, that will, along with the Z-type plaquette

operators, generate any Z-type edge in the 2D lattice. We label
these edges by ei , as they can be identified in a one-to-one
correspondence with plaquette operators labeled by Pi . Given
such a generating set {H (l)

ei
}, one can identify each X plaquette

generator G
(l)
Pi

with a particular Z edge operator H (l)
ei

such that
this pair of operators anticommute, as they will intersect at
only one site.

Consider a logical qubit encoded in a 2D hexagonal color
code labeled l = 1 of distance d, with stabilizer generators
{G(1)

Pi
} and {H (1)

Pi
}. We now consider a process by which we

transform this 2D code into a 3D code, following the method
of Anderson et al. [8]. Our transformation makes use of a

(a)

(b)

FIG. 1. Two instances of the 2D hexagonal color code of distance
(a) d = 3 and (b) d = 5. In each case, a set of independent edges
{Hei

}, shown in red, can be chosen as the set that will form the Z

gauge operators when paired with the identical edge from another
code copy, thus forming weight-4 gauge operators {H (2k−1)

ei
H (2k)

ei
}.
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second 2D color code of equivalent size to the first, with
its encoded logical qubit entangled in a Bell state with a
single ancilla qubit. That is, denoting the logical operators
for the second color code labeled l = 2 by X

(2)
L and Z

(2)
L , and

the operators for a single ancilla qubit by X and Z, this Bell
state is stabilized by X

(2)
L ⊗ X and Z

(2)
L ⊗ Z as well as the code

stabilizers {G(2)
Pi

} and {H (2)
Pi

}.
We induce the transformation through joint measurement

of gauge operators of the two color codes. Specifically,
we measure the Z-type gauge operators between the two
codes corresponding to pairing up the generating Z-type
edge operators of the two codes and jointly measuring
the corresponding weight-4 operators {H (1)

ei
⊗ H (2)

ei
}. Because

each of the original X-type plaquette operators of the two
codes G

(l)
Pi

anticommute with the measured gauge operator
H (1)

ei
⊗ H (2)

ei
, they will no longer be stabilizers of the code.

However, the joint volume operator G
(1)
Pi

⊗ G
(2)
Pi

obtained by
pairing corresponding plaquette operators between the two
code copies will remain a stabilizer as it has even overlap
with the gauge operator H (1)

ei
⊗ H (2)

ei
. As a result of these

measurements, the evolution of the stabilizers for the entire
system is given by

2D code + ancilla Bell 3D code{
G

(1)
Pi

} ⊗ I⊗n ⊗ I
{
H (1)

ei
⊗ H (2)

ei

} ⊗ I (1){
H

(1)
Pi

} ⊗ I⊗n ⊗ I
{
H

(1)
Pi

} ⊗ I⊗n ⊗ I (2){
G

(1)
Pi

⊗ G
(2)
Pi

} ⊗ I
{
G

(1)
Pi

⊗ G
(2)
Pi

} ⊗ I (3){
H

(1)
Pi

⊗ H
(2)
Pi

} ⊗ I
{
H

(1)
Pi

⊗ H
(2)
Pi

} ⊗ I (4)

I⊗n ⊗ X
(2)
L ⊗ X I⊗n ⊗ X

(2)
L ⊗ X (5)

I⊗n ⊗ Z
(2)
L ⊗ Z I⊗n ⊗ Z

(2)
L ⊗ Z (6)

where the last two stabilizers represent those corresponding
to the second code copy being prepared in a Bell pair with an
ancilla qubit. We note that choosing the smallest nontrivial 2D
color code, corresponding to n = 7 and d = 3 and equivalent
to the seven-qubit Steane code, this mapping corresponds to
that of Anderson et al. [8] in this case. Even though in general
the 2D codes used in this construction are of distance d, the
overall distance of transformed code is limited to be 3. Logical
Z string operators are formed by matching pairs of qubits from
the two copies of the 2D codes along with the single ancilla
qubit, and take the form Z

(1)
i Z

(2)
i Z. A higher weight logical

Z operator can be obtained by traversing the 2D color code
layers and connecting error strings of different colors. We shall
expand upon this point for the general case in Sec. II C.

This new code is a 3D color code, where the 3D code
stabilizers of Eqs. (5)–(6) correspond to the stabilizers of the
fourth color and the boundary of the new color corresponds to
the original 2D code. We prove that it is a 3D color code, and
determine its distance in the general case, in Sec. II C. The code
possesses a transversal π/8 gate, as proven in Appendix A in a
similar manner to the techniques proposed in Refs. [4,16,17],
and will therefore form a universal fault-tolerant gate set along

with the logical Clifford gates that can be applied transversally
to the original 2D code.1

However, this code has a number of undesirable features
from the perspective of topological stabilizer codes. First,
we note that the stabilizers in Eqs. (5) and (6) are very high
weight, having support on the entire set of qubits across a
full 2D layer. We postpone discussion about how one might
infer the values of these high-weight stabilizers using only
lower-weight measurements to Sec. II D. Second, the distance
of this 3D code is limited by the width of the third dimension
(two layers + one ancilla qubit). This limitation is in line with
the intuition behind the no-go result of Bravyi and König
[2], where it is shown that a topological stabilizer code must
be at least dimension 3 or higher to possess a transversal
gate operation that lies outside the Clifford group. One might
suspect that the fault-tolerance protection that one should get
from the distance of the code should be related to the depth of
the third dimension of the code.

