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The expected hitting time of discrete quantum walks on a hypercube (HC) is numerically known to be
exponentially shorter than that of their classical analogs in terms of the scaling with the HC dimension. Recent
numerical analyses illustrated that this scaling exists not only on the bare HC, but also when the HC graph is
symmetrically and locally embedded into larger graphs. The present work investigates the necessity of symmetry
and locality for the speed-up by considering embeddings that are nonsymmetric or nonlocal. We provide numerical
evidence that the exponential speed-up survives also in these cases. Furthermore, our numerical simulations
demonstrate that removing a single edge from the HC also does not destroy the exponential speed-up. In the
nonlocal embedding of the HC we encounter dark states, which we analyze. We provide a general and detailed
presentation of the mapping that reduces the exponentially large Hilbert space of the quantum walk to an effective
subspace of polynomial scaling. This mapping is our essential tool to numerically study quantum walks in such
high-dimensional structures.
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I. INTRODUCTION

Quantum walks [1,2] on hypercube (HC) graphs and on
glued trees exhibit hitting times that scale exponentially faster
than the classical analogs [3,4]. For discrete quantum walks
[5–7] it was numerically shown that the expected hitting time
also exhibits an exponential speed-up [8] even for a slightly
distorted HC. In a recent study [9] it was numerically shown
that such an exponential speed-up for the expected hitting time
on the HC can also be obtained for large families of HC graphs
that were embedded in larger graphs, including HCs where
additional tails (linear graphs) were appended to every HC
vertex, and HCs that were appended (recursively) with HCs.
These two families of structures have two common features:
(a) They retain the permutational symmetry of the HC, i.e., all
vertices of the central HC have the same structure attached, and
(b) the embedding is local, meaning that the external structures
are connected to the HC only via a single vertex, hence there
is no direct connection between these attached structures other
than the HC.

The exponential speed-up of the quantum walk originates
from constructive and destructive interference patterns that
result in the particle appearing at the target vertex on the
opposite side of the HC with a large probability. The specific
structure of the graph, in particular its inherent symmetry
or lack thereof, also plays a crucial role in forming the
interference pattern [10]. It is thus of interest to investigate
to what extent the exponential speed-up of the quantum walk
on the embedded HC is maintained when the embedding is
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not symmetric. Similarly, it is of interest to clarify whether the
embedding must be local to maintain the speed-up.

In this paper we study the necessity of symmetry and
locality in the embedding procedure for the sake of obtaining
an exponential speed-up. To that end, we consider a nonsym-
metric embedding of the HC in the form of a HC with a single
vertex attached to it and a nonlocal embedding in the form of a
HC that is embedded in another HC of a higher dimension. We
also analyze the case where a single edge is removed from the
HC. For all three setups we analyze the scaling of the expected
hitting times for the classical and the discrete quantum walks
with analytical and numerical tools, respectively.

For HCs of high dimension d, the numerical analysis of the
expected hitting time (of both the classical and the quantum
walks) becomes intractable because the number of vertices in
the graph grows exponentially with d. In order to facilitate
such calculations, it is expedient to map the walk on the full
HC graph to an equivalent walk on a smaller structure by
using the symmetry of the HC. For the case of the bare HC,
such a procedure results in a walk on a line of d + 1 vertices
[11]. However, when the HC is perturbed in a nonsymmetric
way, this known mapping to the line no longer holds. We
therefore generalize this procedure and show that a walk on
a HC for which m vertices are modified can be mapped to
a walk on an (m + 1)-dimensional grid. The size of the grid
in each dimension is at most d + 1. A constant number of
modifications thus leads to a finite grid with a number of
vertices that grows only polynomially with the HC dimension
d. For the quantum walk, this procedure includes a mapping
of the full Hilbert space to an effective subspace, on which the
walk takes place (see [8,12] for such a mapping of the quantum
walk on the bare HC to a line).

The paper is structured as follows. Section II presents the
necessary formalism and definitions for classical and quantum
walks. In Sec. III we introduce a general mapping for walks
on HCs with several perturbed vertices to walks on lower-
dimensional grids. We further show how to map the Hilbert
space of the quantum walk to a lower-dimensional subspace. In
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Sec. IV we present the numerical results for various scenarios
of nonsymmetric and nonlocal extensions of the HC graph.
Section V summarizes the paper.

II. PRELIMINARIES

A. Classical random walk on the embedded HC

The classical expected hitting time of a discrete random
walk on a graph from vertex x0 to vertex xf is defined as

τx0xf
≡ τ (x0) =

∞∑
t=0

tpxf
(t), (1)

where pxf
(t) is the probability to hit the final vertex xf for

the first time at time step t . A random walk on the graph
with a target at xf is equivalent to an absorbing Markov chain
[13], which has probability 1 to remain on this final vertex. Its
transition matrix [P ]ij = p(xi → xj ) collects the probabilities
to go from vertex xi to xj in one time step via all possible
paths. The submatrix Q of P without the transitions to and
from the final vertex gives rise to its fundamental matrix F =
(I − Q)−1 = ∑∞

k=0 Qk , the ith row of which, when summed
up, is one way to calculate the expected hitting time to reach
xf when starting at vertex xi .

When referring to vertices of a d-dimensional HC we will
employ a notation that labels all vertices by a bit string of
length d, i.e., 00 . . . 02 is the label of the starting vertex x0 and
x0 = 11 . . . 12 is its opposite corner. An important tool will
be to group vertices according to the number of 1-symbols
in their bit string, that is, their Hamming weight, which we
will denote by |x| and which ranges from 0 for the starting
vertex to d for its opposite corner. The number of 1-symbols
in which two vertices differ defines their Hamming distance.
Due to symmetry on the HC it is often sufficient to refer to its
vertices only by their Hamming weight and we use the notation
τ (x0) ≡ τ (0).

For the bare HC, the expected hitting time from one corner
of the HC to the opposite corner is given by (see, e.g., [8])

τ (0) =
d−1∑
k=0

�(k) =
d−1∑
k=0

∑k
j=0

(
d

k−j

)
(
d−1

k

) , (2)

where �(k) = τ (k) − τ (k + 1), with the boundary conditions
τ (d) = 0 and τ (d − 1) = Td − 1 = 2d − 1, in which Td de-
notes the so-called return time from any node to itself on a HC
of dimension d. We will use this expression to obtain exact
expected hitting times and bounds thereof for the classical
walk. In particular, note that for the classical walk τ (0) >

τ (d − 1),1 which is the origin of the exponential scaling of the
expected hitting time of the classical walk on the bare HC, as
well as on the structures we examine in this paper.

