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Information-theoretical analysis of topological entanglement entropy and multipartite correlations
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A special feature of the ground state in a topologically ordered phase is the existence of large-scale correlations
depending only on the topology of the regions. These correlations can be detected by the topological entanglement
entropy or by a measure called irreducible correlation. We show that these two measures coincide for states
obeying an area law and having zero correlation length. Moreover, we provide an operational meaning for these
measures by proving its equivalence to the optimal rate of a particular class of secret sharing protocols. This
establishes an information-theoretical approach to multipartite correlations in topologically ordered systems.
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I. INTRODUCTION

A topologically ordered phase is an exotic quantum phase
that cannot be explained by conventional models based on
local order parameters and symmetry breaking [1,2]. Since
topologically ordered phases are robust against local perturba-
tions, they are promising candidates for performing topologi-
cally protected quantum computation [3,4]. Characterizing the
global properties of the ground state in topologically ordered
phases is thus not only an important problem in condensed
matter physics, but also in quantum information science.

A possible measure to detect such topological correlations
is the topological entanglement entropy (TEE) [5,6], which
also appears as the universal constant term in the area law [5,7].
The definition of the TEE is based on the idea that topological
correlations reduce the entropy of ring- or circlelike regions
(see Fig. 1), compared to what is expected if only short-range
correlations are present [6]. More precisely, the TEE quantifies
the tripartite correlations in region ABC that are not contained
in any bipartite region AB, BC, or CA. Quantitatively, this is
achieved by subtracting the contributions of local correlations
using a Venn-diagram calculation, which is known as the
interaction information in classical information theory [8].
The interaction information was proposed as a measure of
“genuine” tripartite correlations that only detects correlations
shared by all three parties, but not by only two. However, the
information-theoretical meaning of the interaction information
is not clear, since it lacks basic properties such as, e.g.,
positivity (see, e.g., [9–11]). Further problems arise in the
quantum case, where, for instance, the quantity is always zero
if the three parties share a pure state.

An alternative measure for “genuine” tripartite or more
generally, k-partite correlations in classical information theory
is known as the kth-order effect [12]. The definition of the kth-
order effect employs the maximum entropy method [13,14] to
estimate the total entropy, which provides a classification of
multipartite correlations in terms of Gibbs states correspond-
ing to k-local Hamiltonians. The quantum generalization of the
kth-order effect is called the kth-order (or k-body) irreducible
correlation [15–17].

The third-order irreducible correlation applied to tripartite
scenarios as shown in Fig. 1 has recently been proposed as an
alternative way to measure topological correlations [18,19].

It is simply given as the maximum entropy on ABC with
consistent bipartite reduced states on AB,BC, AC minus
the actual entropy of ABC. It has been conjectured that the
third-order irreducible correlation and the TEE coincide in the
thermodynamic limit for ground states of gapped systems,
i.e., when the effects of local correlations are completely
negligible [19]. While therein the authors only show that the
irreducible correlation is always smaller than the TEE for
regions as in Fig. 1(c), numerical evidence of this conjecture
has been provided for the toric code model [4] in Ref. [18].

In this paper, we partly resolve this conjecture and show that
if the ground state obeys an area law and has exactly vanishing
correlation lengths, the TEE and the third-order irreducible
correlation are equivalent. This condition holds for a wide class
of spin-lattice models, which describe nonchiral topological
ordered phases [4,20]. In general, calculating the values of
multipartite correlation measures is a computationally hard
problem. We overcome this challenge and show equivalence
by explicitly constructing the maximum entropy state on ABC

that is consistent with all bipartite reduced density matrices
(RDMs) of the ground state. This solves an instance of a
quantum marginal problem [21,22], which is in general hard,
especially if RDMs have overlap. In our special case the
difficulty can be overcome by using properties of quantum
Markov states (QMS) [23].

We further show that under the same assumptions the
irreducible correlation is equal to the optimal asymptotic rate
of a secret sharing protocol, as suggested in [16,24]. This
establishes an operational interpretation of the TEE as the
number of bits that can be hidden in a global region ABC (see
Fig. 1) from parties that have access to only partial regions
such as, e.g., AB. This result quantitatively connects the TEE
with the characteristic feature of topologically ordered states
that information contained in local regions is insufficient to
determine global properties.