B. Transforming 2D color codes to 3D: distance d protection

To increase the distance of our newly formed code, we must
increase the width of its third dimension. A natural method to
provide such added protection would be to encode the weakest
part of the code, the bare ancilla qubit, into a 3D code of its own
using the exact same technique. We can continue this process
recursively, by performing the joint stabilizer measurements
in Eqs. (5) and (6) as joint logical X and Z measurements.
The encoded ancilla state will be prepared offline using 2D
color codes arranged as layers in a stack, coupled into logical
Bell pairs by performing joint logical X and Z measurements,
henceforth referred to as Bell stabilizers. This bulk ancilla
state will allow us to transform our 2D color code into a 3D
color code with large distance. In addition, as the individual
components forming the bulk ancilla state are restricted to
pairs of 2D layers, this will allow us to show in Sec. III that
such a process can be made fault tolerant on a 2D lattice.

Specifically, our recursive transformation from a 2D color
code on layer k = 1 to a d-layer stack is defined by the
following evolution of stabilizers:

2D code + ancilla Bell 3D code{
G

(2k−1)
Pi

} {
H (2k−1)

ei
H (2k)

ei

}
(7){

H
(2k−1)
Pi

} {
H

(2k−1)
Pi

}
(8){

G
(2k−1)
Pi

G
(2k)
Pi

} {
G

(2k−1)
Pi

G
(2k)
Pi

}
(9){

H
(2k−1)
Pi

H
(2k)
Pi

} {
H

(2k−1)
Pi

H
(2k)
Pi

}
(10)

X
(2k)
L X

(2k+1)
L X

(2k)
L X

(2k+1)
L (11)

Z
(2k)
L Z

(2k+1)
L Z

(2k)
L Z

(2k+1)
L , (12)

1The transversal gates are not strictly transversal, that is all the
same rotation, for the hexagonal color code. However, by applying
the inverse rotation to the appropriate set of qubits the correct logical
operator can be applied [10,17].
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FIG. 2. (a) Graphical representation of the primal lattice of the
(d − 1) + 1 stacked code formed by stacking different copies of 2D
color codes, shown here for d = 5. The copies of the 2D code are
coupled either by measuring gauge operators or logical operator pairs
(shown in blue) between the different layers. (b) Dual lattice for the 3D
stacked code (d = 5). Vertices represent cell stabilizers in the primal
lattice and edges represent faces shared by connected stabilizers.

where k ∈ {1, . . . , d−1
2 }. As the final layer is a single qubit,

we have X
(d)
L = X, and Z

(d)
L = Z. The logical qubit is

initially stored in the first 2D color code layer, stabilized
by the operators {G(1)

Pi
} and {H (1)

Pi
}. The additional layers are

prepared in joint Bell pairs, as indicated by the Bell stabilizers
X

(2k)
L X

(2k+1)
L and Z

(2k)
L Z

(2k+1)
L . The pairs of copies of the 2D

sheets are then coupled together by measuring the gauge
operators {H (2k−1)

ei
H (2k)

ei
} between one sheet and another sheet

from a different pair. This is logically equivalent to stacking
the different pairs to form one large stack of height distance
d, where each layer is a copy of a 2D color code also with
distance d, as shown in Fig. 2. We call the resulting 3D code
the (d − 1) + 1 stacked code. At this point, the Bell stabilizers
in Eqs. (11) and (12) have a cell-like structure connecting
the two 2D color code sheets with which they are associated.
These correspond to the blue stabilizers in Fig. 2 and will have
particular features when viewing this code as a 3D color code,
as we explore in the next section, as well as several properties
needed to make our 2D arrangement of this code in Sec. III A.

C. Properties of the stacked code

The (d − 1) + 1 stacked code is also a 3D color code. This
can most easily be seen using its dual lattice, as follows. Take
the dual lattice of the 2D color code, connect each of the
vertices of the dual lattice (consisting of three colors) to a
single vertex of a different color. We shall denote the colors
of the original 2D code as green (g), purple (p), and yellow
(y) and the color of the newly formed stabilizers in 3D by
blue (b). Connect this single vertex to another set of vertices
forming a 2D code, and repeat this process (d − 1)/2 times.
Each of the vertices in the dual lattice form a 3D stabilizer
cell in the primal lattice, where edges between the vertices in
the dual lattice are equivalent to faces at the intersection of
cells in the primal lattice; see Fig. 2 for an example of the

dual lattice. It is straightforward to see that this construction
is equivalent to the construction outlined for the stacked code,
and moreover, because the dual lattice is four-colorable and
composed of tetrahedra, it is a valid 3D color code [4,17].

We now proceed to determine the distance of the (d − 1) +
1 stacked code, making use of the well-studied properties of the
3D color code. The edges in the primal lattice of a color code
can be identified with one of the colors of the code [10,17].
In the case of a 3D color code, the faces at the intersection of
two tetrahedra in the dual lattice correspond to edges in the
primal lattice, where the color of the edge in the primal lattice
is given by the complementary color to the vertices forming
the face in the dual lattice. A boundary of a given color is
the set of points at which edges of that given color terminate
without a stabilizer of the given color being present. In the case
of the stacked code, the three original colors of the 2D lattice
form boundaries along the three sides of the stack extending
upwards from their original 1D boundary given by the 2D color
code. The fourth boundary, for the newly introduced color in
three dimensions (blue), is located along the bottom boundary
of the 3D lattice, as none of these qubits touch a blue stabilizer.

The Bell stabilizers given in Eqs. (11) and (12) correspond
to the blue stabilizers in Fig. 2, and are equivalent to measuring
the joint logical X and Z operators of the two 2D color codes
forming the top and bottom faces of the Blue stabilizer. As
opposed to traditional constructions of 3D color codes, the
blue stabilizers are not of low weight, but rather act on O(d2)
qubits. This is a particular feature of the stacked code structure,
as the Blue stabilizers measure joint logical operators across
pairs of 2D sheets and thus must contain all qubits across those
faces. However, as we show in Sec. II D, these high weight
stabilizers across the full 2D sheets need not be measured in
practice.