B. Quantum walk

In what follows we consider the discrete coined quantum
walk [5–7] on undirected graphs G = (V,E), with V and E

1Although the relation becomes intuitively clear when considering
that for τ (0) the walker has to travel farther, the expression for τ (d −
q) is explicitly given in Sec. IV B.

being the set of vertices and edges, respectively. The Hilbert
space is composed of a position space HP , spanned by the
respective position states for all vertices xi ∈ V in the graph,
and a coin space HC , spanned by the possible transition
directions for each vertex:

H =
⊕
xi∈V

Hxi

C ⊗ Hxi

P , (3)

where Hxi

P is the position Hilbert space for vertex xi and is
spanned by the vector |xi〉. When the graph is regular, i.e.,
each vertex has the same number of neighbors, the coin spaces
for all vertices are identical (Hxi

C = HC) and this expression
reduces to a simple tensor product of the coin and the position
space:

H = HC ⊗ HP . (4)

In this work, however, not all graphs are regular.
The walk unitary U = SC is the composition of a shift and

a coin operator. The shift operator is given by

S =
∑
xi∈V

pi∑
j=1

|j,g(j,xi)〉〈j,xi |, (5)

where pi is the degree of vertex xi and g(j,xi) gives the j th
neighbor of vertex xi according to the graph connectivity. The
coin operator is given by

C =
⊕
xi∈V

Cpi
⊗ |xi〉〈xi |, (6)

with

Cpi
= 2

pi

⎛
⎜⎜⎜⎜⎜⎝

1 − pi

2 1 · · · 1

1 1 − pi

2 · · · 1

...
. . .

. . . 1

1 1 · · · 1 − pi

2

⎞
⎟⎟⎟⎟⎟⎠, (7)

where Cpi
is the so-called Grover coin. If the graph is regular

with degree p, the coin operator is reduced to C = Cp ⊗ I .
Initially, the walker is placed on a starting vertex x0 with

a uniform probability to walk in every possible direction,
resulting in the initial state

|ψ0〉 = 1√
p0

p0∑
i=1

|i〉 ⊗ |x0〉. (8)

The target state is defined by the final vertex xf and assumes
any arbitrary coin state, so there may be several final states
{|ψf1〉,|ψf2〉, . . . }. Yet not any coin state can be reached, and
for walks on the HC, the symmetry of the walk unitary and the
initial state dictates through which coin states the walker can
arrive at the final vertex. For example, if the final vertex is at
the opposite corner of the HC, symmetry ensures that the final
state is of the form [12]

|ψf 〉 = 1√
p0

p0∑
i=1

|i〉 ⊗ |xf 〉, (9)

i.e., with a completely symmetric coin state, just like the initial
state.
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The hitting time of the quantum walk can be defined in
several ways (see, e.g., [3]). In the present work we employ
the expected hitting time as defined in Eq. (1) and used also
in Ref. [8] (see [9] for a short discussion on the difference
between different kinds of hitting time definitions). For the
quantum walk the term pxf

(t) also denotes the probability to
hit the target state xf for the first time at time t and is given by

pxf
(t) =

∑
j

∣
∣〈ψfj

|(U�0)t |ψ0〉
∣
∣2, (10)

where |ψ0〉 and |ψfj
〉 are the initial and final states of the

walk (including both the positional and directional parts),
respectively, U is the walk unitary as defined before, and �0 =
I − �f is a projection operator, with �f = I ⊗ |xf 〉〈xf |, that
projects to the final vertex xf for all coin states. Here the sum
runs over all possible final states ψfj

that share the same final
vertex in the position part. These dynamics represent what
is known as the measured quantum walk [3], where, after
each application of the walk unitary, a partial measurement is
preformed to check if the particle is found on the final vertex. If
it is found, the walk is over; otherwise, the state of the particle
is projected to the Hilbert subspace spanned by all but the final
vertex.

While for graphs with a position space of low dimension the
expected hitting time of the quantum walk can be calculated
exactly, as shown in Ref. [8], graphs with a Hilbert space
of high dimension result in expressions that are numerically
intractable. Therefore, we approximate the expected hitting
time given as an infinite sum in Eq. (1) with a finite
sum

τptot :=
T∑

t=0

tpxf
(t), (11)

with summands until time step T , when a total of

ptot(T ) =
T∑

t=0

pxf
(t) (12)

of the walker has arrived at the final vertex. Equation (11)
serves as a good approximation to the correct expected hitting
time only if ptot = (1 − ε) → 1, that is, when ε → 0, and the
remaining summands tpxf

(t) are small and decay fast enough
for t > T . In our numerics, we set ε such that the approximated
expected hitting time τptot is well converged. That is, we run
simulations with double precision and decrease ε by a factor
of 10 until we no longer observe visual changes in our plots.
Throughout the paper different scenarios will entail different
threshold values of ε.

III. REDUCING THE QUANTUM WALK TO AN
EFFECTIVE SUBSPACE

A. Mapping of the graph

We consider several cases of modifying the HC: (i) by
appending a graph nonsymmetrically to it, (ii) by embedding
the HC nonlocally as a subgraph into a HC of higher
dimension, or (iii) by deleting a single edge. All of these
modifications destroy the original symmetry of the HC, but
some symmetry is left, which we use to map the modified HC

to a smaller graph, that is, in effect we identify the subspace
in which the walk takes place. This procedure of mapping
the walk to a lower-dimensional structure is the essential and
important tool that we use for the numerical study of walks
on modified HCs of high dimension (see [14] for a general
computational approach to reducing the effective dimension
of a quantum walk without prior knowledge of the symmetries
of the graph).

The mapping is done in a way similar to the mapping of
the unperturbed HC to a line. The unperturbed HC graph
is symmetric under permutation of the order of the bits in
the bit string. This allows for a mapping of the corner-
to-corner walk on the HC to a line, where the coordinate
along the line represents the Hamming distance from the
starting point (as well as the Hamming distance from the
target vertex). This mapping corresponds to the Ehrenfest
model from classical thermodynamics [11,15]. There d gas
particles can be located in either of two containers labeled
0 or 1 and initially all particles are located in the 0-labeled
container. At each time step a single gas particle is chosen
uniformly at random and placed in the other container. The
process ends when all particles are found at the 1-labeled
container. This process generates the corner-to-corner random
walk on the d-dimensional HC, where the bit string indicates
the location of the particles. The sum of particles in the
1-labeled container then gives the random walk on the line
with values 0 to d. In what follows we will treat perturbed
HCs, which will generally result not in a mapping to a line
but to a higher-dimensional grid. The random walk on such
grids is in spirit similar to extensions of the Ehrenfest model
to more types of particles (the Bernoulli-Laplace model; see,
e.g., [16]), where each direction in the grid counts the number
of particles of a given kind in the 1-labeled container, or
higher-dimensional discrete-time variants of so-called linear
birth-and-death processes (see, e.g., [17]). However, here we
obtain transition probabilities at the perturbed vertices that are
different from the above models.