The paper is organized as follows. In Sec. II, we define
the irreducible correlation of a multipartite state and discuss
its properties. In Sec. III, we prove the equivalence of the
TEE and the irreducible correlation. In Sec. IV, we show the
equivalence of the irreducible correlation and the maximum
rate of a secret sharing protocol. Section V is devoted to a
discussion of the case of almost vanishing correlations. Our
conclusions are presented in Sec. VI.
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FIG. 1. The illustration shows the regions A,B,C used for the
calculation of the TEE and the irreducible correlation. Region (a) and
(b) correspond to the Kitaev-Preskill–type version [5] and (c) to the
Levin-Wen–type version [6] of the TEE. Due to the difference of the
topology of the regions, the value of the TEE for (a) is half of that for
(b) and (c).

II. THE IRREDUCIBLE CORRELATION

Let ρ be an n-partite state in a state space S(Hn), where
Hn = H1 ⊗ · · · ⊗ Hn and each Hilbert space Hi is finite
dimensional. The RDM on the subsystem corresponding to
a subset A of [n] ≡ {1,...,n} is denoted by ρA. We then define
a closed convex set Rk

ρ of n-partite states, where all their k

RDMs are identical to ρ as

Rk
ρ ≡ {

σ ∈ S(Hn) | ∀Sk ⊂ [n], |Sk| = k : σSk
= ρSk

}
.

For any ρ and 1 � k � n, we define the kth maximum
entropy state ρ̃(k) ∈ S(H) by the state in Rk

ρ which maximizes
the von Neumann entropy, i.e.,

ρ̃(k) ≡ argmax
σ∈Rk

ρ

S(σ ),

where S(ρ) = −Trρ log2 ρ. According to Jaynes’s maximal
entropy principle [13,14], ρ̃k is the most “unbiased” inference
if all of the k RDMs of ρ are known.

The kth maximum entropy state can be characterized
by quantum Gibbs families. Let Qk be the set of Gibbs
states eH /Tr(eH ) corresponding to k local Hamiltonians
H . We consider the reverse information closure Q̄k =
{σ ∈ S(Hn)| infσ ′∈Qk

S(σ‖σ ′) = 0} of Qk , where S(ρ||σ ) =
Trρ log2 ρ − Trρ log2 σ is the quantum relative entropy. Then
ρ̃(k) satisfies [25]

ρ̃(k) = argmin
σ∈Q̄k

S(ρ||σ ).

For any state ρ ∈ S(Hn) and 1 � k � n, it follows that ρ̃(k) is
uniquely determined and the Pythagorean theorem [26]

S(ρ||σ ) = S(ρ||ρ̃(k)) + S(ρ̃(k)‖σ ) (1)

holds. Since the completely mixed state 1In/dn is in Q̄k for all
k, the Pythagorean theorem implies that

S(ρ||ρ̃(k)) = S(ρ̃(k)) − S(ρ).

We define D(k)(ρ) as the distance of the state ρ from the set
Q̄k , that is,

D(k)(ρ) ≡ min
σ∈Q̄k

S(ρ||σ )

= S(ρ||ρ̃(k)) = S(ρ̃(k)) − S(ρ).

Since Q̄k−1 ⊂ Q̄k , it holds that D(k)(ρ) is monotonically
decreasing in k. From the Pinsker inequality, it is clear that

FIG. 2. A geometrical illustration of the functions D(k) and C(k).
D(k)(ρ) is the distance from the set of k-correlated states, and C(k) is
the difference between crossing points in Q̄k and Q̄k−1 measured by
the quantum relative entropy.

D(k)(ρ) measures how well the state ρ is approximated by
the maximum entropy principle, i.e., D(k)(ρ) � ε implies that
‖ρ − ρ̃(k)‖1 � 2

√
ε. It further holds that D(k)(ρ) = 0, if and

only if ρ = ρ̃(k) ∈ Q̄k .
The kth-order irreducible correlation [16] is defined as

C(k)(ρ) ≡ D(k−1)(ρ) − D(k)(ρ)

= S(ρ̃(k)‖ρ̃(k−1))

= S(ρ̃(k−1)) − S(ρ̃(k)). (2)

The second equation follows from the Pythagorean theorem
Eq. (1) and the fact that ρ̃(k) has the same (k − 1) RDMs
as ρ̃(k−1). A geometric picture of the relations between D(k)

and C(k) is given in Fig. 2. The classical analog of the above
discussion has been given in Ref. [12].

