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The exact entanglement dynamics in a hybrid structure consisting of two quantum dots (QDs) in the proximity
of a metal nanoshell is investigated. Nanoshells can enhance the local density of states, leading to a strong-coupling
regime where the excitation energy can coherently be transferred between the QDs and the nanoshell in the form
of Rabi oscillations. The long-lived entangled states can be created deterministically by optimizing the shell
thickness as well as the ratio of the distances between the QDs and the surface of the shell. The loss of the
system is greatly reduced even when the QDs are ultraclose to the shell, which signifies a slow decay rate of the
coherence information and longtime entanglement preservation. Our protocol allows for an on-demand, fast, and
almost perfect entanglement even at strong carrier-phonon interaction where other systems fail.
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I. INTRODUCTION

Conducting nanostructures at optical frequencies have long
held the promise for multiple technological applications.
Such structures have recently received considerable interest
due to their potential in achieving strong, coherent coupling
between individual emitters and electromagnetic excitations
via excitation of plasmons localized to nanoscale dimensions.
This strong coupling is possible due to the small mode volume
associated with the subwavelength surface-plasmonic confine-
ment [1–4]. By confining the light in nanoscale volumes,
various interesting plasmonic elements allow, for example,
for a nanoscale realization of the Mollow triplet of emission
spectra [5,6] and nonclassical photon correlations between
the emissions from the quantum dot and the ends of the
nanowire [7]. Furthermore, plasmon-enhanced photocatalytic
activity has been investigated experimentally in the spirit of
the interplay of a coupled nanocomposite system consisting of
a quantum dot (QD) and a metal nanoparticle (MNP) [8]. Also,
the interplay and modification of the photoexcitation processes
in a hybrid system composed of QD and MNP is treated
self-consistently [9] by applying the theoretical work reported
in [10]. In addition, integrating semiconductor QDs with a
MNP provides useful means to couple light and matter. This
coupling can be enhanced tremendously by placing QDs in
proximity to a nanostructured optical environment that enables
strong confinement of light and thus increases the light-matter
interaction. Remarkably, QDs offer many advantages over
atomic systems, including the small size and large optical
dipole moments and transition energies, and they can be
positioned deterministically and remain stationary without
requiring atom traps [11–13].

One of the fascinating applications of these nanostructures
is their ability to generate entangled states of a two-qubit
system. It has been demonstrated that semiconducting QDs are
promising candidates for the basic device units for quantum
information processing [14,15]. Fundamentally, a strong light-
matter interaction is a prerequisite to generate entanglement
between quantum bits (qubits) for optical quantum information
systems. Recently, the entanglement dynamics in a system
consisting of two identical quantum emitters in the vicinity
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of a solid-sphere MNP was investigated [16,17]. However,
in these models the MNPs are treated in a quasistatic
approximation in which the contribution of retardation
effects is ignored. Also, while the spherical MNP has a
simpler structure, the plasmon resonance appears at higher
frequencies where the contribution of the interband absorption
is magnified, thus leading to a fast decay of entanglement.
On the other hand, nanoshells with extraordinary properties
support surface plasmon resonances (SPRs) that are highly
geometric dependent (their resonance frequencies depend
significantly on the shell thickness), and they respond more
sensitively to the changes in the environment [18–20]. This
leads to a structure that has extraordinary properties.

In the present work, we study the entanglement generation
in a hybrid structure consisting of two QDs in the vicinity
of a metal nanoshell. The entanglement arises impulsively
due to common coupling to the plasmonic nanostructure,
without demanding postselective measurement or mediating
the dissipative environment. We use a self-consistent photon
Green’s-function technique to explore the quantum optical and
entanglement dynamics between two QDs that cover all the
coupling regimes. We demonstrate that the QDs, which are res-
onantly coupled to the nanoshell with only one being initially
excited, can form a coherent superposition state significantly
faster than the losses in the system. We have found that the
long-lived entangled state depends perceptively on the shell
thickness as well as on the ratio of the distances between the
two QDs and the surface of the shell. Contrary to a nanosphere,
the entanglement mediated by a nanoshell is robust even when
the dephasing rate and the detuning between the transition
frequencies of the two QDs are rigorously included.

The organization of this paper is as follows. In Sec. II A,
we present the theoretical model for the hybrid system. In
Sec. II B, we study the enhancement of the local density of
states in the proximity of the nanoshell. In Sec. III, we calculate
and discuss the results of the concurrence of two QDs in a
homogeneous background, coupled by the nanoshell localized
surface plasmon. Our conclusion is presented in Sec. IV

II. THEORETICAL FRAMEWORK

A. Model and Hamiltonian

The hybrid system consisting of two QDs in the proximity
of a metal nanoshell is schematically presented in Fig. 1. The
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FIG. 1. Schematic diagram of the hybrid system consisting of
two QDs, labeled QD a and QD b, located at different distances
ra = R1 + ha and rb = R1 + hb from the center of a Au2S/Ag
nanoshell. The QD-nanoshell system is embedded in a homogeneous
background medium with permittivity εb. The Au2S core has radius
R2 and dielectric constant εc. The concentric Ag shell has a total
nanoparticle radius R1 and permittivity εm(ω).