The general procedure of mapping a full HC with mod-
ifications on m vertices onto a smaller equivalent structure
works as follows. First, all m perturbed vertices are identified
and marked according to their relative Hamming weights.
This results in m + 1 special vertices in the HC: the starting
vertex x0 = 0 and each of the m modified vertices. These
special vertices need to be treated individually and thus remain
single vertices also in the mapped graph. By symmetry, the
bitwise complement of the modified vertices must be treated
individually as well and therefore also remain single vertices
in the mapped graph. The remaining vertices can then be
grouped according to their connectivity and their Hamming
distance from these special vertices. In general, each additional
perturbation on the HC will increase the resulting dimension
of the mapped graph by 1, so the reduced graph will be a
grid of dimension m + 1. For example, the bare HC (with
no perturbations m = 0) can be mapped to a one-dimensional
line, whereas a HC with a single perturbation (m = 1) can
be mapped to a two-dimensional (2D) grid, as we show
next.

In the scenarios we consider in this paper the number of
modified vertices on the HC is given either by m = 1 (for
nonsymmetric and nonlocal embeddings, see Secs. IV A and
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IV B, respectively) or by m = 2 (for the deleted-edge scenario,
see Sec. IV C). Here we explain the mapping in detail for the
case when only a single vertex is perturbed. The details of the
m = 2 case are given in the respective section. For laying
out the resulting grid, we choose the following (arbitrary)
convention to place the vertices: In the mapped graph the
starting vertex x0 is placed at the bottom left. The opposite
corner of the HC, i.e., the bitwise complement x0, will also
be the opposite corner in the grid and placed at the top right.
The remaining otherwise distinguished vertex xq is placed
at the bottom right in the grid. By symmetry, its bitwise
complement xq is placed at the top left of the grid. Note further
that for symmetry considerations, it is only the Hamming
weight q of the perturbed vertex that plays a role and not
the exact chosen vertex xq .

The remaining vertices of the HC are grouped by symmetry
and also placed in the grid. Their horizontal and vertical
coordinates in the grid are defined by their bit string in the
following way. The bit string of the perturbed vertex xq defines
two sets of bits (symbols) in the string, namely, those bits that
have bit value 1 in xq and those bits that have bit value 0. Let
us call these sets X for the 1-bits and Y for 0-bits in xq . There
are therefore |X| = q bits in set X and |Y | = d − q bits in set
Y . To give an example, for xq = 00112 the set X contains both
lower bits with value 1 (bits 1 and 2 when counted from the
right) and set Y contains the two higher bits with value 0 (bits
3 and 4 when counted from the right).

The x and y coordinates of every vertex in the grid are
given by the Hamming weight of its bits in subsets X and
Y denoted by | · |X and | · |Y , respectively. That is, x0 has
coordinate (0,0) and its opposite corner has coordinate (q,d −
q). The distinguished vertex xq has coordinate (q,0). Placed
at coordinate (1,0) are all ( q

1 ) = q vertices that have only a
single bit with value 1 in their bit string, which is in one
of the positions that belong to subset X. Similarly, placed at
coordinate (0,1) are all ( d−q

1 ) = d − q vertices with a single
bit with value 1, which is in one of the positions of subset
Y . The mapping maintains the relation that vertices that differ
only in one bit are neighbors and connected in the grid and that
from the starting vertex, q steps need to be walked to reach the
distinguished vertex xq and d steps need to be walked to reach
the opposite corner.

Generally, a 2D grid of (q + 1) × (d − q + 1) vertices
emerges, where ( q

x
)( d−q

y
) vertices of the HC are mapped to

position (x,y) in the grid. Figure 1 illustrates the mapping.
Depending on the Hamming weight q of the perturbed vertex
xq , the grid size ranges from 1 × (d + 1) vertices on a vertical
or horizontal line for xq = x0 or x0 to the maximal grid size of
1
4 (d + 2)2 when q = d

2 for even d and of size 1
4 (d + 1)(d + 3)

when q = d±1
2 for odd d.

On this 2D grid, the walker can only go to one of its four
neighbors, that is, rightward R and leftward L, which would
correspond to increasing and decreasing its x coordinate by
one, respectively, and upward U and downward D, which
would amount to increasing and decreasing its y coordinate,
respectively. The probability pxy(J ) = 1

Nxy (J ) to go from
coordinate (x,y) on the grid in direction J ∈ {R,L,U,D}
is then expressed by the inverse of the number of original
edges that effectively lead to direction J , which at unperturbed

FIG. 1. Mapping of HCs (dimension d = 2,3) with a single
modified vertex (m = 1) to two-dimensional grids. Start and end
vertices of the walk on the HC are leftmost (Hamming weight 0) and
rightmost (Hamming weight d) vertices, circled in green and red,
respectively. The perturbed vertex is filled in blue. For d = 3 all three
walking directions from the starting vertex are indicated by arrows:
walking directions on the HC are mapped to horizontal and vertical
directions on the grid.

vertices is given by

Nxy(J ) =

⎧⎪⎨
⎪⎩

q − x, J = R

x, J = L

d − q − y, J = U

y, J = D

(13)

up to small exceptions at the perturbed vertices, which reflect
the change in degree and connectivity. As a sanity check we
note that summing over all directions gives the degree of the
vertex (d for the regular graph), as required.

The resulting size of the reduced graph scales therefore only
with d2 in the worst case rather than with 2d for the full HC.
The mapping is applied to the graph on which the walk takes
place and therefore simulations of both classical and quantum
walks will benefit from this reduction in dimension.