Logical operators in any color code are given by string
operators that connect the boundaries of different colors [4].
A c-colored string operator is given by a set of qubits formed
of connected edges of color c (two edges are connected if they
share a stabilizer of color c). A c-colored string operator either
has endpoints at the boundary of color c, in which case the
final edge of this string connects the endpoint to the boundary,
or in the bulk where the endpoint is located at a particular
c-colored stabilizer, thus causing an excitation. If all of the
colored strings meet at a given qubit, then the strings can “fuse”
and the bulk excitation formed by this endpoint will be negated
[4,15]. Therefore, in order to obtain a logical string operator,
all colored string operators must connect their respective
boundary to a shared fusion point, leading to a nontrivial string
connecting boundaries of all colors without excitations. These
properties now allow us to prove the distance of the stacked
code.

Lemma 1. A (d − 1) + 1 stacked code is a 3D color code
whose distance is d.

Proof. The stacked code comprises pairs of 2D layers
separated by large blue (b) stabilizers. We shall consider two
different representations of logical Z operators, one where the
logical operator is composed of qubits that are only in a single
pair of these 2D layers, and one where the logical operators
span multiple pairs of 2D layers. In the first case, the only way
for such a logical operator to connect to the b boundary would
be for it to be in the bottom-most pair of 2D layers, as they
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FIG. 3. Examples of the different representations of equivalent logical error strings that exist in the 3D stacked code. The color of the
logical strings are chosen according to the color of the edges they follow. The curved lines represent joining of edges through a stabilizer of
the same color. In (a), because the string lies on the green-yellow boundary, it can be chosen to be either of the complementary colors, blue or
purple. In (b), the error string connects the bottom blue boundary to the joint boundary of the other three colors at the ancilla qubit, following
blue edges. Example (c) shows how multiple colored boundaries can fuse in the bulk, thus negating the excitation that would otherwise be
present.

themselves are trivially connected to the b boundary. However,
because we are focusing on a single pair of 2D layers, we can
map the problem of finding a logical operator to that of finding
one in a single 2D layer, where connecting edges correspond
to one of the pair of edges connecting two stabilizer cells of
the same color (these edges correspond to the original edges of
the individual 2D codes). If the same edge in both color code
copies is part of the error chain, then these two edges cancel
out as the resulting face corresponds to a gauge Z operator.
Therefore, we can refer back to individual edges connecting
stabilizers in the 2D color code. As such, because the 2D code
is a code of distance d, the smallest-weight logical string that
connects the different colored boundaries must be weight d,
and therefore any such logical operator will be of distance d.

Suppose we are given a set of Z errors forming a string
operator of one of the colors of the original 2D code. Without
loss of generality, let this string be of color g. Now, given that a
string operator formed by a set of edges of color g, the only way
for a string operator of color g to connect qubits from different
pairings of 2D layers (that is, traverse a blue stabilizer) is by
using g-colored edges at the corner of a given layer. These
points lie at the joint boundary of p and y by definition. There
are then two methods for such an error string to connect to
the g boundary, either by traversing through a given 2D pair
to the g boundary of the other side, or by connecting up to
the single ancilla qubit that is at the intersection of the g,
p, and y boundaries. In the case of the former, in order for
a logical string to connect across a given pair of 2D layers
to the boundary on the other side, the minimal weight will
be governed by the distance of the individual 2D codes, as we
previously saw. Therefore, the minimal weight of such a logical
operator will be d. In the case when the error string connects to
the single ancilla qubit, then in order to form a logical operator
it must also connect to the b boundary, as shown in Fig. 3(a).
The single ancilla qubit is as far away from the b boundary as
it can be, and in order to create a logical string that connects
to the bottom boundary through g edges, there will have to be
at least a single qubit per 2D layer connecting to the ancilla
qubit. Therefore, the minimal distance of such an operator will

also be d. Finally, we must consider the case where the logical
string is not composed of strings of colors {g,p,y} (the original
colors of the 2D code). In such a case, the string operator must
terminate at the joint boundary of the three colors, again given
by the single ancilla qubit, and as in the previous case must
connect the single qubit to the bottom b boundary through
a b-colored chain, as shown in Fig. 3(b). Such an operator
will be of weight at least d as argued above. As such, the
minimum weight nontrivial Z operator is of weight d. Since
logical X operators are formed by connecting 2D membranes
in the 3D code [4], the X logical distance will be greater than
that of the Z logical operators, and as such the distance of the
code is d. �

We note a potential efficiency that may be gained in the
number of qubits in the stacked code. Because the distance to
the blue boundary (the bottom layer) of each pair of 2D code
sheets increases by 2 for each separation by a blue stabilizer,
as shown in Fig. 2, we can in principle use pairs of 2D color
codes of decreasing distance according to how far away they
are from the blue boundary, i.e., decreasing with k. Although
we do not prove this result here, the intuition behind this idea
is as follows. Because a logical error must connect to the blue
boundary, there is extra protection for any logical error that
wants to span a given pair of 2D sheets as the error string will
have to traverse all layers below the pair of layers. The stacked
code prepared in such a way would resemble more of a pyramid
than a prism. This method of stacked code construction leads
to an analogous code as presented by Bravyi and Cross, based
on differing sizes of doubled color codes [11].

D. Fault-tolerant implementations of a universal gate set

Consider a qubit encoded into a 2D hexagonal color code.
By the properties of this code, logical Hadamard H and Phase
S are transversal, and a logical CNOT between two such codes
is also transversal. These are all logical Clifford gates, and so
we require an additional gate such as the logical π/8 gate to
complete a universal set. As we now show, transforming to
the 3D stacked code can be used as a means to complete a
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universal gate set, just as gauge fixing provides a means for
dimensional jumps in gauge color codes [9,10].