QDs labeled, QD a and QD b, are located at distances ha and
hb with respect to the surface of the metallic shell. Unless
stated otherwise, the structure of the nanoshell is modeled as
a spherical Au2S core of radius R2 and permittivity εc = 5.4
[21]. Surrounding the Au2S core is a concentric Ag shell of d =
R1 − R2 with a frequency-dependent dielectric permittivity
εm(ω) taken from Ref. [22]. Here, R1 is the external radius of
the shell. The core-shell system is entrenched in an aqueous
medium of dielectric constant εb = 1.78 [21]. The distances
from QD a and QD b to the center of the nanoshell are
ra = R1 + ha and rb = R1 + hb, respectively. The QDs are
treated as two-level systems for resonant excitation of the
energetically lowest electronic transition between valence-
and conduction-band states. The methodology to map the
full many-body problem on a discrete energy-level scheme
for the strongly confined excitons is advocated by numerous
theoretical and experimental studies [14,23–28]. Each QD
is modeled as a two-level system with the optical transition
frequency ωi for the ith QD, internal nonradiative decay rate
γ ′

i , and the transition dipole moment dddi .
The size-dependent dielectric function due to the finite-size

effect of the nanoparticle can be accounted for empirically
using the “limited mean-free-path model” [29]. In this model,
the damping constant is given by � = �bulk + AυF /�, where
�bulk is the damping constant for the bulk, υF = 1.39 ×
108 cm/s is the Fermi velocity of the conduction electrons
in the silver, and � is the characteristic dimension depending
on the geometry of the nanoparticle, which is in our model
proportional to the thickness of the nanoshell. The constant A

depends on the nanoparticle shape and on the theory. The best
agreement with the experiments is found for A = 0.25 [30].
Here, the frequency-dependent dielectric function of the silver
nanoshell including the size effect can be expressed as [29]

εm(ω,d) = εexp(ω) + ω2
p

ω2 + iω�bulk
− ω2

p

ω2 + iω�
, (1)

where ωp = 1.3987 × 1016 s−1 is the bulk plasmon frequency
and �bulk = 0.03 × 1015 s−1 is the bulk collision frequency
of conduction electrons in silver. εexp(ω) is the experimental
frequency-dependent dielectric function taken from Ref. [22].

To scrutinize the strong-coupling case, we adopt a macro-
scopic QED formalism [4,31] for calculating the entanglement
of coupled QDs in a lossy, nonhomogeneous environment. It
relies on the diagonalization of a Hamiltonian that includes
the coupled QDs, the electromagnetic modes of the nanoshell
metal nanoparticle, including their inherent losses, and the
light-matter coupling by means of a dipolar interaction,

Ĥ =
∫

drrr

∫ ∞

0
dω�ωf̂̂f̂f †(rrr,ω) · f̂̂f̂f (rrr,ω) +

∑
i=a,b

��i

2
σ̂ z

i

−
∑
i=a,b

∫ ∞

0
dω[[σ̂−

i + σ̂+
i ]dddi · Ê̂ÊE(rrri,ω) + H.c.], (2)

where �i = ωi − iγ ′
i /2. Here, f̂̂f̂f (rrr,ω) is the bosonic vector

field annihilation operator for the elementary excitations of
the system. The QDs are described in terms of the fermionic
operators σ̂i . The first and the second terms shown in
Eq. (2) describe the noninteracting Hamiltonian of the total
electromagnetic field and the energy of the QDs, respectively.
The third term illustrates the interaction energy between QDs
and the excitation of surface plasmon at the QDs locations.

The electric field is quantized by introducing the media
as phenomenological noise currents that are associated with
the electric and magnetic losses due to material absorption
in Maxwell’s equations, and the field operators are obtained
indirectly from the noise operators via the classical Green’s
function. The electric field operator at the position of the QD
is given by [31]

Ê̂ÊE(rrr,ω) =i

√
�

πε0

∫
drrr ′ ω

2

c2

× √
εm
I (rrr ′,ω)GGG(rrr,rrr ′,ω)f̂̂f̂f (rrr ′,ω), (3)

where εm
I is the imaginary part of the complex dielectric

function εm(rrr,ω) = εm
R (rrr,ω) + iεm

I (rrr,ω). Here, GGG(rrr,rrr ′,ω) is
the frequency-dependent electromagnetic Green’s function,
describing the system response at rrr to a point source at rrr ′:

[
∇∇∇ × ∇∇∇ × −ω2

c2
εm(rrr,ω)

]
GGG(rrr,rrr ′,ω) = IIIδδδ(rrr − rrr ′), (4)

where III is the unit dyadic. In this hybrid system, the direct
dipole-dipole interactions are naturally included in the total
Green’s function.

Before closing this theory section, we highlight that our
general approach can be adapted beyond the dipole approx-
imation in order to include nondipole effects for the QDs
using the same Green’s function introduced above [13,32,33].
Nonetheless, the dipole approximation is justified for strongly
confined dots where the higher-lying energy levels become
substantially separated [27,34]. We have found that the near
field is distributed uniformly over a small volume of QDs,
showing good agreement with the results reported in Ref. [27].
Additionally, Kristensen et al. [35] have verified that the
Purcell effect is independent of the size of the wave function for
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the case of spherically symmetric exciton wave functions, i.e.,
is determined only by the photonic response in the center of
the emitter. For a practical application, their exact calculations
have been confirmed by computing the Purcell factor for a
spherical QD near a silver metal, and the conclusion is that
the results coincide with the dipole approximation and there
is no spatial averaging of the local density of states across the
volume of the QD, in spite of the large field gradients near
the metal in their structure. It is meaningful to compare this to
the experimental results reported in Ref. [13] where the dipole
approximation failed for relatively small self-assembled QDs.
That is because, for simplicity, we consider only heavy-hole
transitions and leave the modeling of strained QDs for future
studies.