C(k)(ρ) measures the correlation that is contained in all
the k RDMs, but not in the (k − 1) RDMs. The irreducible
correlation is a non-negative function invariant under local
unitary operations on each single site but lacks a nonincreasing
nature under general local operations [17,27]. A possible
modification of the irreducible correlation that overcomes this
problem is proposed in Ref. [27]. The irreducible correlation
is continuous in the classical case [28], but it can be
discontinuous for quantum states [29]. A relation between the
discontinuity of the irreducible correlation and quantum phase
transitions has been discussed in Ref. [19].

We show now that C(k)(ρ) is also additive, C(k)(ρ ⊗ σ ) =
C(k)(ρ) + C(k)(σ ). It is clear that ρ̃(k) ⊗ σ̃ (k) is included in
Rk

ρ⊗σ . Let us consider ρ ∈ S(H1) and σ ∈ S(H2). For any
state ω12 ∈ Rk

ρ⊗σ , it holds that

S(ω12) � S(ω1) + S(ω2)

� S(ρ̃(k)) + S(σ̃ (k))

= S(ρ̃(k) ⊗ σ̃ (k)),

where we used the subadditivity of the von Neumann entropy
and the fact that ω12 ∈ Rk

ρ⊗σ implies ω1 ∈ Rk
ρ and ω2 ∈ Rk

ω.
Therefore, ρ̃(k) ⊗ σ̃ (k) is the kth maximum entropy state
corresponding to ρ ⊗ σ . By definition, this implies that the
irreducible correlation is additive.
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The total correlation [9,30] of an n-partite state ρ is given
by

CT (ρ) ≡
n∑

i=1

S(ρi) − S(ρ).

This function is considered as one of the generalizations of the
mutual information for multipartite states. From the definition
of C(k)(ρ) in Eq. (2) and by using the fact that ρ̃(1) = ρ1 ⊗
· · · ⊗ ρn and ρ̃(n) = ρ, we can decompose the total correlation
into the sum of kth-order irreducible correlations, i.e.,

CT (ρ) = D(1)(ρ) =
n∑

k=2

C(k)(ρ). (3)

III. EQUIVALENCE OF TEE AND THE
IRREDUCIBLE CORRELATION

Let us consider the reduced state of the ground state of a
gapped spin-lattice system on circle- or ringlike regions ABC

given in Fig. 1. We then define the TEE by

Stopo ≡ Sρ(AB) + Sρ(BC) + Sρ(CA) − Sρ(A) − Sρ(B)

− Sρ(C) − Sρ(ABC) (4)

= CT (ρ) − Iρ(A : B) − Iρ(B : C) − Iρ(C : A), (5)

which is in accordance with the one considered by Kitaev
and Preskill [5]. Here, Sρ(A) stands for the von Neumann
entropy of the RDM ρA of region A and Iρ(A : B) is the
mutual information Iρ(A : B) = Sρ(A) + Sρ(B) − Sρ(AB).
For regions as given in Fig. 1(c) and assuming that there are no
correlations between A and C, i.e., ρAC = ρA ⊗ ρC , the above
definition is consistent with the one by Levin and Wen [6]. In
the definition in Eq. (4), the expectation of the total entropy
is given by the Venn-diagram method, i.e., first summing up
entropies of AB, BC, CA and then subtracting entropies of
overlapping regions.

On the other hand, from the information of the RDMs of
local subsystems, we can estimate the entropy of the global
state ρABC by using the maximum entropy method [13,14]. It
is expected that the topological correlation in region ABC can
be measured by using ρ̃

(2)
ABC as well as Stopo. Let us consider

the third-order irreducible correlation given by

C(3)(ρABC) = Sρ̃(2) (ABC) − Sρ(ABC).

By definition, the TEE and the irreducible correlation coincide
if and only if

Sρ̃(2) (ABC) = Sρ(AB) + Sρ(BC) + Sρ(CA)

− Sρ(A) − Sρ(B) − Sρ(C). (6)

While this equality does not hold in general, it is an interesting
question whether Eq. (6) holds for ground states of gapped
systems. In this paper, we will analytically show that the TEE
and the irreducible correlation are equal if the spin model has
zero correlation length.