The initial ancillary 2D layers can be prepared in their ap-
propriate Bell pairs offline. Because these states are stabilizer
states, they can be prepared fault tolerantly. In order to preserve
the fault-tolerance property of the high-weight Bell stabilizer
measurements, a cat state of the same number of qubits as the
weight can be prepared fault-tolerantly offline [18,19]. The
measurement of these high-weight stabilizers is repeated in
order to ensure fault-tolerance [20]. Note that this preparation
process can be combined with the final measurement process
outlined below, and therefore will not contribute to the overall
runtime to complete the operation.

With the ancilla layers prepared in the appropriate state, the
transformation from the k = 1 2D color code to the stacked
code can be induced by measuring the gauge operators in a
fault-tolerant manner similar to that of surface code, such that
any errors do not spread between data qubits. At this point,
the logical qubit is stored throughout the different stacks in the
(d − 1) + 1 stacked code. We emphasize that the high-weight
stabilizers of the stacked code are not measured at this stage.
Rather, the logical transversal π/8 gate is performed, and we
then immediately transform back to the 2D code (without any
active error correction being performed on the stacked code).
The transformation back to the 2D color code is induced
by measuring the original stabilizers of the 2D code, and
the ancillary 2D stacks and their Bell stabilizers. Because
the measurements can be performed fault tolerantly without
spreading errors, the code is protected by a distance d code at
all times, and any error that occurred throughout the process
can be inferred from the final measurements, as explained
below.

Having returned to the original 2D code, the computation
can continue with the application of transversal Clifford gates
before potentially doing the same process for another π/8 gate
at a different point in the computation. It is worth noting that
the ancilla state is required to be measured fault tolerantly
through repeated measurements in order to correctly infer the
errors on the final 2D color code after completion of the gate.
Therefore, this ancilla remains “ready” at this stage for future
non-Clifford computation and does not have to be re-prepared.

What remains to be shown is how an error that occurs
while the information is encoded in the stacked code can be
inferred from the final 2D code plus ancilla measurements.
Suppose an error of weight less than d occurred while the
state is encoded in the stacked code. Because the logical π/8
gate is transversal, errors may transform but will not increase
in weight as a result of the logical gate. Therefore, such an
error will remain of weight less than d. As such, if one were
to measure the stabilizers of the stacked code, one would see
a change in the sign of one of the cell stabilizers. Suppose the
error anticommutes with cell G

(2k−1)
Pi

G
(2k)
Pi

(this corresponds
to an Z error, a similar argument follows for X errors). The
presence of the error can be inferred from the measurement of
the original stabilizers of the 2D planes, because the product
of the individual outcomes of measurements G

(2k−1)
Pi

and G
(2k)
Pi

will be equivalent in sign to the measurement of the cell of the
stacked code. It should be noted that the sign of the individual
measurements will not necessarily be preserved, because the
individual stabilizers of the 2D sheets anticommute with the

gauge operators. However, the effect of these sign changes will
simply be to set the stabilizer reference frame for subsequent
measurements. Finally, if the error anticommutes with a blue
stabilizer of the form X

(2k)
L X

(2k+1)
L , one can still infer the error

from the measurement of the individual operators on the sheets
and the joint logical measurements along the shared boundary
of the sheets. We return to this last point in Sec. III.

III. UNFOLDING THE STACKED CODE:
A 2D IMPLEMENTATION

Our stacked code provides a mechanism for performing a
fault-tolerant logical π/8 gate on a qubit encoded in a 2D
color code by switching to a third dimension. It requires the
measurement of high-weight Bell stabilizers that couple pairs
of 2D color codes—a requirement that is not necessary if one
used the related approach of dimensional jumps in gauge color
codes [9,10], wherein the 3D color codes have low weight,
geometrically local stabilizers in three dimensions.

In this section, we show that our stacked code has a key
advantage over more standard 3D color codes possessing
geometrically local stabilizers, in that it can be arranged in a
two-dimensional geometry. For the transformation to and from
the stacked code in 2D, we require only geometrically local
(in 2D) gauge measurements in the bulk, together with Bell
stabilizer measurements along one-dimensional boundaries in
this 2D layout.

A. Arranging the stacked code in two dimensions

Consider the 2D layout of different copies of the 2D
hexagonal color code presented in Fig. 4, where layers (2k − 1)
and (2k) are combined into a single 2D plane and neighboring
pairs of layers are arranged next to each other within this 2D
plane, equivalent to the doubled color codes of Ref. [11]. The
geometric arrangement can be viewed as unfolding the pairs
of copies of the 2D code separated by the Bell stabilizers and
tiling the pairs in a 2D plane. We shall refer to this arrangement
as the unfolded stacked code. While it is visually useful to place
layers (2k − 1) and (2k) separated vertically as in Fig. 4, the
qubits in these layers can be arranged in a single 2D plane; see
Fig. 5.