B. Modified spontaneous emission dynamics

We consider the decay dynamics of the two coupled QDs
that have states a and b as their respective upper excited level.
The initial field is assumed to be in vacuum; thus all the
resultant dynamics in this system will be driven by the initial
excitation of QDs. We assume that, at most, one QD is excited
at any time. Thus a possible initial condition is that the QD
system is in the state |ψ(t = 0)〉 = Ca(0)|Ua〉 + Cb(0)|Ub〉,
where |Ua〉 ≡ |1〉a|0〉b and |Ub〉 ≡ |0〉a|1〉b, which can be
prepared through appropriate optical or electronic excitation
of the solid-state QD system. Here, |0〉i and |1〉i represent the
ith QD in the ground and excited states, respectively.

The time evaluation for this initial state is given by

|ψ(t)〉 =
∑

i

Ci(t)e
−i(�i−�)t |Ui〉|0〉

+
∫

drrr

∫ ∞

0
dωCL(rrr,ω,t)e−i(ω−�)t |L〉|111(rrr,ω)〉,

(5)

where |111(rrr,ω)〉 = f̂̂f̂f †(rrr,ω)|{0}〉, |L〉 is the state where both
QDs are in the lower state, i.e., |L〉 = |0〉a|0〉b, and � is the
average of the frequencies �i , where in the case of γ ′

i = 0, we
have � = ω ≡ 1

2

∑
i ωi (i = a or b).

The time-dependent Schrödinger equation in the rotating-
wave approximation leads to the following equation of motion
for the probability amplitudes:

Ċi(t) = − 1√
�πε0

∫ ∞

0
dω

ω2

c2

∫
drrr

√
εI (rrr,ω)

× ddd∗
i · GGG(rrri,rrr,ω)CL(rrr,ω,t)e−i(ω−�i )t , (6)

ĊL(rrr,ω,t) = 1√
�πε0

ω2

c2

√
εI (rrr,ω)

×
∑

j

dddj · GGG∗(rrrj ,rrr,ω)Cj (t)ei(ω−�j )t , (7)

where we assumed for the pure dephasing rate γ ′
i = γ ′

a/b.
Integrating Eq. (7) and substituting into Eq. (6), we obtain the
integro-differential equations for the probability amplitudes
Ci(t). Introducing the kernel function Krirj

(t,t ′), these two

equations can be rewritten as

Ċa(t) = −
∫ t

0
dt ′[Krara

(t,t ′)Ca(t ′) + Krarb
(t,t ′)Cb(t ′)], (8a)

Ċb(t) = −
∫ t

0
dt ′[Krbrb

(t,t ′)Cb(t ′) + Krbra
(t,t ′)Ca(t ′)], (8b)

where the kernel function

Krirj
(t,t ′) = 1

�πε0

∫ ∞

0
dωe−i(ω−�i )t ei(ω−�j )t ′

× ddd∗
i ·

{
ω2

c2
Im[GGG(rrri,rrrj ,ω)]

}
· dddj

=
∫ ∞

0
dωJij (ω)e−i(ω−�i )t ei(ω−�j )t ′ (9)

(i,j = a or b). Taking the time integral of both sides of Eqs. (8)
leads to the well-known Volterra integral equations of the
second kind [36].

Here, the action of the dissipative medium depicted in Fig. 1
on the ith QD is described by the so-called spectral density
[37] defined as

Jii(ω) = 1

�πε0
ddd∗

i ·
{

ω2

c2
Im[GGG(rrri,rrri,ω)]

}
· dddi. (10)

This expression can be expressed in terms of the electromag-
netic density of states as

Jii(ω) = 1

2

ω

3�ε0
|dddi |2ρ(rrri,ω), (11)

where ρ(rrri,ω) is the local density of states expressed in terms
of the system’s dyadic Green’s function as

ρ(rrri,ω) = 6ω

πc2
{nnnp · Im[GGG(rrri,rrri,ω)] · nnnp}, (12)

where nnnp is a unit vector pointing in the direction of ppp. The
enhancement of the projected local density of states, in the
direction nnnp, is defined as

Fnnnp
(ω) = nnnp · Im[GGG(rrri,rrri,ω)] · nnnp

nnnp · Im[GGG0(rrri,rrri,ω)] · nnnp

, (13)

where Im[GGG0(rrri,rrri,ω)] = k1
6π

III is the imaginary part of the
homogeneous Green’s tensor. Here, k1 = ω

√
εb/c, where εb is

the dielectric constant of the surrounding medium. In this case,
all the matter parameters that are relevant to the geometrical
and material information are directly included in the Green’s
function. The plasmon resonance can be obtained by including
the retardation effect from the explicit form of the reflection
coefficients derived in Appendix A by noticing that these
coefficients contain poles at the points where the denominator
vanishes. These poles give the eigenfrequency relation of the
electric modes supported by the metallic shell. The detail
derivations are given in Appendix B.