B. Mapping of the walk operator

With the mapping of the HC to a 2D grid at hand, we can
now identify the basis vectors for the quantum walk in the
reduced effective subspace in which the walk takes place. The
new basis states at the grid vertex (x,y) with x ∈ {0,1, . . . ,q}
and y ∈ {0,1, . . . ,d − q} in direction J ∈ {R,L,U,D} can
then be expressed in terms of the full basis states {|j,xi〉}
as follows (see [9] for corresponding expressions in the case
of local or symmetric embeddings):

|J,x,y〉 = 1√
N (J,x,y)

∑
xi∈V,(|xi |X=x,

|xi |Y =y)

pi∑
j=1

(j 
→J )

|j,xi〉, (14)

where the outer sum runs over all vertices of the HC that are
mapped to the same vertex with coordinates (x,y) on the grid,
the inner sum runs over all directions j that are mapped to
direction J on the grid, and the normalization factor is given
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FIG. 2. Added vertex: All nonequivalent cases for attaching a tail to a four-dimensional HC are shown with different colors and line types
(left). Also shown is a complete family of respective mapped grid graphs (right). Start and end vertices of the random walk are circled in
green and red; on the HC they are the leftmost and rightmost vertices and on the grid the bottom left and top right vertices, respectively.
Labels of vertices on the grid represent those bit strings of the HC vertices that can be obtained by all permutations of symbols inside square
brackets.

by

N (J,x,y) = Ñ (x,y)Nxy(J ), (15)

with Ñ (x,y) = ( q

x
)( d−q

y
) the total number of HC vertices that

are mapped to vertex (x,y) on the grid and Nxy(J ) giving,
for each such state, the number of original directions |j 〉 that
effectively lead to direction J , as given in Eq. (13). The shift
operator, defined in Eq. (5), is then given by

S =
q−1∑
x=0

d−q∑
y=0

[|L,x + 1,y〉〈R,x,y| + H.c.]

+
q∑

x=0

d−q−1∑
y=0

[|D,x,y + 1〉〈U,x,y| + H.c.] (16)

and the Grover coin operator defined in Eq. (7) is given by

Cd =
q∑

x=0

d−q∑
y=0

∑
J,K

c(J,K,x,y)|J,x,y〉〈K,x,y|, (17)

where the sum over J and K runs over all directions
{R,L,U,D} on the grid and the matrix elements are

c(J,K,x,y) = 〈J,x,y|C|K,x,y〉

=
{

2
d

√
Nxy(J )Nxy(K), J �= K

2
d
Nxy(J ) − 1, J = K.

(18)

IV. RESULTS

A. Nonsymmetric embedding (added vertex)

We first consider a nonsymmetric case of embedding the HC
into a larger graph. A minimal modification of this kind is the
case of a single tail of length one, i.e., a single additional vertex,
connected to one of the vertices of the HC. For the mapping, the

perturbed vertex in the HC is the vertex to which the additional
graph (the additional vertex) is appended. Due to symmetry,
only the Hamming weight q of the tailed vertex plays a role. For
illustration of the mapping procedure we provide in Fig. 2 the
mapping of a single tail attached to a HC of dimension d = 4
for all possible Hamming weights, that is, with 0 � q � d.
Note that when q = d we revert to a walk on the bare HC as
the walker never reaches the appended vertex because it is only
accessible through the final vertex. The mapping of the walk
operator is exactly as described in Sec. III except for the vertex
xq and the added vertex. The degree of both has to be taken into
account explicitly by associating a coin of dimension p = 1
with the added vertex and a coin of dimension p = d + 1 with
the vertex xq , that is, by applying a conditional coin operator,
according to Eq. (6). The corresponding changes of Nxy(J )
are Nq0(D) = 1 for the modified vertex xq and for the added
tail vertex the only nonzero value is Ntail(U ) = 1.

To obtain the expected hitting time for the quantum walk
in the single-tail case, we performed numerical simulations of
the walk on the effective reduced subspace. This reduction
in dimension allows us to consider hypercubes of high
dimensions (of the order of hundreds) as shown in Fig. 3.

In the classical case, when the HC is locally appended (not
necessarily symmetric) with additional graphs, i.e., the HC is
embedded in a larger graph, the expected hitting time to reach
the opposite corner on this HC was shown to be [9]

τ (0) =
d−1∑
k=0

∑k
j=0

(
d

k−j

)
αk−j(

d−1
k

) , (19)

where αk = ek

d
+ 1 and ek is the average number of edges

starting at the vertices in all the external graphs that are
attached to HC vertices of Hamming weight k (including the
edges connecting the HC and the attached graph, so-called
legs). Note that when ek = 0 for all 0 � k � d − 1, the
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FIG. 3. Added vertex: Expected hitting time of a walker on a d-dimensional HC with a single tail of length one connected to a vertex of
Hamming weight 0 � q � d . Shown on the left are classical and quantum walks with q = d − 1. The classical data are calculated according
to (21) and the quantum data are from numerical simulations with an error threshold of ε = 10−4. Shown on the top right is the quantum walk
for extreme cases of the expected hitting time with q = 0 and q = d (the latter being equivalent to the bare HC) and an error threshold of
ε = 10−4. The numerical fit yields the power n � 1.5 for each curve. On the bottom right is a quantum walk with fixed d = 20 and varying
0 � q � 20. The horizontal line indicates the quantum hitting time for q = 20 (bare HC). The data are from simulations with an error threshold
of ε = 10−10.

expression of Eq. (19) correctly reduces to the expression of
Eq. (2). By virtue of Eq. (19), the expected hitting time for the
classical walk on a HC of dimension d with a single additional
vertex attached to a HC vertex of Hamming weight q < d is
given analytically by

τ tail
q,d =

d−1∑
k=0

∑k
j=0

(
d

k−j

) + ∑k
j=0

(
d

k−j

) ek−j

d(
d−1

k

) , (20)

where ek = 0 for k �= q and eq = 2/( d

q
) (the factor of 2 is due

to taking both the ingoing and the outgoing directions of the
additional edge into account). We can separate the hitting time
for the walk on the regular HC and obtain

τ tail
q,d = τ (0) + 2

d

d−1∑
k=q

1(
d−1

k

) = τ (0) + O

(
1

d

)
, (21)

where the leading term in the correction is 4/d for q = 0 and
2/d otherwise. The correction is exactly 2/d for q = d − 1.
From (21) it is readily apparent that the expected hitting time
of the classical walk is monotonically decreasing with the
Hamming weight of the tailed vertex q and that the perturbation
in terms of the expected hitting time decreases with the HC
dimension d.