The key feature of this geometric arrangement, which we
show in the next section, is that the Bell stabilizers between
layers (2k) and (2k + 1) can be measured along the shared
boundary. Although not geometrically local, this is a very
desirable type of measurement from the perspective of physical
implementations as the measurement is along a single 1D
strip defined by the boundary of the two layers, and may
be performed by coupling to a common mode or bus. One
way to ensure fault tolerance for such a measurement would
be to prepare an ancillary state for readout, such as a cat
state [18,19], and repeat the measurement O(d) times [20].
The qubits composing the cat state could be arranged along
the boundary, and because they will have to be measured
to infer the logical measurement, they will be reset and
available for the next round of measurement. We note that
the scheme is not limited to performing this measurement
using a cat state. Any fault-tolerant readout scheme for
these high-weight operators may be applied here, assuming
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FIG. 4. A 2D layout for the implementation of the stacked code
(d = 5 shown). Pairs of copies of the 2D hexagonal color code are
layered on top of one another in a single 2D layer, in such a way
as to keep the gauge operators geometrically local. (a) Initial layout
of the stacked code transformation in 2D. The 2D layers (2k) and
(2k + 1) are coupled by measuring joint logical X and Z operators
(Bell stabilizers), with supporting qubits shown in blue. Although Bell
stabilizers for the stacked code are high weight, involving all blue
qubits, the only required measurements are those associated with
local 2D stabilizer/gauge operators together with one-dimensional
operators of weight O(d) (shaded blue). The only 2D plane that is
not initially coupled to another layer (or ancilla qubit) is the bottom
k = 1 layer, which stores the encoded qubit. (b) Measurement of the
weight-4 Z-type gauge operators, shown in red. X-type stabilizers
from individual layers are combined to form cell-like stabilizers by
stabilizer evolution. Original joint logical X measurements, given by
blue shaded region, are mapped to all blue qubits.

it can conform to the architectural constraints. We leave
this for future work. A nonlocal operation, such as the one
described here, is a necessary feature in order to circumvent
the Bravyi-König no-go theorem for constant-depth logical
gates outside the Clifford group in topological stabilizer codes
in two dimensions [2]. The resulting code is equivalent to the
stacked code, as the joint logical measurement operators along
the boundary are mapped to 2D sheets due to the modification
of the stabilizers by the gauge measurements.

B. Transformation of the joint boundary Bell stabilizers

In order to understand the transformation of the Bell
stabilizer operators along the boundary, we consider the
transformation of stabilizer operators under measurement of
anticommuting Pauli operators. The Z-type Bell stabilizer
measurement is straightforward, because the gauge measure-
ments are of type Z and thus a Z-type Bell stabilizer along the
boundary remains of that form. This statement is equivalent
to the fact that the volume operator of weight O(d2) can be

FIG. 5. A two-dimensional layout of the construction presented in
Fig. 4. The two originally superimposed lattices have respective gray
and white lattice qubits. Only one of the color code stabilizers (per
pair) have been colored, for clarity. Gauge measurement operators
are given by red faces. Here, we have identified three individual
gauge measurements per pair of codes for clarity, there are actually
3(d2 − 1)/8 such gauge measurements for each pair of distance d

codes.

mapped to a boundary plaquette operator due to the gauge Z

measurements.
Next, we consider the transformation of the joint X logical

boundary operators. Consider an instance of two pairs of
2D codes that are connected by joint logical string operators
X

(2k)
L,s X

(2k+1)
L,s and Z

(2k)
L,s Z

(2k+1)
L,s , initially shown in Fig. 4(a). Let

{H (2k−1)
ci

H (2k)
ci

} denote the set of gauge operators that touch the
joint logical boundary for 2D layers (2k − 1) and (2k) of color
c, indexed by the label ci . Because these Z operators only
intersect with X

(2k)
L,s X

(2k+1)
L,s at a single qubit, these operators

anticommute. Additionally, {H (2k−1)
ci

H (2k)
ci

} anticommutes with
the individual GPci

plaquette operators of matching color from
the individual 2D codes (2k − 1) and (2k). The stabilizers of
the code are thus modified as follows: {H (2k−1)

ci
H (2k)

ci
} becomes

a new stabilizer of the code, replacing G
(2k)
Pci

. Then, G
(2k−1)
Pci

is modified by being multiplied by the replaced stabilizer,
thus becoming the cell operator G

(2k−1)
Pci

G
(2k)
Pci

. Finally, the joint
logical operator is also modified by being multiplied by all
replaced plaquettes of color c, that is, it becomes(∏

ci

G
(2k)
Pci

)
X

(2k)
L,s X

(2k+1)
L,s . (13)

Because similar joint gauge Z measurements are performed
between layers (2k + 1) and (2k + 2), the original joint
boundary operator is mapped to the operator:(∏

ci

G
(2k)
Pci

)⎛
⎝∏

c′
j

G
(2k+1)
Pc′

j

⎞
⎠X

(2k)
L,s X

(2k+1)
L,s , (14)

which corresponds to all qubits on layers (2k) and (2k + 1).
An example of the modified joint logical operator is shown
in Fig. 4(b). The joint logical X operator is spread over the
full 2D lattice, as governed by the transformation of stabilizer
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operators, and thus becomes one of the blue cells shown in
Fig. 2.

C. Implementation of a fault-tolerant π/8 gate
in two dimensions

We now describe how to perform a fault-tolerant π/8
gate using this stacked code arranged in two dimensions.
We initialize with the information encoded into a 2D color
code and pairs of 2D codes laid out edge-to-edge in a
2D arrangement. Bell stabilizers are measured along 1D
boundaries between two single sheets from different pairs,
before finally measuring out the gauge operators in a local
manner between pairs of 2D sheets. Having completed this
process, the original information of the 2D code is now
stored in a stacked code, and the non-Clifford π/8 gate can
be executed transversally. After completion of the gate, the
process is reversed by measuring the original stabilizers of the
2D code and ancilla qubits. The information is mapped back
into the 2D color code, where transversal Clifford gates are
available for further logical computation.