The enhancement of the z-projected local density of states
Fz(ω) for a QD exciton located at rrra/b = 19 ê̂êez from the
center of the Au2S/Ag nanoshell is shown in Fig. 2(a).
The plasmon resonance peaks can be obtained analytically
from the solutions of the eigenfrequency relation given in
Appendix B [see Eq. (B1)]. Each mode splits into two modes,
cavitylike ωn+ at high frequencies (antisymmetric SPR modes)
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(a)

(b)

FIG. 2. (a) Enhancement of z-projected local density of states,
ê̂êez · Im[GGG(rrra/b,rrra/b,ω)] · ê̂êez in units of ê̂êez · Im[GGG0(rrra/b,rrra/b,ω)] · ê̂êez

calculated at ha/b = 3 nm from the surface of a Au2S/Ag nanoshell.
The Au2S core has radius R2 = 14 nm and refractive index n2

c ≡
εc = 5.4. The concentric shell has a total radius R1 = 16 nm and
frequency-dependent permittivity εm(ω,d) given in the text. Inset:
The dependence of the plasmon resonance on the shell thickness
(in the dipole approximation): d = 3 nm (solid red curve), 6 nm
(dashed purple curve), and d = 11 nm (dash-dotted black curve).
(b) Enhancement of z-projected local density of states calculated
at ha/b = 3 nm from the surface of a Ag solid-sphere nanoparticle
with different radii: R = 16 nm (dashed red curve) and R = 5 nm
(dash-dotted blue curve). Here, εc ≡ εm(ω) = εm(ω,R). The locations
of the localized SPRs are indicated by superimposed black dots on
the curves.

converging to
∑

n ωn+ and spherelike ωn− modes at low
frequencies (symmetric SPR modes). The splitting originates
from the hybridization or coupling of plasmons bound to
different (internal and external) surfaces of the shell. In
Fig. 2(a), the low-frequency modes ωn−are shown explicitly,
and the converged high-frequency modes

∑
n ωn+ are shown as

the peak on the right. This doublet structure of optical spectra
of metallic shells has been demonstrated theoretically and
observed experimentally [29]. Remarkably, the localized SPR
in our structure appears at low frequency around 1.6 eV, which
is close to the wavelengths that have potential applications
in biomedicine, in optical communication, and for many QD

(a)

(b)

FIG. 3. Enhancement of z-projected local density of states,
ê̂êez · Im[GGG(rrra/b,rrra/b,ω)] · ê̂êez in units of ê̂êez · Im[GGG0(rrra/b,rrra/b,ω)] · ê̂êez

calculated at ha/b = 3 nm from the surface of (a) a Si/Ag nanoshell
and (b) a SiO2/Ag nanoshell. The spherical silicon core, Si, has
radius R2 = 14 nm and refractive index nc = 3.42 [38], while the
spherical silica core, SiO2, has radius R2 = 14 nm and refractive
index nc = 1.46 [39]. The concentric shell, Ag, has a total radius
R1 = 16 nm and the same permittivity εm(ω,d) given in Fig. 2. Inset:
Sketch of the shell-core nanoparticle with different core materials.

emitters. The appearance of this resonance frequency in the
near infrared, where the losses of the metal silver are at a
minimum, results in a spectral width, i.e., the FWHM, of
only 18 meV [see Fig. 2(a)]. Interestingly, the inverse of the
linewidth of the nanoparticle plasmon is directly proportional
to the field strength at the surface of the nanoshell. The
dependence of the localized SPR on the shell thickness is
shown (in the dipole approximation) in the inset of Fig. 2(a).
These results show the strong sensitivity of the plasmon
resonance to the shell thickness, although the outer radius
is fixed at 16 nm. In addition, the interband contribution
diminishes the intensity of the SPR if it occurs at wavelengths
shorter than the threshold wavelength. This explains the lower
intensities for shell thickness d = 11 nm (dash-dotted black
curve) than for d = 3 nm (solid red curve).

In Fig. 2(b) we demonstrate the enhancement of the
z-projected local density of states Fz(ω) for the case of a

022320-4



NANOSHELL-MEDIATED ROBUST ENTANGLEMENT . . . PHYSICAL REVIEW A 93, 022320 (2016)

solid-sphere nanoparticle with different sizes: R = 16 nm
(dashed red curve) and R = 5 nm (dash-dotted blue curve).
This is a consequence of the fact that when εc ≡ εm(ω) =
εm(ω,R), the coefficients of the shell-core nanoparticle [see
Eqs. (A8)–(A11)] reduces to those of a solid sphere with
radius R1. The locations of the localized SPRs are indicated
by black dots superimposed on the curves. In contrast to
the nanoshell [Fig. 2(a)], the localized SPRs for the solid
sphere occur at higher frequencies near 350 nm, where
the interband absorption is magnified [21,23]. Additionally,
the corresponding localized SPR is redshifted slightly and
broadened with increasing size of the nanoparticle. In this
case, the contribution of the retardation effects dominates, and
the reservoir function ρ(rrri,ω) cannot be described by a single
Lorentzian line shape.

In Fig. 3, we exemplify the dependence of the local density
of states on the geometrics of the nanoshell. Here, Eq. (13) is
calculated numerically for two different core materials: (a) Si
with the highest refractive index [38] and (b) SiO2 with the
lowest refractive index [39]. Recently, it was established that
the silicon-silver (Si-Ag) interface is significantly important
in industrial solar cells, and understanding and tailoring the
metal-semiconductor interface is practically important in all
semiconductor devices [40]. In Fig. 3(a), we show that the sili-
con core can significantly influence the optical properties of the
metal nanoshell. The localized SPR peak is considerably red-
shifted, and the FWHM becomes very narrow. Thus, increasing
the core dielectric constant increases nanoparticle absorption
efficiency, reduces plasmon linewidth, and adjusts plasmon
energies. These results agree very well with the elaborate
experiment reported in Ref. [41]. This is encouraging because
the results show that even the higher-order modes such as
quadrupole SPR become practically useful due to significantly
low losses. This leads to a structure that has extraordinary prop-

erties. This is in contrast to the results shown in Fig. 3(b) for the
SiO2 core, where the linewidth is enlarged and losses as a result
of the contributions of the higher-order modes become severe.