Figure 3 (left) shows a comparison of the expected hitting
times of the classical and quantum walks of dimension d,
with a single tail attached to a vertex of Hamming weight
q = d − 1. The comparison on a log-plot illustrates that the
gap between the classical and the quantum curves increases
exponentially with the HC dimension d, implying that the
exponential speed-up of the quantum walk compared to its
classical counterpart survives also when the overall structure
is not fully symmetric.

We observe that for both the classical and quantum walks
the precise values of the expected hitting time depend on the
Hamming weight 0 � q � d − 1 of the tailed vertex, but they
are of the same order of magnitude for all q. Figure 3 (top
right) illustrates that the expected hitting time of the quantum
walk appears to scale with d according to a power law, i.e.,
dn with n constant. Both curves display extremal cases of the
hitting time, the longest for the tail attached directly to the
starting vertex q = 0 and the shortest for the tail attached to
the final vertex, which is equivalent to a walk on the bare
HC. A numerical fit [18] yields a power of n � 1.5 for each
curve. Figure 3 (bottom right) displays for one example of
d = 20 that, numerically, we obtain a nontrivial dependence
of the exact value of expected hitting time on q, which is
neither monotonic nor particularly symmetric. We can rule
out convergence issues in our simulation to the extent that we
used an error threshold of ε = 10−10. Qualitatively, however,
the apparent scaling and order of magnitude of the hitting time
is largely independent of q, implying that an exponentially
growing gap between expected hitting times of quantum and
classical walks exists for all q.

B. Nonlocal embedding (HC inside HC)

Next we consider a nonlocal embedding of a HC in a larger
graph. An extreme case of a nonlocal embedding is obtained
when every vertex of the embedded HC is attached to an
external graph in such a way that any two vertices of the
embedded HC are connected through the external graph. Such
cases are obtained when a HC of dimension q is embedded as a
subgraph in a larger HC of dimension d > q, as demonstrated
on the left side of Fig. 4. Effectively, this embedding is obtained
when the target vertex of the walk is not the opposite corner
on the d-dimensional HC, but rather a different vertex of
Hamming weight 1 � q < d.
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FIG. 4. HC inside HC: Nonlocal embedding of two low-
dimensional examples of HCs (dimension q = 1,2) as subgraphs in
a three-dimensional HC (left) and the corresponding mapped graphs
(right). Edges and final vertices of the lower-dimensional HCs are
marked in the same color.

When investigating the scaling behavior of the expected
hitting time, we need to keep in mind what exactly it is that
should scale. In this section we are interested in the walk on
the hypercube of dimension q, i.e., we primarily investigate
the scaling with respect to q. The dimension d of the larger
HC in which our primary HC is embedded may either be just
larger by a constant, e.g., d = q + 1, or scale with q, e.g., by
a factor such as d = 2q. Note that both variants of embedding
the HC in a larger HC differ in the way that the embedding
is constructed. For a constant difference (e.g., d = q + 1) the
larger HC is obtained by a fixed number of duplications of
the primary HC,2 whereas for a difference that monotonically
increases with q the embedding procedure itself grows, which
leads to qualitatively different scaling behaviors of the hitting
time.

The mapping of the HC results in a 2D grid as detailed in
Sec. III. The distinguished vertex in our mapping is given by
the final vertex of the lower-q-dimensional HC (see Fig. 4).
The vertex x0 opposite the starting vertex is only distinguished
due to symmetry but is otherwise identical to the other vertices.
The new final vertex xq is the place where the walker is
absorbed and the projective measurement is applied in the
quantum walk.

For the classical walk, an analytical expression for the
expected hitting time can be derived with the following
argument. First, note that the expected hitting time to reach
a vertex of Hamming weight q when starting from x0 equals
the expected hitting time to reach a vertex of Hamming
weight d when starting from a vertex with Hamming weight
d − q. In both cases the starting vertex and final vertex are q

steps apart on the HC. Symmetry dictates that the expected
hitting time depends only on the relative Hamming distance,
i.e., τx0xq

= τxd−qxd
≡ τ (d − q). Then, by following the same

2A HC of dimension d + 1 can be recursively constructed, by
duplicating a HC of dimension d and connecting each vertex from
the original HC with its cloned one.

procedure as given in Ref. [8] we obtain

τHC in HC
q,d = τ (d − q) =

d−1∑
k=d−q

�(k) (22)

=
d−1∑

k=d−q

∑k
j=0

(
d

k−j

)
(
d−1

k

) , (23)

where �(k) is defined after Eq. (2). Note that when q = d

this expression reduces to the classical hitting time of the bare
d-dimensional hypercube as given in Eq. (2). In the sum in
Eq. (22) d − q is the starting index of the summation over
positive quantities. Therefore, the expected hitting time of
the classical walk increases monotonically with q. Moreover,
using the recursive formula for �(k) [8],

�(k) = d − k − 1

k + 1
�(k + 1) − d

k + 1
, (24)

it can be verified that for all k < d − 1, �(k) < �(d − 1),
which implies that τHC in HC

q,d is upper bounded by qτHC in HC
q=1,d .

For the quantum walk we first need to reconsider the
definition of the expected hitting time. We observe that
whenever q �= 1,d − 1,d the walker remains trapped inside the
graph and cannot reach the final vertex with finite probability
(a phenomenon that was already indicated in Ref. [9]). This
inability to reach the final vertex is clearly due to the changed
symmetry of the walk and the same was observed in differently
distorted HCs or when using a different coin [8,10,19]. Under
the dynamics driven by the walk operator, part of the walker
always interferes destructively on the final vertex and thus
remains on the graph forever. The total probability to reach the
final vertex at all is

ptot =
∞∑
t=0

pxf
(t) < 1, (25)

i.e., it no longer sums to one. Note that a trapped walker
never occurs in the classical walk on connected graphs. For a
meaningful comparison we therefore consider the conditional
expected hitting time for the quantum walk, that is, the
expected hitting time given that the walker arrives at all at
the final site. Analogous to the expected hitting time, we
define τc = ∑∞

t=0 t pxf
(t |xf ), where pxf

(t |xf ) denotes the
probability to hit the final vertex for the first time at time t given
that it hits the final vertex at all during the walk. By definition
of conditional probabilities p(A|B) = p(A ∩ B)/p(B) and
identifying the joint event “to hit for the first time at time
t and to hit at all” with “to hit for the first time at time t” we
arrive at the expression for the conditional expected hitting
time

τc = 1

ptot

∞∑
t=0

tpxf
(t) (26)

and τc reduces to the ordinary expected hitting time for ptot =
1. Since the quantum walk reaches the final vertex only with
probability ptot, one needs to either restart the walk 1/ptot

number of times or run this number of walks in parallel to
observe (on average) that one walker hits the final vertex.