We emphasize that the expanded joint logical operators are
never measured in practice, as the transformation from the 2D
color code to the stacked code only serves for the application
of the logical π/8 gate. Because the code has distance d

throughout the process without coupling qubits during the
measurements, the procedure remains fault tolerant. If an error
of weight less than d were to occur while the state was encoded
in the stacked code, such an error will anticommute with one
of the stabilizer cells of the stacked code. We covered the case
when it anticommutes with one of the cells of the original
2D code color in Sec. II D. Thus, consider the case where the
error anticommutes with X

(2k−1)
L,2D X

(2k)
L,2D , where this joint logical

operator is across the full 2D surface of the sheets. However,
note the following:

X
(2k−1)
L,2D X

(2k)
L,2D =

∏
i

G
(2k−1)
Pci

∏
j

G
(2k)
Pcj

(
X

(2k−1)
L,b X

(2k)
L,b

)
,

where X
(2k−1)
L,b X

(2k)
L,b is the joint boundary operator of color c

that is shared by both 2D sheets, and G
(l)
Ci

are the individual X

stabilizers of color c of the two sheets. Therefore, the product
of the outcome of all these individual measurements will have
to be preserved, that is by taking their product one can infer
the measurement outcome of the joint logical operator across
the full 2D sheets, as given by the blue qubits in Fig. 4(b). As
such, this large weight operator does not actually have to be
measured to ensure fault tolerance and rather it is sufficient
to measure the individual 2D operators and joint-logical
operators along their boundary after the completion of the
transversal π/8 gate.

This construction results in a fault-tolerant application of a
logical π/8 gate, yet the growing size of the joint boundary
operators leave open the question of whether a rigorous
fault-tolerance threshold exists. We note that, although the
subdivision gadget of Ref. [11] establishes a method to reduce
the overall weight of the individual operators that have to be
measured, it bears similarities to weight reduction techniques
proposed in subsystem codes [21] which exhibit a decreasing
pseudothreshold for each distance rather than a threshold.

D. Comparison to Bravyi-Cross result

We briefly compare our construction with that of the
very recent parallel result by Bravyi and Cross [11]. In that
paper, the authors present a construction of a code for the
application of a transversal π/8 gate through the construction
of a triply even code from multiple copies of doubly even
codes. They use a construction that mirrors the construction
presented here, where 2D color code lattices are chosen with
two qubits per site, denoted “doubled color codes.” Each
2D lattice interacts with another 2D lattice through a joint
logical measurement at their boundary (the Bell stabilizers
presented in our work). A key insight in Ref. [11] is the
proposal of a method to measure the Bell stabilizers using
only local gauge measurements by applying a “subdivision
gadget.” Jones, Brooks, and Harrington recently proposed a
similar method for breaking down the measurement of the Bell
stabilizers in the construction of triply even codes based on the
2D [4.8.8] color code [12]. Their construction is inspired by
lattice surgery methods for the implementation of joint logical
measurements between two copies of 2D color codes [13,14].

Another key contribution of Ref. [11] is the development
of an online decoder to handle the transformation of Pauli
errors to non-Pauli errors due to the action of the non-Clifford
π/8 gates. Because this gate transforms X errors into a form
of correlated X and Z errors, this can cause difficulties in the
decoding of such errors. The authors introduce a Pauli twirling
map after the application of the transversal π/8 in order to map
the original X error to a probabilistic application of Z errors
in combination with the original X error. This twirling map
allows for the construction of a maximum likelihood decoder
for error correction. Techniques developed for the purpose of
this decoder could potentially be applied to our construction
as well.

IV. MAPPING FROM A LARGER DISTANCE 2D COLOR
CODE TO THE STACKED CODE

In this section, we describe a procedure to construct the
stacked code as a reduction of a single higher distance 2D
color code. This analysis is provided not as a direct means to
implement the stacked code in 2D, as we believe the scheme
outlined in Sec. III A is a more practical approach. Rather,
we introduce this scheme in order to analyze the scaling of
the distance of the stacked code architecture when constructed
from a larger 2D color code. The motivation of this analysis
is to characterize the degree of nonlocality that is required for
stacked codes as a function of the larger 2D distance d2 in
order to implement a non-Clifford transversal gate.

To convert between the 2D architecture and the stacked code
architecture, consider initializing a qubit encoded in a higher
distance 2D color code, with distance d2 � d

√
d − 1 + 1,

where d is the target distance of the stacked architecture. The
initial 2D code is then converted to multiple copies of smaller
color codes by “turning off” certain stabilizers and changing
the weighting of others, while simultaneously measuring joint
logical X and Z operators between neighboring pairs of these
newly formed smaller regions, as shown in Fig. 6. The logical
qubit that was encoded in string operators spanning the full
distance of the 2D code is mapped by this process to only a
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FIG. 6. Initial coupling of split regions of a 2D color code. The
original code is split into multiple color code copies by turning off
and modifying certain stabilizer measurements. Different patches are
coupled to form a Bell pair by measuring joint logical X and Z

stabilizers between them, shown in blue. The patch that is not coupled
in this way retains the quantum information that was originally stored
in the code. The different patches are then further joined together by
measuring gauge operators by matching up weight-2 edges from the
different patches (forming weight-4 gauge operators), shown by red
and cyan edges.

single patch in the 2D layout—the patch that is not paired with
another. This process corresponds to initializing the different
layers of the 3D stacked code before the measurement of
the gauge operators. The errors that occur can be tracked by
recording the statistics of the measurement of the stabilizers
before and after their modification, mirroring the technique
for various logical gates in the 2D surface code [6]. The
disadvantage of this architecture is that the gauge operators
have to be measured by pairing qubits at different spatial
locations in the 2D code, by matching individual edges in each
code to form weight-4 operators. A particular set of edges that
could be used for gauge measurements in the case of d = 5
is identified in Fig. 6. However, the pairings remain relatively
local with respect to the 2D code distance as their separation is
O(d) = O(d2/3

2 ), which is the same order of nonlocality as the
required joint logical measurements. Therefore, by modifying
stabilizer measurements and performing joint measurements
whose spatial nonlocality is of order O(d2/3

2 ) one can logically
map a 2D color code to a 3D color code, thus providing the
framework to perform a transversal π/8 gate and enabling a
universal set of fault-tolerant gates.