III. RESULTS AND DISCUSSION

In this section, we have numerically solved the time-
dependent dynamical equations (8) motivated by the results
in Figs. 2 and 3 to demonstrate the decay evolutions of the QD
excitons and the corresponding entanglement with QD a being
initially excited, i.e., with the initial wave function |ψ(t =
0)〉 = |1〉a|0〉b. The population dynamics is exact as we have
performed neither the Born nor the Markov approximation.
For all numerical calculations, we have considered parameters
from a single-QD optical experiment with optical dipole
moment da/b = d0 = 60 D [42]. In addition, we assume the
pure dephasing rate γ ′

i = γ ′
a/b = 1 μeV (equal for all QDs) as

demonstrated in recent experiments for the decay of InAs QDs
at room temperature [43,44]. Note that even for a larger rate
of γ ′ = 1 meV, the numerical results are essentially identical
since the plasmon coupling completely dominates the decay.

The quantum entanglement of a two-qubit system can be
well quantified by the concurrence C(t), ranging from zero for
separable states up to 1 for maximally entangled states, which
is given by [45]

C(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (14)

where λi(i = 1,2,3,4) are the eigenvalues, in descending
order, of the Hermitian matrix � = √√

ρabρ̃ab
√

ρab. The spin-
flip density matrix is defined as ρ̃ab = (σy ⊗ σy)ρ∗

ab(σy ⊗ σy),
where σy is a Pauli matrix.

In the {|11〉,|10〉,|01〉,|00〉} basis, the reduced density
matrix for the QDs is determined by tracing out the plasmon
mode, which can be calculated to be

ρab(t) =

⎛
⎜⎜⎝

0 0 0 0
0 |Ca(t)|2 Ca(t)C∗

b (t)e−i� 0
0 C∗

a (t)Cb(t)ei� |Cb(t)|2 0
0 0 0 1 − |Ca(t)|2 − |Cb(t)|2

⎞
⎟⎟⎠, (15)

where � = ωa − ωb is the difference (mismatch) of the
transition energies of individual QDs. Hence for the density
matrix given by Eq. (15), the concurrence takes the form
C(t) = 2max{0,|Ca(t)C∗

b (t)|}.
To better discuss the dynamical evaluation of the entangle-

ment, we consider the initial state |ψ(t = 0)〉 = Ca(0)|Ua〉 +
Cb(0)|Ub〉, with Ca(0) =

√
1−s

2 and Cb(0) =
√

1+s
2 eiφ , where

−1 � s � 1.
In Fig. 4, we show the dynamics of coupled QDs located

symmetrically with respect to the Au2S/Ag nanoshell (i.e.,
with ra = rb) as a function of normalized time. Here, we
have assumed γp = �bulk. We found that when both QDs are
on resonance with the localized surface plasmon mode (i.e.,
ωn=1) and due to the enhancement of the local density of
states [Fz(ω) � 104], the influence on the dynamic process
of the QD-nanoshell interactions dominates. The existence
of the Rabi oscillation in the decay profiles signifies the
strong interaction between QDs in the proximity of the surface

plasmon nanoshell, consequently demonstrating that the decay
dynamics contains the non-Markovian features. Figure 4 also
demonstrates that the entangled state can be sped up due to
the Purcell effect as well as due to dealing with a superradiant
triplet state. The possibility of manipulating and speeding up
the transition process might play a vital role in the future
development of quantum information processing. The exciton
occupations is driven into a superposition state, as shown in
Fig. 4, which can be explained as follows. The oscillation of the
initially excited QD creates plasmon excitation at the site of the
metallic nanoshell. Subsequently, the strong medium-assisted
photon exchange acting back on the QDs is π/2 phase shifted
with respect to the field acting on the medium. This phase
shift results in the redistribution of the energy of the initially
excited QD, causing the system evolution towards the stable
superposition state (|1〉a|0〉b − |0〉a|1〉b). Consequently, the
total field at the site of the nanoshell is quenched. The system
sustains a stable superposition state until the retardation effects
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FIG. 4. The coupling dynamics (exciton occupations and concur-
rence) between coupled QDs for the case of s = −1 as a function of
normalized time; the upper decay of the QDs a (solid blue curve) and b

(dash-dotted red curve) and the concurrence (solid green curve). Here,
ha = hb = 3 nm. The dashed black curve shows the entanglement
with 3.6 meV detuning between the QDs. The population dynamics
of QD a without QD b is shown in the dashed purple curve.

take place, which extract their energy in a nonradiative fashion.
In this geometric arrangement, the entanglement oscillates
∼0.5, which is the maximum amount possible (solid green
curve). For comparison, we show the dynamics of QD a in the
absence of QD b, which displays a smaller oscillation and a
faster decay (dashed purple curve) compared to the presence
of QD b. In addition, we also calculate the entanglement with
a realistic experimental energy mismatch when the detuning
� = ωa − ωb of the transition energies between the QDs
is equal to 3.6 meV (dashed black curve). The resulting
concurrence is almost independent of �. This clearly indicates
robustness of entanglement in our system.