The trapping of the walker inside the HC can be captured
more formally. See [10] for a detailed analysis in terms of
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symmetries of the graph, of which we repeat the following
properties that allow, in principle, for a computation of ptot

from the eigenvectors of U for a given xf . The walk starts
in state |ψ0〉 and evolves under multiple applications of the
walk operator U�0. The fact that it is trapped inside the HC
and that equivalently, in analogy to a similar phenomenon
in quantum optics [20], it evolves into a dark state implies
that the state has support in a subspace of dark states. This
subspace V ⊂ H has the following properties: (i) V has no
overlap with the final state 〈ψf |v〉 = 0 ∀|v〉 ∈ V and therefore
the projection �0 is the identity operation when restricted to
this subspace and (ii) V remains invariant under applications
of the walk operator U�0|v〉 ∈ V ∀|v〉 ∈ V . Both properties
together imply that V is also invariant under applications of U

alone, that is, U is block diagonal with respect to dark states
and nondark states (which form the orthogonal complement
of the space of dark states). From this invariance we obtain
that the overlap of |ψt 〉 = (U�0)t |ψ0〉 with the dark space V
is time independent:

〈ψt |�V |ψt 〉 =
∑

v

|〈v|(U�0)t |ψ0〉|2

=
∑

v

|〈v|ψ0〉|2, (27)

where �V = ∑
v |v〉〈v| with {|v〉}v being a basis in V and the

walk operator U�0 is applied to the left. Since the overlap
with the space of dark states does not change with time, the
part of the walk that is locked in the graph is given by the
overlap of the initial state with all dark states:

1 − ptot =
∑

v

|〈v|ψ0〉|2. (28)

The probability ptot can therefore be calculated using the
eigenvectors of U since a basis of V can be chosen from
eigenvectors of U .

Figure 5 (top) shows that ptot = 1 only for q = 1,d − 1,d

and that ptot is symmetric around q = d/2, where it attains
a minimum. The logarithmic plot illustrates that ptot is
exponentially suppressed for values of 2 � q � d − 2 and
the parabolic shape suggests an exponential suppression in q

with exponent O( − (q − d
2 )2). The conditional hitting times

in Fig. 5 (middle) are of similar magnitude for values of
q = 1,d − 1,d and they are exponentially longer for 2 �
q � q − 2 with a maximum at q = d/2. The parabolic shape
of the conditional expected hitting time on the logarithmic
plot suggests an exponential increase in q with an exponent
O((q − d

2 )2). Comparing the conditional hitting times for
various d, it is apparent that τc(q) at q = d − 1 scales
differently with d than the maxima of τc(q) at q = d/2. This
difference in the scaling with d is partly due to the scaling of
the embedding procedure itself (the dimension d of the full
HC) when increasing the dimension q of the principal HC that
is embedded in the full HC. Comparing the top and middle
graphs of Fig. 5, one realizes that the primary source of the
exponential increase of τc is the exponential increase of factor
1/ptot as illustrated in the top graph.

The fact that ptot < 1 has additional consequences for our
numerical simulations, as calculating the conditional hitting
time τc becomes delicate. This is because the infinite sums in

FIG. 5. HC inside HC: Total probability to reach the final vertex at
all during a single walk ptot (top), conditional hitting time τc (middle),
and their product (bottom), i.e., the numerator in Eq. (26), depending
on q (Hamming weight of final vertex) for d = 10,15,20. The data
are from numerical simulations with corresponding error thresholds
δ = 10−5,10−6,10−7 and a time window parameter tW = δ−1. For
points without dark states (q = 1,d − 1,d) an error threshold of ε =
10−5,10−6,10−7 was employed for d = 10,15,20, respectively.

Eq. (26) must still be truncated, to be numerically evaluated,
but setting a small enough ε threshold such that ptot = (1 −
ε) → 1, as explained in Sec. II B, is no longer meaningful and
merely results in an infinite calculation. Instead, the truncation
should be done once it is safe to assume that the walk is already
locked in the HC. In practice, we verify that the probability
to hit the target state does not increase by more than δ → 0
during a long time window tWd, which scales with the HC
dimension. To that end we decrease δ and increase the time
window parameter tW until the conditional hitting time τc is
well converged.

Figure 6 (top) shows a comparison of the expected hitting
times for classical and quantum walks on a HC within a HC.
As a benchmark we choose the case d = q + 1, where the ex-
pected hitting times are plotted as a function of q. The figure
illustrates that the difference between the classical and the
quantum curves grows exponentially with q and d, therefore
implying that the exponential speed-up of the quantum walk on
the HC remains also when the HC is embedded in a HC whose
dimension is higher by one. The speed-up when increasing d

survives also when q = 1 (not shown).
It is further observed that the expected hitting times of the

quantum walk for cases without dark states (q = 1,d − 1,d)
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FIG. 6. HC inside HC: Expected hitting times of a walker to
hit the opposite corner of a q-dimensional HC that is embedded in
a d-dimensional HC. Shown on top is a comparison between the
classical and the quantum walks for the case d = q + 1 (constant
embedding). The quantum data are from numerical simulations with
an error threshold ε = 10−4. The bottom shows a comparison of
conditional hitting times of quantum walks with d = 2q (embedding
grows with q, solid blue line), d = q + 1 (constant embedding, dotted
black line), and q = d (the bare HC, dashed red line) on a log-log
scale. The data are from simulations with an error threshold of δ =
10−7 and time window parameter tW = δ−1 for the case d = 2q and
an error threshold of ε = 10−4 for the cases d = q + 1 and d = q.
The numerical fit to each of the lower curves (d = q + 1 and d = q)
yields n � 1.5, whereas a numerical fit to the upper curve (d = 2q)
yields an exponential scaling with coefficient �1.4.

are in reverse order of the distance between the origin and
the target vertices (the closer the slower), i.e., τ (d) < τ (d −
1) < τ (1). This is in contrast to the classical case, where the
expected hitting time grows with the distance to the target
vertex (the closer the faster) and in particular τ (d) > τ (d −
1) > τ (1). Figure 6 (bottom) illustrates that the quantum walk
with a target vertex next to the opposite corner of the starting
vertex maintains a longer hitting time when increasing q and
d, compared to the walk on the bare HC (d = q). Both curves
appear approximately linear in the log-log plot, suggesting a
power-law scaling with qn, and a numerical fit yields n � 1.5
for each curve. The case d = 2q, in which the embedding
procedure also grows with q, is shown in the same plot for
comparison and it exhibits a qualitatively different behavior.
The curve with d = 2q fits better to an exponential model

FIG. 7. Removed edge: All equivalent cases of removing a
single edge from a three-dimensional hypercube (left) together with
their respective mapped graphs (right). Removed edges and thereby
distinguished vertices are shaded with the same color. Starting and
final vertices are circled as before.

and a numerical fit yields a scaling with ∼ exp(1.4q). These
numerical results suggest that the quantum walk with d = 2q

also falls into a class of walks with exponentially growing
expected hitting times, like the classical walk.