It is widely accepted that the ground state of a gapped
system obeys an area law for the entanglement entropy of
regions A with smooth boundaries (see e.g., [31]), that is,

Sρ(A) = α|∂A| − n∂Aγ + O(|∂A|−β).

Here, α denotes a nonuniversal constant, β > 0, |∂A| denotes
the size of the boundary of region A, and n∂A denotes the
number of connected boundaries of A. The universal constant
γ is equivalent to Stopo for the configuration in Fig. 1(a) and
half of Stopo for Fig. 1(b) and 1(c). If |∂A| is much larger than
the correlation length, the contribution from local correlations
O(|∂A|−β) can be ignored.

In the following, we consider the case where the local
contribution is exactly zero. This condition holds for fixed-
point wave functions in lattice models with zero correlation
length, such as quantum double models [4] or Levin-Wen
(string-net) models [20]. These models can describe a broad
class of nonchiral topological orders. The crucial properties
of these models can be summarized by the following two
conditions:

(I) If two regions A and B are separated, then the RDM is
a product state ρAB = ρA ⊗ ρB , i.e., the mutual information
Iρ(A : B) = 0.

(II) If region A and C are indirectly connected through
B and ABC has no holes, ρABC has zero conditional mutual
information Iρ(A : C|B) ≡ Iρ(A : BC) − Iρ(A : B) = 0.

A tripartite state that satisfies condition (II), i.e., Iρ(A :
C|B) = 0, is referred to as a quantum Markov state condi-
tioned on B [23]. Such states have been widely studied in
quantum information theory [23,32,33], since they are the
states saturating strong subadditivity [34], that is, S(ρABC) =
Sρ(AB) + Sρ(BC) − Sρ(B). Moreover, several applications
as, for instance, in entanglement theory [35] and state
redistribution are proposed [36].

Our main result is that if the ground state satisfies assump-
tions (I) and (II), the TEE is equivalent to the third-order
irreducible correlation.

Theorem 1. If assumptions (I) and (II) are satisfied, the
equality

C(3)(ρABC) = Stopo

holds for all choices of regions A, B, and C as depicted in
Fig. 1.

Note that this equivalence can further be generalized to
more complicated regions with more holes or an annulus with
more subregions.

The third-order irreducible correlation represents the dis-
tance of the tripartite state from the set of Gibbs states for all
2-local Hamiltonians. Therefore, this theorem implies that a
nonzero value of the TEE is equivalent to that the entanglement
Hamiltonian [37] H̃ABC ≡ ln ρABC on region ABC cannot be
a 2-local Hamiltonian. In other words, H̃ABC has to contain
tripartite interactions acting on the whole region ABC.

Note that Theorem 1 together with Eqs. (3) and (5) implies
that the second-order irreducible correlation C(2)(ρ) can be
written as

C(2)(ρ) = Iρ(A : B) + Iρ(B : C) + Iρ(C : A).

We finally mention that in Ref. [38] a measure for topological
correlation that slightly differs from the irreducible correlation
is proposed. The author claims that this quantity is also
equivalent to the topological entanglement entropy if A and C

in Fig. 1(c) satisfy Iρ(A : C) = 0, but our result indicates that
it is valid only under additional assumptions.
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(a) (b) (c)

FIG. 3. A graphical illustration of how to divide the regions
A,B,C from Fig. 1 in the proof of Theorem 1. Note that in
any configuration (a),(b), or (c), the RDMs of three consecutive
subregions are QMSs according to assumption (II).

Proof of the equivalence of the TEE and
the irreducible correlation

In order to prove Theorem 1, we use a strategy that explicitly
exploits the structure of QMS. The sketch of the proof goes
as follows. Let A, B, and C be regions as illustrated in Fig. 1.
We then divide each region that connects two different regions
into two halves (see Fig. 3). Then, each RDM on any three
consecutive regions becomes a QMS according to property
(II). We then show that if properties (I) and (II) hold, we can
merge these QMSs with overlapping local regions to obtain a
global state. As the merged state is consistent to all local QMSs,
it belongs to R2

ρ , and furthermore, it is a canonical candidate
for the maximum entropy state since it is constructed using
information of at most two regions. Indeed, we prove that the
obtained global state is the maximum entropy state satisfying
Eq. (6), which establishes Theorem 1.