The dipole asymmetry was also shown to offer a significant
flexibility to derive quite different entanglement dynamics
than the case of equal optical dipole moments by integrating
planar-photonic-crystal (PPC) nanocavites with solid state
[11]. However, the quality factor and the cavity mode volume
in the latter system are always assumed to be very large, and
subsequently reducing the quality factor in this system by
one order of magnitude moves it to a weak-coupling regime
[11]. Such difficulties can be avoided in our model, signifying
the advantages of the nanoscale integration of metals and
semiconductors.

In Fig. 5, we have investigated the non-Markovian decay
dynamics of |Cb(t)| for QD b initially in its ground state with
the presence of the nanoshell modeled with different core
materials. The oscillation dynamics is observable even with
the significant metal losses. The results in Fig. 5 demonstrate
the effects of the detuning on the excitation of QD b and
subsequently the coupling of the system. Here, we have set
ωa = ωb = ωc + �, where ωc is the SPR.

While for the Au2S core QD b is excited at earlier times
with pronounced oscillations, a small detuning of about or
less than 6 meV results in slowing down the dynamics of
the system (dash-double-dotted black curve). In contrast, for
the SiO2 core the oscillations for two cases [i.e., � = 0 meV

FIG. 5. Evaluation of the non-Markovian decay dynamics of QD
b initially in the ground state as a function of normalized time with
different core materials. Au2S core: � = 0 meV (dash-dotted red
curve) and � = 6 meV (dash-double-dotted black curve). SiO2 core:
� = 0 meV (dashed blue curve) and � = 10 meV (solid green curve).
Here, ha = hb = 3 nm .

(dashed blue curve) and � = 10 meV (solid green curve)] are
identical, although the detuning is increased up to 10 meV.
Thus the dynamics of the system are less dependent on the
detuning if the losses are large and show strong sensitivity to
the detuning if the losses are at the minimum.

In Fig. 6, we have looked at the effect of coherent
exchange interaction in the presence of QDs pure dephasing.
The concurrence shows rich dynamics, and the oscillations
increased significantly with increasing γ ′, indicating that the
two QDs are effectively coupled through the localized surface
plasmon-induced photon exchange. The results in Fig. 6
clearly show the robustness of our protocol allows for an
on-demand, fast, and almost perfect entanglement even at
strong carrier-phonon interaction where other systems fail.
In fact, the effectiveness of the presented schemes is shown to
be better the stronger the carrier-phonon interaction is.

FIG. 6. The concurrence as a function of normalized time for the
case of s = −1 with varying the QD pure dephasing: γ ′ = 10 meV
(dashed black curve), γ ′ = 13 meV (dash-dotted green curve), and
γ ′ = 15 meV (solid red curve). Here, ha = hb = 3 nm from the
surface of the Au2S/Ag.
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FIG. 7. The concurrence as a function of normalized time with
s = −1 for various locations of QD a from the surface of Au2S/Ag:
ha = 5 nm (solid blue curve), 10 nm (dashed red curve), and 20 nm
(dash-dotted black curve). Here, R2/R1 = 0.875, and QD b is located
1 nm from the surface of the nanoshell.

Figure 7 shows the concurrence dependence on the asym-
metry in the QD positions with respect to the nanoshell.
Here, QD b is initially in the ground state and is situated
very close to the surface of the nanoshell (i.e., hb = 1 nm)
while the location of the initially excited QD a is varied.
While for the perfectly symmetric system shown in Fig. 4
the entanglement oscillates ∼0.5, which is the maximum
amount possible, the results do already considerably change
for slightly different QD locations: not only does the oscillation
amplitude persist, but the system is efficiently coupled, and
significantly higher entanglement is reached. For hb = 5 nm,
which turns out to be the optimal choice for the location of QD
a, an ideal and robust entanglement is realized with C taking
values of roughly 0.87. It is also found that the asymmetry
in the QD positions with respect to the nanoshell leads to
a steady-state entanglement existing for a sufficiently long
time, in contrast to the symmetric case. These features indicate
that the QD-nanoshell interaction enters the strong-coupling
regime, where the excitation energy is coherently transferred
between the QDs and the nanoshell in the form of Rabi
oscillation. Eventually, when QD a is placed at large distances,
the system enters a weak-coupling regime, and subsequently,
the concurrence attains 0.35 as an optimum value (dash-dotted
black curve). This is an exciting and promising result that can
be implemented with current technology. This may lead to the
design of devices at the nanoscale that may be useful for the
quantum computing community.

The strong sensitivity of the entanglement to the shell
thickness is shown in Fig. 8. The distances from QD a and
QD b to the surface of the Au2S/Ag nanoshell are 5 and 1 nm,
respectively. The transition frequencies of the QDs are set
to be resonant with the localized spherelike plasmon mode
for different thicknesses of the shell. As the shell thickness
increases, the plasmon resonance exhibits a large spectral
shift to the higher frequencies [see the inset in Fig. 2(a)].
Additionally, the linewidths in the spectrum are enlarged
significantly, showing that the contributions of the interband
absorption (the losses in the metal) are magnified. Figure 8
shows the dramatic change in the evolution dynamics of the