The distance penalty one pays for such a process is a
reduction from d2 to d

2/3
2 , however, note that for two color

codes with the same number of physical qubits n, the distance
of the 2D color code has scaling d2 = O(

√
n) while the

3D color code has scaling d = O(n1/3) = O(d2/3
2 ). Such a

distance penalty is to be expected, as the no-go result of Bravyi
and König states that any circuit of depth h whose individual
gates have geometric nonlocal range r that satisfies hr � d1/2,
for a 2D topological stabilizer code, can only implement a gate
from the Clifford group. Therefore, it should be expected that
if one can map to code that can implement a transversal π/8

gate the degree of geometric nonlocality must be at least of
order O(d1/2

2 ), which our scheme clearly satisfies (yet does
not saturate). Whether there exists methods to implement a
fault-tolerant non-Clifford gate in 2D using a reduced degree
of nonlocality is an interesting open problem.

V. CONCLUSION

Here, we have introduced stacked codes: a class of 3D
color codes composed of individual 2D color code layers.
We present a method to implement a universal set of logical
gates transversally based on a 2D topological stabilizer code.
We show that by layering pairs of 2D hexagonal color codes
and connecting individual copies of the color code from
different pairs through the measurement of non-local Bell-like
stabilizers, we can then use gauge measurements as proposed
in previous works [7–9] to map the logical information initially
stored in a 2D color code into a stacked code. This fault-tolerant
transformation allows for the application of a transversal gate
outside the Clifford group in a 2D layout without having to
resort to magic state distillation. Our proposal circumvents the
Bravyi-König no-go result for transversal non-Clifford gates
in 2D stabilizer codes by relying on a realistic form of nonlocal
measurements along 1D boundaries in the 2D lattice.

Due to the growing size of the joint boundary operators,
the proposed scheme for fault-tolerant universal computation
may not exhibit a threshold in contrast to traditional 3D
gauge color codes [22]. However, even if this were to be
the case, it remains of interest to establish the value of
the pseudothreshold for low distance realizations of this
scheme for the purposes of near-future experiments as well as
potential multilayered quantum error correcting architectures,
as in Ref. [23]. Moreover, the stacked codes merit further
investigation into their stabilizer measurement properties,
because 3D gauge color codes have the capacity for single-shot
measurement [24]. Further research into the development of
schemes for nonlocal operations to map a 2D stabilizer code
to a 3D code, such as the recent proposal in Ref. [11], could
lead to great reductions in architectural complexity and qubit
overhead for the implementation of universal fault-tolerant
quantum logic.
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APPENDIX: PROOF OF TRANSVERSAL LOGICAL π/8
GATE FOR THE STACKED CODE

Consider a [[n,1,d]] qubit 2D color code whose X and Z

generators are labeled by {G(1)
i } and {H (1)

i }, respectively, that
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encodes a single logical qubit. Consider the following basis
for the 2D code based off the CSS code construction (up to
state normalization):

|02D〉 =
∏

i

(
I + G

(1)
i

)|0〉⊗n =
∑

gx

|gx〉,

|12D〉 = X
(1)
L

∏
i

(
I + G

(1)
i

)|0〉⊗n =
∑

gx

|gx〉,

where X
(1)
L = X⊗n is the X logical operator for the code and gx

is an n-bit binary vector that lies in the set of vectors generated
by the operators {Gi}, and gx = gx ⊕ (1, . . . ,1).

Introduce a (n + 1)-qubit ancillary system in the following
state:

1√
2

(|02D〉|0〉 + |12D〉|1〉). (A1)

The stabilizer generators of the original encoded state and
the ancillary state thus correspond to

2D code + ancilla Bell state stabilizers Equivalent stabilizers

{
G

(1)
Pi

} ⊗ I⊗n ⊗ I
{
G

(1)
Pi

} ⊗ I⊗n ⊗ I (A2){
H

(1)
Pi

} ⊗ I⊗n ⊗ I
{
H

(1)
Pi

} ⊗ I⊗n ⊗ I (A3)

I⊗n ⊗ G
(2)
Pi

⊗ I
{
G

(1)
Pi

⊗ G
(2)
Pi

} ⊗ I (A4)

I⊗n ⊗ H
(2)
Pi

⊗ I
{
H

(1)
Pi

⊗ H
(2)
Pi

} ⊗ I (A5)

I⊗n ⊗ X
(2)
L ⊗ X I⊗n ⊗ X

(2)
L ⊗ X (A6)

I⊗n ⊗ Z
(2)
L ⊗ Z I⊗n ⊗ Z

(2)
L ⊗ Z, (A7)

where the right stabilizer generators are equivalent to those
on the left by multiplying lines 3 and 4 on the left by lines 1
and 2, respectively (using the notation {G(1)

i ⊗ G
(2)
i } to signify

that we are multiplying the corresponding i th stabilizer of each
code with one another). Then by following a procedure similar
to that proposed by Anderson et al. [8], one can replace the
X generators from the first line on the right by measuring
appropriate gauge Z operators to form a new (2n + 1)-qubit
code. The code remains a valid CSS code as the stabilizers all
commute and satisfy the requirements of C2 ⊂ C1, where C1

is the classical code whose parity check matrix is given by the
X stabilizers {G(1)

i ⊗ G
(2)
i } and C2 is the classical code whose

parity check matrix is obtained from the Z stabilizers.
We proceed to show we can implement a logical gate from