Let us show how to merge local QMSs to a global state.
We use two basic properties of the QMS shown in Ref. [23].
The first is that for any QMS ρABC, there exists a recovery map

B→BC such that

ρABC = (idA ⊗ 
B→BC)ρAB.

The second property is a special form of the Koashi-Imoto
decomposition [39] for QMSs. Namely, ρ is a QMS if and
only if there exists a decomposition of system B into a direct
sum HB = ⊕

i HBL
i

⊗ HBR
i

such that [23]

ρABC =
⊕

i

piρABL
i

⊗ ρBR
i C, (7)

and pi is a probability distribution. We call Eq. (7) a Markov
decomposition.

We first consider the case of Fig. 3(c). Since ρAB1B2 is a
QMS conditioned on B1, there exists a decomposition HB1 =⊕

i HBL
1i

⊗ HBR
1i

such that

ρAB1B2 =
⊕

i

piρABL
1i

⊗ ρBR
1iB2

. (8)

Since ρB1B2C is also a QMS, there exists a recovery map

B2→B2C and a Markov decomposition such that

ρB1B2C = (
idB1 ⊗ 
B2→B2C

)
ρB1B2

=
⊕

j

qjρB1B
L
2j

⊗ ρBR
2j C

. (9)

We then define the merged global state ρ̃ABC as

ρ̃ABC ≡ (
idAB1 ⊗ 
B2→B2C

)
ρAB1B2 (10)

=
⊕

i

piρABL
1i

⊗ 
B2→B2C

(
ρBR

1iB2

)
. (11)

The second line follows because of Eq. (8). Equation (11)
represents a Markov decomposition of ρ̃ABC. Hence, the state
ρ̃ABC is a QMS conditioned on B.

We start by proving that ρ̃ABC can be decomposed as

ρ̃ABC =
⊕
i,j

piqj |iρABL
1i

⊗ ρBR
1iB

L
2j

⊗ ρBR
2j C

, (12)

where qj |i ≡ Tr(�B2j
ρBR

1iB2
�B2j

) and �B2j
denotes the orthog-

onal projector on HBL
2j

⊗ HBR
2j

. In order to achieve this, we
show that ρBR

1iB2
can be written as

ρBR
1iB2

=
⊕

j

qj |iρBR
1iB

L
2j

⊗ ρBR
2j
, (13)

where ρBR
1iB

L
2j

is defined by

ρBR
1iB

L
2j

≡ q−1
j |i TrBR

2j

(
�B2j

ρBR
1iB2

�B2j

)
.

By definition it is clear that qj |i is a conditional probability
distribution. Moreover, using the definition of qj |i and Eq. (9),
it is straightforward to check that

∑
i qj |i = qj .

Let us consider the completely positive and trace-preserving
(CPTP) map P2 : S(HB2 ) → S(HB2 ) defined by

P2(ξB2 ) =
⊕

j

TrBR
2j

[
�B2j

ξB�B2j

] ⊗ ρBR
2j
.

Note that (idB1 ⊗ P2)(ρBL
1i

⊗ ρBR
1iB2

) = ρBL
1i

⊗ ρBR
1iB2

implies
Eq. (13). Equation (9) yields that

ρB1B2 =
⊕

j

qjρB1B
L
2j

⊗ ρBR
2j
,

from which follows that (idB1 ⊗ P2)(ρB) = ρB holds. Owing
to the invariance of ρB , we can conclude(

idB1 ⊗ P2
)(

ρBL
1i

⊗ ρBR
1iB2

)
= (

idB1 ⊗ P2
)(

p−1
i �BL

1i
ρB�BL

1i

)
= p−1

i �BL
1i

[(
idB1 ⊗ P2

)
(ρB)

]
�BL

1i

= p−1
i �BL

1i
ρB�BL

1i
= ρBL

1i
⊗ ρBR

1iB2
.

Thus, we have shown the decomposition given by Eq. (13).
Consequently, Eq. (12) holds since the recovery map 
B2→B2C

acts only on system BR
2 [23].

We now show that ρ̃ABC has the same 2-RDMs as ρABC.
ρ̃AB = ρAB follows immediately from Eqs. (8), (12), and (13).
From the definition Eq. (10), it turns out that

ρ̃BC = (
idB1 ⊗ 
B2→B2C

)
ρB1B2 = ρBC.