In summary, we observe that an exponentially growing
gap between the expected hitting times of quantum and
classical walks persists for cases with q = 1,d − 1 and gives
the same order of magnitude as the walks on the bare HC.
Quantum walks with a different q, in particular with q = d/2,
exhibit dark states and the conditional hitting time shows a
qualitatively different scaling, which appears to be exponential
as for the classical walk.

C. Removing a single edge from the HC

In what follows we study the influence of removing a single
edge from the HC on the resulting corner-to-corner hitting
time. The resulting deficient HC can still be mapped to a grid
of lower dimension, as depicted in Fig. 7 and explained next.

Contrary to the cases we saw previously (of a HC with a
single tail and a HC embedded inside a larger HC), removing a
single edge from the HC distinguishes not just a single vertex
of the HC, but two vertices, namely, those two neighboring
vertices between which the edge is removed. We denote
these distinguished vertices by xq and xq+1. The additionally
perturbed vertex, say, xq+1, adds another dimension to the
resulting mapped grids, which are therefore in general three
dimensional.

The layout and coordinates of the resulting grid are
obtained as follows. By construction, the bit strings of the
two distinguished vertices differ only in the value of a single
bit. This bit forms a separate set Z. The value of this bit
gives the coordinate on the grid in the newly added (third)
dimension. The remaining d − 1 bits are equal for both vertices
and define the subsets X and Y as before with all bits with
value 1 forming a set X of size |X| = q and all bits with value
0 forming a set Y of size |Y | = d − q − 1. The resulting, in
general three-dimensional, grid has two layers in the z direction
and a horizontal and a vertical extension of q + 1 and d − q

vertices, respectively. Accordingly, the number of vertices in
the mapped grid graph is 2(q + 1)(d − q) and ranges from its
minimum of 2d vertices for an edge removed adjacent to the
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FIG. 8. Removed edge: Expected hitting time of a walker on a d-dimensional HC with one removed edge between a vertex with Hamming
weight q and its neighbor with Hamming weight q + 1. Shown on the left is a comparison of the best classical (q = 0) and worst quantum
(q = d − 1) walks. The quantum data are from numerical simulations with an error threshold ε = 10−4. Shown on the top right is a comparison
of quantum walks with q = d − 1 (solid blue line) and q = d (the bare HC, dashed red line) on a log-log scale. The data are from simulations
with an error threshold ε = 10−4. The numerical fit to each curve yields a power of n � 1.5. The bottom right show a quantum walk with
0 � q � 20 for fixed d = 20. The horizontal (dashed red) line represents a quantum walk on the bare HC with d = 20. The data are from
simulations with an error threshold ε = 10−12.

starting vertex (q = 0) or the final vertex (q = d − 1) to its
maximum of d(d + 2)/2 vertices for even d and (d + 1)2/2
for odd d, respectively, when an edge is removed from the
middle of the HC [at q = d/2 or d/2 − 1 for even d and
q = (d − 1)/2 for odd d]. For a three-dimensional HC, a
reduction in dimension is only obtained for q = 0,2, but for
larger d a reduction in dimension is always achieved. In the
worst case we retain a structure of size that scales with d2

instead of 2d for the full HC.
When mapping the walk operator to the grid there are two

new directions, forward F and backward B, to move along
the z direction. The Nxyz(J ) are straightforwardly extended
analogous to the x and y directions with a dependence on the
z coordinate. Only for the two perturbed vertices xq and xq+1

a movement in the z direction is not possible.
In the present case of a removed edge we lack a closed

analytical expression for the corresponding expected hitting
time of the classical walk. Therefore, we compute exact
expected hitting times by solving the set of linear equations for
the relevant entries of the fundamental matrix (see Sec. II A).

Figure 8 (left) shows the expected hitting times for both
the classical and the quantum walk as a function of the HC
dimension d. For the classical hitting time, we concentrate on
the case of q = 0, i.e., when removing an edge that connects
to the starting vertex, which was numerically observed to yield
the shortest classical hitting time for all considered values
of the HC dimension d. For the quantum walk we provide
the expected hitting times for the case q = d − 1, which
always results in the longest hitting time among the possible
choices of q (as in the classical case). It is shown that an
exponentially increasing gap opens up between this shortest
classical hitting time with q = 0 and longest quantum hitting
time with q = d − 1. The exponential speed-up of the quantum
walk therefore holds also when a single edge is removed from
the HC.

The observation that for the classical walk an edge removed
at q = 0 gives the shortest expected hitting time is also
plausible from the following consideration. Let us assume that
despite the introduced asymmetry there is always a uniform
distribution of the walker on vertices of the same Hamming
weight (this approximation becomes better as d grows). Then
the probability to walk right (left), i.e., toward the target
state (away from the target state) from the distinguished
vertices xq and xq+1 is maximal (minimal) for q = 0. This
necessarily results in a shorter hitting time for q = 0, compared
to the hitting time when edges between higher Hamming
weight vertices are deleted. We observe (data not plotted) a
monotonic increase of the classical hitting time as q increases.
In comparison with the walk on the regular HC of the same
dimension, the perturbed hitting time is shorter for q = 0 and
longer for q = d − 1.

The expected hitting times of the quantum walk are shown
in Fig. 8 (top right) as a function of the HC dimension d on a
log-log scale. The case with the longest hitting times for q =
d − 1 is compared to the case of q = d, i.e., the regular HC.
It is shown that removing an edge from a vertex of Hamming
weight q = d − 1 leads to longer expected hitting times than
walking on a unperturbed HC, but that the gap on the log-
log scale decreases with d. Both appear to be linear, thereby
suggesting a scaling of the expected hitting time with a power
of the dimension d. A numerical linear fit to both curves yields
a power of n � 1.5.