C3 transversally. We define an individual Z-axis rotation as
follows: Z(θ ) = diag[1,eiπθ ]. Suppose that the 2D color code
is chosen such that UT = ⊗n

i=1Z(θi) = Z(θ ) implements a
logical phase gate SL = diag[1,i] ∈ C2 (the vector θ represents
the individual rotations about the Z axis on the physical qubits
forming the quantum code). Note the following observation:

UT |02D〉 = Z(θ )
∑

gx

|gx〉 =
∑

gx

eiπθ ·gx |gx〉 =
∑

gx

|gx〉

=⇒ eiπθ ·gx = 1, ∀ gx

=⇒ θ · gx = 0 mod 2, ∀ gx, (A8)

UT |12D〉 = Z(θ )
∑

gx

|gx〉 =
∑

gx

eiπθ ·gx |gx〉 = eiπ/2
∑

gx

|gx〉

=⇒ eiπθ ·gx = eiπ/2, ∀ gx

=⇒ θ · gx = 1

2
mod 2, ∀ gx . (A9)

The assumption that the transversal gate UT implements a
logical phase gate translates into conditions on the individual
physical rotations θ coupled to the form of the binary vectors
gx related to the X generators of the 2D quantum code.
Consider the CSS code proposed in Sec. II, where the X

generators are given by

{
G

(1)
i ⊗ G

(2)
i

} ⊗ I,

I⊗n ⊗ X
(2)
L ⊗ X,

then a particular choice of code states can be obtained by the
CSS code construction as (up to state normalization):

|03D〉 = (
I⊗(2n+1) + I⊗n ⊗ X

(2)
L ⊗ X

)
×

∏
i

(
I + G

(1)
i ⊗ G

(2)
i ⊗ I

)|0〉⊗(2n+1)

= (
I⊗(2n+1) + I⊗n ⊗ X

(2)
L ⊗ X

) ∑
gx

|gx〉|gx〉|0〉

=
∑

gx

(|gx〉|gx〉|0〉 + |gx〉|gx〉|1〉), (A10)

|13D〉 = (
X

(1)
L ⊗ X

(2)
L ⊗ X

)|02D〉
=

∑
gx

(|gx〉|gx〉|0〉 + |gx〉|gx〉|1〉). (A11)

Claim 1. The (2n + 1) qubit transversal gate VT = Z( θ
2 ) ⊗

Z( θ
2 ) ⊗ Z(α), where α is chosen such that α ∈ {1/4,5/4},

implements a logical T or T Z gate in the logical computational
basis {|03D〉,|13D〉}, where T = π/8 gate.
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Proof. For the purpose of this proof, we consider the case
where the π/8 gate has the form T = diag[1,eiπ/4], which is
equivalent to diag[e−iπ/8,eiπ/8] up to a global phase. Consider
first the action of VT upon the state |03D〉 which should return
|03D〉 without a phase.

VT |03D〉 =
∑

gx

(
eiπ θ

2 ·gx eiπ θ
2 ·gx |gx〉|gx〉|0〉

+ eiπ θ
2 ·gx eiπ θ

2 ·gx e−iπα|gx〉|gx〉|1〉) (A12)

=
∑

gx

(
eiπθ ·gx |gx〉|gx〉|0〉

+ eiπ θ
2 ·gx eiπ θ

2 ·gx e−iπα|gx〉|gx〉|1〉) (A13)

=
∑

gx

(|gx〉|gx〉|0〉 + |gx〉|gx〉|1〉), (A14)

where the first coefficient in Eq. (13) is equal to 1 by the
identity in Eq. (8), and the second coefficient is equal to 1 by
the following observation. Define the phase a to be the phase
eiπa = eiπ θ

2 ·gx eiπ θ
2 ·gx . Due to the symmetries of color codes,

the value of a in the following is independent of gx :

θ

2
· gx + θ

2
· gx = a mod 2

=⇒ θ · gx + θ · gx = 2a mod 2

=⇒ 0 + 1

2
= 2a mod 2

=⇒ a =
{

1

4
,
5

4

}
mod 2, (A15)

therefore α is chosen in order to set the coefficient equal to 1.
Consider now the action of VT , with the appropriate choice of

α for the state |13D〉, which should return the state ±eiπ/4|13D〉.

VT |13D〉 =
∑

gx

(
eiπ θ

2 ·gx eiπ θ
2 ·gx |gx〉|gx〉|0〉

+ eiπ θ
2 ·gx eiπ θ

2 ·gx e−iπα|gx〉|gx〉|1〉), (A16)

which given a choice of α gives the following:

VT |13D〉 =
∑

gx

(
eiπα|gx〉|gx〉|0〉 + eiπ( 1

2 −α)|gx〉|gx〉|1〉),
= eiπα|13D〉 = ±eiπ/4|13D〉, (A17)

since α = 1
2 − α mod 2. �

Therefore we can apply a transversal π/8 gate to the
code construction given above by applying a transver-
sal logical Z gate at the completion of our gate (the
action of T or T Z is fixed by the code and is not
probabilistic).

Corollary 1. The stacked code has a transversal logical π/8
gate.

Proof. The only assumption the proof of Claim 1 makes
about the ancilla state is that the rotation Z(α) induces a phase
of eiπα on the |1〉 state and leaves the |0〉 state invariant.
Therefore, we replace the single physical qubit by a logical
qubit {|03D〉,|13D〉} prepared in a 3D state according to the
construction laid out in this appendix. Replacing the single Z

of angle α by a transversal rotation as given by the construction
of the previous claim, we can recursively build the stacked code
to implement an overall transversal rotation of the π/8 gate
for the stacked code. �
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