FIG. 8. The concurrence as a function of normalized time with
varying the thickness of the nanoshell: d = 2 nm (solid blue curve),
3 nm (dash-dotted red curve), and 5 nm (solid green curve). Here,
ha = 5 nm and hb = 1 nm from the surface of Au2S/Ag. For
comparison, the concurrence in the limit of the refractive index of the
Au2S core nc and the refractive index of the silver shell nm(ω) being
equal is shown with different sizes: R = 16 nm (dash-double-dotted
dark green curve) and R = 5 nm (dashed pink curve).

coupled QDs and subsequently the entanglement by varying
the shell thickness while keeping the outer radius fixed at
a certain value, namely, 16 nm. In addition, we have also
considered the quantum entanglement in the limit of the
refractive index of the Au2S core nc and the refractive index of
the silver shell nm(ω) being equal. This case represents a solid
sphere with permittivity εm(ω,R1) embedded in a homogenous
medium with dielectric constant εb. Here, we have calculated
the concurrence for the solid sphere with two different sizes:
R = 16 nm (dash-double-dotted dark green curve) and R = 5
nm (dashed pink curve). The results in Fig. 8 confirm that
generating an efficient entanglement in the vicinity of a solid
sphere is unlikely. Clearly, the realistic parameters that we used
in the numerical calculations including the retardation effects
and the inherent losses in the nanoparticle as elaborated in
Fig. 2(b) indicate that the application of the nanoshell with
a controllable shell thickness as well as the core material
is advantageous over a solid sphere for creating pronounced
entangled pairs from a one-QD excited initial condition.

IV. CONCLUSIONS

We have presented an applicable scheme that allows us to
investigate quantum correlations between two single QDs in
the proximity of a metal nanoshell. We used a self-consistent
photon Green’s function technique to explore the quantum
optical and entanglement dynamics between two QDs that
cover all the coupling regimes. In the vicinity of the nanoshell,
the local density of states increased immensely, leading to the
strong-coupling regime. The degree of the entanglement char-
acterized by the concurrence can be maximized by optimizing
the shell thickness as well as the ratio of the distances between
the QDs and the surface of the shell. The loss of the system
is greatly reduced even when the QDs are ultraclose to the
shell, which signifies the slow decay rate of the coherence
information and longtime entanglement preservation, which
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is highly desirable for the quantum information science com-
munity. In addition, the population dynamics with solid-state
QDs are found to have great flexibility in deriving a substantial
amount of qubit entanglement in many cases and subsequently
offer several advantages over coupling identical atoms. Our
protocol allows for an on-demand, fast, and almost perfect
entanglement even at strong carrier- phonon interaction where
other systems fail. We noticed that the realistic parameters
that we used, including the retardation effects and the inherent
losses in the nanoparticle, are unlikely to generate an efficient
entanglement in the vicinity of a solid sphere. There is also
the potential to see strong coupling if one uses MNPs with
nonspherical shapes, e.g., cigar shapes [46]. Rapid advances
in nanofabrication techniques for plasmonic nanoparticles put
such a system within experimental reach.
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APPENDIX A: ELECTROMAGNETIC DYADIC GREEN’S
FUNCTION IN SPHERICALLY THREE-LAYERED MEDIA

Given a spherical core of radius R2 and dielectric constant εc

surrounded by a concentric shell of radius R1 and permittivity
εm(ω), embedded in a homogenous medium with dielectric
constant εb, the dyadic Green’s function is constructed from
the expansion of the spherical vector wave function with
the boundary conditions at the spherical interfaces satisfied
[47]. If the source rrr ′ is outside the structure, the Green’s
function can be decomposed into GGG(rrr,rrr ′,ω) = GGG0(rrr,rrr ′,ω) +
GGGR(11)(rrr,rrr ′,ω), where GGG0(rrr,rrr ′,ω) is the direct contribution
from the radiation sources in an unbounded medium and
GGGR(11)(rrr,rrr ′,ω) is the reflection contribution coming from
the interaction of the emitter with the spherical nanopar-
ticle. The direct term of the Green’s function is given
by [47]

GGG0(rrr,rrr ′,ω)=− r̂rrr̂rrδ(rrr − rrr ′)
k2

1

+ ik1

4π

∑
e,o

∞∑
n=1

n∑
m=0

(2 − δ0m)
2n+ 1

n(n+ 1)

(n− m)!

(n+ m)!

{
MMM

(1)
mne

o
(rrr,k1)MMMmne

o
(rrr ′,k1) +NNN

(1)
mne

o
(rrr,k1)NNNmne

o
(rrr ′,k1)

MMMmne
o
(rrr,k1)MMM (1)

mne
o
(rrr ′,k1) + NNNmne

o
(rrr,k1)NNN (1)

mne
o
(rrr ′,k1),

(A1)

where the upper (lower) line holds for rrr > rrr ′(rrr < rrr ′). For the scattered part [47]

GGGR(11)(rrr,r ′r ′r ′,ω)= ik1

4π

∑
e,o

∞∑
n=1

n∑
m=0

(2 − δ0m)
2n+ 1

n(n+ 1)

(n− m)!

(n+ m)!