The definition of ρ̃ABC and Iρ(A : B2) = 0 implies that

ρ̃AB2C = TrB1

[(
idAB1 ⊗ 
B2→B2C

)
ρAB1B2

]
= (

idA ⊗ 
B2→B2C

)
ρAB2

= (
idA ⊗ 
B2→B2C

)
ρA ⊗ ρB2

= ρA ⊗ 
B2→B2C

(
ρB2

) = ρA ⊗ ρB2C,
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FIG. 4. The upper illustration shows the merge of two local QMSs
into one global QMS, which is consistent with the local original
QMSs. The lower illustration shows the merge of six local QMSs
in a cyclic way as used in the proof of Theorem 1 for regions as in
Figs. 1(a) and 1(b).

where we used in the third equality that ρAB2 = ρA ⊗ ρB2 and

B2→B2C(ρB2 ) = ρB2C for the last equality. Therefore, ρ̃AC =
ρA ⊗ ρC = ρAC , which completes the proof that ρ̃ABC ∈ R2

ρ .
It remains to show that ρ̃ABC is the maximum entropy state.

Due to the strong subadditivity, for any state σ ∈ R2
ρ , it holds

that

Sσ (ABC) � Sσ (AB) + Sσ (BC) − Sσ (B)

= Sρ(AB) + Sρ(BC) − Sρ(B)

= Sρ̃(ABC)

and thus, ρ̃ABC is the maximum entropy state in R2
ρ .

Next, we consider the configuration encountered in
Figs. 3(a) and 3(b), which is more involved as there exist
six local QMSs (Fig. 4). For the following it is convenient
to denote A1 by X1, A2 by X2, B1 by X3 and so on. Due to
the periodicity, we consider the indices of Xi modulo 6, i.e.,
X7 = X1. For any neighboring three subregions Xi−1XiXi+1,
the RDM ρXi−1XiXi+1 is a QMS conditioned on Xi . Therefore,
there exists a decomposition of HXi

= ⊕
ji
HL

Xi (ji )
⊗ HR

Xi (ji )
such that ρXi−1XiXi+1 can be written as

ρXi−1XiXi+1 =
⊕

ji

pji
ρXi−1X

L
i(ji )

⊗ ρXR
i(ji )Xi+1

.

We denote the orthogonal projector on HL
Xi (ji )

⊗ HR
Xi (ji )

by

�
(i)
ji

. Our goal is to show that the maximum entropy state can

be written as

ρ̃ABC =
⊕

i1,...,i6

p1(i1|i6)p2(i2|i1) . . . p6(i6|i5)ρAR
1(i1)A

L
2(i2)

⊗ ρAR
2(i2)B

L
1(i3)

⊗ · · · ⊗ ρCR
2(i6)A

L
1(i1)

, (14)

where pj (ij |ij−1) = Tr(�(j )
ij

�
(j−1)
ij−1

ρABC)/Tr(�(j−1)
ij−1

ρABC). As
long as it is clear from the arguments, we omit the lower index
for the probabilities pj (ij ,ij − 1) and simply write p(ij ,ij −
1).

We show that under the assumptions (I) and
(II), the cyclic products of conditional probabilities
p(i1|i6)p(i2|i1) . . . p(i6|i5) form a probability distribution. The
non-negativity is clear because each conditional probability is
non-negative. The normalization condition can be shown by
the following calculation:∑

i1,...,i6

p(i1|i6)p(i2|i1) . . . p(i6|i5)

=
∑

i2,...,i6

(∑
i1

p(i6|i1)p(i2|i1)p(i1)

p(i6)

)
p(i3|i2) . . . p(i6|i5)

=
∑

i2,...,i6

(∑
i1

p(i6,i1,i2)

p(i6)

)
p(i3|i2) . . . p(i6|i5)

=
∑

i2,...,i6

p(i6,i2)

p(i6)
p(i3|i2) . . . p(i6|i5)

=
∑

i2,...,i6

p(i2)p(i3|i2) . . . p(i6|i5)

=
∑

i3,...,i6

p(i3)p(i4|i3)p(i5|i4)p(i6|i5) = · · · = 1.