Last, in Fig. 8 (bottom right) the expected hitting times
of the quantum walk are shown for the case when the
HC dimension is fixed to d = 20 and q is varied over all
intermediate 0 � q � d − 1 values (the case q = 20 gives the
data for the regular HC). It is shown that, in contrast to the
classical case, the expected hitting times are not monotonic
with q and no apparent order can be observed. Instead,
a nontrivial dependence of the expected hitting time on q
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is obtained, reflecting a convoluted interference pattern of
the quantum walk. We can rule out convergence issues to
the degree that numerics were done with error thresholds
of ε = 10−12 and 10−14. We conclude that the particular
choice of the removed edge does not modify the expected
hitting time of the quantum walk to a large extent, with the
largest deviation obtained if it is deleted next to the final
vertex.

V. CONCLUSION

We have extended the family of graphs for which the
discrete quantum walk gives rise to an exponential speed-up
in terms of the expected hitting time over the corresponding
classical walk. In particular, we have considered nonsymmetric
and nonlocal structures, realized by hypercubes appended with
a single tail and HCs embedded in larger HCs, respectively.
In addition, we examined a nonsymmetric perturbation of the
HC by removing a single edge. The modified graphs with
an added tail or a removed edge are examples of nonregular
graphs that exhibit a quantum speed-up. For all three kinds of
perturbations, we studied the walks to the opposite corner on
the embedded (or perturbed) HC and we analyzed the expected
hitting time of the classical random walks (analytically) and the
corresponding quantum walks (numerically). Our numerical
analysis confirms that the expected hitting times of the classical
walks grow exponentially with the HC dimension d, different
from their quantum counterparts.

To that end we provided a general mapping procedure that
enables the simulation of quantum walks on perturbed HCs of
very high dimensions (up to hundreds). With this procedure,
the full high-dimensional Hilbert space of the quantum walk,
which is exponentially large in the HC dimension d, is
mapped to an effective subspace, which has a grid structure
in the position space and is only polynomially large in d.
The mapping procedure we supply is general in the sense
that it accounts for any number of perturbations on the
HC. Specifically, perturbing the HC in m vertices gives rise
to a grid structure of dimension of at most m + 1. This
mapping generalizes the known mapping procedure of the
corner-to-corner walk on the bare HC to a line.

In the examples we consider in this paper, the central HC
is perturbed in either one or two vertices. This breaks the
original symmetry of the bare HC and perturbs the interference
pattern of the quantum walk. Nevertheless, it is observed
that the exponential speed-up of the quantum walk remains.
This suggests that quantum walks on graphs that are not
fully symmetric can also be exponentially faster than the
corresponding classical walks. However, to what extent can
this observation hold? Will the exponential gap between the
classical and the quantum walk survive also more extensive
perturbations? Clearly, the quantum walk is not exponentially
faster on any graph. One example is the quantum walk on a
q-dimensional HC embedded in a HC of dimension d = 2q,
which we observe to also scale exponentially. In this context we
should note the following: First, much of the original symmetry
of the HC remained after the perturbations we applied and
second, perturbing a constant number in an exponentially
increasing structure is plausibly negligible. The same is also
observed in Ref. [8], where a slight distortion of the HC did not

ruin the exponential speed-up of the quantum walk. It would
therefore be of interest to check whether the speed-up survives
also when the number of perturbed vertices scales with the HC
dimension d.

Note, however, that the discussion of the influence of a
single perturbation in a graph of exponentially many vertices
and edges is not straightforward and that a perturbative picture
does not necessarily apply. Although the number of perturbed
vertices and edges is exponentially small compared to the
size of the graph, the resulting interference patterns in the
quantum walk also only require a small change (e.g., changing
an interference maximum to a minimum at the final vertex) to
yield very different dynamics for hitting the final vertex. An
example that we encountered in the present study is the walk
on a HC within a larger HC, where just moving the final vertex
by two sites to q = d − 2 results in a suppression by a factor
1/10 of the walker to reach the final vertex for d = 20 (Fig. 5,
top) and it decreases further for larger d.

The fact that adding a single vertex or removing a single
edge does not qualitatively change the scaling behavior of
the expected hitting time with respect to the unperturbed HC
and that it results also quantitatively in the same order of
magnitude can, to some extent, be rationalized with a picture
of the walker coherently taking many possible paths towards
the final vertex. According to that picture, a single perturbation
affects a certain fraction of these paths by inserting possible
detours (in the case of an added vertex) or interrupting these
paths (in the case of a removed edge). That picture, which
entails that a removed edge close to the final vertex interrupts
a larger fraction of paths, is consistent with the observation that
the hitting time exhibits a maximum when an edge adjacent to
the final vertex is removed (see Fig. 8, bottom right). Another
maximum, however, is not observed for a removed edge next
to the starting vertex. Furthermore, that picture suggests that
with increasing HC dimension d a single perturbation affects a
decreasingly smaller fraction of paths. That is consistent with
the observation of expected hitting times converging to the
same value as d increases in the case of a single removed edge
(see Fig. 8, top right). The same observation, however, cannot
be made for the case of an added vertex (see Fig. 3, top right),
where the hitting times of the different cases appear to remain
separated by a constant factor.

We have also observed that the expected hitting time of the
quantum walk differs qualitatively from its classical analog,
not only in its scaling with the HC dimension, but in other
aspects as well. In particular, a convoluted nonmonotonic
dependence on the Hamming weight of the perturbation q is
revealed. This is in sharp contrast to the classical case, where
the expected hitting time assumes a monotonic dependence
on q.

Another property in which the quantum walk differs
significantly from the classical one is the possible existence
of dark states: Whereas the classical walk on a connected
graph is always guaranteed to end, the quantum walk might
become stuck in the graph without ever reaching the target
state. For these cases we introduced the conditional hitting
time. Numerically, we observed dark states to play a role only
in the nonlocal embedding of a HC inside a HC, whenever
the dimension q of the embedded HC differs from 1 and from
d − 1, where d is the dimension of the larger HC. In addition,
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we saw that the probability to become locked inside the
subspace of dark states approaches 1 exponentially fast as |d −
q| → d

2 . By simulating the conditional hitting time for these
cases we presented examples that scale polynomially when
the embedding is constant (d = q + 1), whereas the scaling
is exponential, as in the classical case, for an embedding that
scales with the HC dimension (d = 2q).
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