{
B11

M (ω)MMM (1)
mne

o
(rrr,k1)MMM (1)

mne
o
(rrr ′,k1) + B11

N (ω)NNN (1)
mne

o
(rrr,k1)NNN (1)

mne
o
(rrr ′,k1)

}
,

(A2)

where the prime denotes the coordinates (r ′,θ ′,ϕ′) of the current source, m and n identify the eigenvalue parameters, and MMMmne
o

stands for the electric field of the TEmn mode, while NNNmne
o

represents that of the TMmn mode. Here, k1 = ω
c

√
εb, k2 = ω

c

√
εm(ω),

and k3 = ω
c

√
εc. The spherical vector wave functions are given by

MMMe
mn(rrr,k) = − m

sin θ
jn(kr)P m

n (cos θ ) sin mϕθ̂̂θ̂θ − jn(kr)
dP m

n (cos θ )

dθ
cos mϕϕ̂̂ϕ̂ϕ, (A3)

MMMo
mn(rrr,k) = m

sin θ
jn(kr)P m

n (cos θ ) cos mϕθ̂̂θ̂θ − jn(kr)
dP m

n (cos θ )

dθ
sin mϕϕ̂̂ϕ̂ϕ, (A4)

NNNe
mn(rrr,k) =n(n + 1)

kr
jn(kr)P m

n (cos θ ) cos mϕr̂̂r̂r + 1

kr

d[rjn(kr)]

dr

dP m
n (cos θ )

dθ
cos mϕθ̂̂θ̂θ

− m

kr sin θ

d[rjn(kr)]

dr
P m

n (cos θ ) sin mϕϕ̂̂ϕ̂ϕ, (A5)

NNNo
mn(rrr,k) =n(n + 1)

kr
jn(kr)P m

n (cos θ ) sin mϕr̂̂r̂r + 1

kr

d[rjn(kr)]

dr

dP m
n (cos θ )

dθ
sin mϕθ̂̂θ̂θ + m

kr sin θ

d[rjn(kr)]

dr
P m

n (cos θ ) cos mϕϕ̂̂ϕ̂ϕ,

(A6)

where P m
n are the associated Legendre polynomials and jn are the spherical Bessel functions. The superscript (1) in Eqs. (A1) and

(A2) indicates that in these equations, the spherical Bessel function jn(x) has to be replaced by the spherical Hankel function of
the first kind h(1)

n (x). The coefficients B11
M and B11

N in the full Green’s function (A2) can be determined by imposing the boundary
conditions at the surfaces r = R1 and r = R2.

rrr × GGG(rrr,r ′r ′r ′)r=R− = rrr × GGG(rrr,r ′r ′r ′)r=R+ , (A7)

rrr × ∇∇∇ × GGG(rrr,r ′r ′r ′)r=R− = rrr × ∇∇∇ × GGG(rrr,r ′r ′r ′)r=R+ . (A8)

022320-8



NANOSHELL-MEDIATED ROBUST ENTANGLEMENT . . . PHYSICAL REVIEW A 93, 022320 (2016)

The resulting expressions for the coefficients are

B11
M (ω) = −k2�11

[
∂�21 − ∂�21R11

M (ω)
] − k1∂�11

[�21 − �21R11
M (ω)

]
k2�11

[
∂�21 − ∂�21R11

M (ω)
] − k1∂�11

[�21 − �21R11
M (ω)

] , (A9)

B11
N (ω) = −k2∂�11

[�21 − �21R11
N (ω)

] − k1�11
[
∂�21 − ∂�21R11

N (ω)
]

k2∂�11
[�21 − �21R11

N (ω)
] − k1�11

[
∂�21 − ∂�21R11

N (ω)
] , (A10)

where

R11
M (ω) = k3�22∂�32 − k2�32∂�22

k3�22∂�32 − k2�32∂�22
, (A11)

R11
N (ω) = k3�32∂�22 − k2�22∂�32

k3�32∂�22 − k2�22∂�32
, (A12)

with

�il = jn(kiRl), (A13)

�il = h(1)
n (kiRl), (A14)

∂�il = 1

ρ

d[ρjn(ρ)]

dρ

∣∣∣∣
ρ=kiRl

, (A15)

∂�il = 1

ρ

d
[
ρh(1)

n (ρ)
]

dρ

∣∣∣∣
ρ=kiRl

. (A16)

APPENDIX B: EIGENFREQUENCY RELATION

The plasmon resonance can be obtained by including the
retardation effect from the explicit form of the reflection
coefficients derived in Appendix A by noticing that these
coefficients contain poles at the points where the denominator
vanishes. These poles give the eigenfrequency relation of the
electric modes supported by the metallic shell:

h(1)
n (ρ1)αn = [

ρ1h
(1)
n (ρ1

]′
βn, (B1)

where

αn = k2
2[ρ2jn(ρ2)]′An − k2

3jn(ρ2)Bn, (B2)

βn = k2
2

k2
1

{
k2

2[ρ2jn(ρ2)]′Cn − k2
3jn(ρ2)Dn

}
, (B3)

with

An = jn(η2)
[
η1h

(1)
n (η1)

]′ − h(1)
n (η2)[η1jn(η1)]′, (B4)

Bn = [
η1h

(1)
n (η1)

]′
[η2jn(η2)]′ − [

η2h
(1)
n (η2)

]′
[η1jn(η1)]′,

(B5)

Cn = jn(η2)h(1)
n (η1) − jn(η1)h(1)

n (η2), (B6)

Dn = h(1)
n (η1)[η2jn(η2)]′ − jn(η1)[η2h

(1)
n (η2)]′, (B7)

where ρ1 = k1R1, ρ2 = k3R2, η1 = k2R1, η2 = k2R2, and the
prime denotes differentiation with respect to the argument.
Here, k1 = ω

c

√
εb, k2 = ω

c

√
εm(ω), and k3 = ω

c

√
εc.
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