The first equality follows from the Bayes rule p(i|j ) =
p(j |i)p(i)/p(j ). In the second equality, we used
that p(i6,i1,i2) = p(i1)p(i6|i1)p(i2|i1), which follows since
ρC2A1A2 is a QMS [i.e., assumption (II)] with the Markov
decomposition

ρC2A1A2 =
⊕

i1

p(i1)ρC2A
L
1(i1)

⊗ ρAR
1(i1)A2

.

The fourth equality is due to p(i6,i2) = p(i6)p(i2), which
holds since ρC2A2 = ρC2 ⊗ ρA2 according to assumption (I).

Now we are going to show that the state ρ̃ABC represented
by Eq. (14) is an element of R2

ρ . Due to assumption (II), ρAB

is a QMS conditioned on A2, B1, and A2B1. Since a QMS
is always a maximum entropy state, ρAB = ρA1(A2B1)B2 has
the same structure as the maximum entropy state in Eq. (12).
Therefore, it can be decomposed as

ρAB =
⊕
i2,i3

p(i2)p(i3|i2)ρA1A
L
2(i2)

⊗ ρAR
2(i2)B

L
1(i3)

⊗ ρBR
1(i3)B2

.

Similarly, it holds that

ρBC =
⊕
i4,i5

p(i4)p(i5|i4)ρB1B
L
2(i4)

⊗ ρBR
2(i4)C

L
1(i5)

⊗ ρCR
1(i5)C2
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and

ρAC =
⊕
i6,i1

p(i6)p(i1|i6)ρC1C
L
2(i6)

⊗ ρCR
2(i6)A

L
1(i1)

⊗ ρAR
1(i1)A2

. (15)

Moreover, we can obtain a finer decomposition of each
RDM by using decompositions as Eq. (13). For instance, by
decomposing C1 of ρC1C

L
2(i6)

in Eq. (15), we obtain

ρAC =
⊕

i5,i6,i1

p(i5)p(i6|i5)p(i1|i6)ρCL
1(i5)

⊗ ρCR
1(i5)C

L
2(i6)

⊗ ρCR
2(i6)A

L
1(i1)

⊗ ρAR
1(i1)A2

.

Without loss of generality, let us focus on the RDM ρ̃AB ,
since the same arguments can be applied to system BC and CA

due to the symmetry of the problem. We are going to show that
TrCρCR

2(i6)A
L
1(i1)

and TrCρBR
2(i4)C

L
1(i5)

are independent of the indices
i5 and i6 on C. These facts lead ρ̃AB = ρAB . Assumption (I)
implies that Iρ(CL

1 : A1) = 0. It further implies

ρA1C
L
1

=
⊕

i5,i6,i1

p(i5)p(i6|i5)p(i1|i6)ρCL
1(i5)

⊗ ρ
i6

AL
1(i1)

⊗ ρAR
1(i1)

=
⊕
i5,i6

p(i5)p(i6|i5)ρCL
1(i5)

⊗ ρ
i6
A1

= ρCL
1

⊗ ρA1 ,

where ρ
i6

AL
1(i1)

= TrCR
2(i6)

ρAL
1(i1)C

R
2(i6)

and ρ
i6
A1

= ⊕i1p(i1|i6)ρi6

AL
1(i1)

⊗
ρAR

1(i1)
. Therefore, ρ

i6

AL
1

must be independent of i6. Similarly,

Iρ(B2 : CR
2 ) = 0 implies

ρB2C
R
2

=
⊕
i5,i6

p(i5)p(i6|i5)ρi5
B2

⊗ ρCR
2(i6)

= ρB2 ⊗ ρCR
2
.

Therefore, ρ
i5
B2

must be independent of i5. By tracing out
system C of ρ̃ABC, we obtain that

ρ̃AB =
⊕

i1,...,i4

p(i1)p(i2|i1) · · ·p(i4|i3)ρAL
1(i1)

⊗ ρAR
1(i1)A

L
2(i2)

⊗ρAR
2(i2)B

L
1(i3)

⊗ ρBR
1(i3)B

L
2(i4)

⊗ ρBR
2(i4)

=
⊕

i2,...,i4

p(i2)p(i3|i2)p(i4|i3)ρA1A
L
2(i2)

⊗ ρAR
2(i2)B

L
1(i3)

⊗ρBR
1(i3)B

L
2(i4)

⊗ ρBR
2(i4)

=
⊕

i2,...,i3

p(i2)p(i3|i2)ρA1A
L
2(i2)

⊗ ρAR
2(i2)B

L
1(i3)

⊗ ρBR
1(i3)B2

= ρAB.

Note that in the first equality we used
∑

i5,i6
p(i1|i6)

p(i2|i1) · · · p(i6|i5) = p(i1)p(i2|i1) · · · p(i4|i3). The second
equality follows from the Bayes rule p(i1)p(i2|i1) =
p(i1|i2)p(i2) and the decomposition for ρA1A

L
2(i2)

. The third
equality follows from the decomposition for ρBR

1(i3)B2
.

So far, we have shown that ρ̃ABC represented by Eq. (14) is
an element of R2

ρ . It remains to prove that ρ̃ABC is the maximum
entropy state. We rewrite ρ̃ABC in a more convenient form by

defining new indices a = (i1,i2), b = (i3,i4), and c = (i5,i6)
as

ρ̃ABC =
⊕
a,b,c

p(a|c)p(b|a)p(c|b)ρAR
a BL

b
⊗ ρBR

b CL
c

⊗ ρCR
c AL

a
.

(16)

Define the entanglement Hamiltonian HABC = HAB + HBC +
HCA, where

HAB =
∑
a,b

ln
[
p(b|a)ρAR

a BL
b

]
,

HBC =
∑
b,c

ln
[
p(c|b)ρBR

b CL
c

]
,

HAB =
∑
a,c

ln
[
p(a|c)ρCR

c AL
a

]
.

By replacing zero eigenvalues in the logarithm in HABC by a
small positive constant ε, we obtain the regularized 2-local
Hamiltonian Hε

ABC. It is easy to check that in the limit ε → 0,
eHε

ABC converges to ρ̃ABC. According to [25], the maximum
entropy state ρ̃

(2)
ABC is the unique state in R2

ρ that can be
represented as the limit of Gibbs states of bounded 2-local
Hamiltonians. Therefore, ρ̃ABC is the maximum entropy state.

IV. A RELATION TO SECRET SHARING
OF CLASSICAL BITS

Using the equivalence of the TEE to the third-order
irreducible correlation, we can now derive an operational
interpretation of the TEE. Recall that if C(3)(ρABC) is nonzero,
the global state in region ABC cannot be uniquely determined
from the marginals on AB, BC, or AC. A similar condition
lies at the heart of secret sharing protocols. The goal of a
k out of n secret sharing protocol is to share a classical (or
quantum) secret among n parties using a n-partite resource
state such that groups of less than k parties cannot read out
the secret (see, e.g., [40]). In particular, we consider a ramp
scheme of secret sharing where we do not require the secret
to be readable by any group of k + 1 parties, in contrast to the
case of a threshold scheme. In Refs. [24] and [16], it is shown
that for stabilizer states, the kth-order irreducible correlation
represents the difference between the asymptotic bit rate that
can be hidden from k and from k − 1 parties. We show that
this also holds true in our setting for n = 3 and k = 2.

We consider a communication protocol for secret sharing
and quantify the maximal asymptotic rate R of secret bits
that can be shared by using an infinite number of copies
of a given resource state ρABC. First, we fix the number of
copies N > 0. The sender chooses a secret m in MN =
{1,...,|MN |} and encodes it in a tripartite state according to
a code book {ρN

m }. The code states are given by states of
the form ρN

m = Umρ⊗N
ABCU

†
m satisfying ρN

m ∈ R2
ρ⊗N . The sender

then distributes the tripartite state ρN
m to three receivers A,

B, and C. Since the bipartite RDMs of all code states are
equal to that of ρ⊗N

ABC, the encoded secret m can be read
out only when all three receivers cooperate. In order to read
the secret, the three receivers perform a global measurement
described by a positive-operator valued measure (POVM)
{
(N)

m }. The probability to falsely decode the message m is
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pN (m) = Tr{(1I − 
(N)
m )ρN

m }, and we denote the maximum
error probability by pN

max = maxm pN (m).
We say that a secret sharing rate r(ρABC) for ρABC is

achievable, if for any δ,ε > 0 and sufficiently large N > 0,
there exist an appropriate encoding method and a POVM
such that |MN | = 2N[r(ρABC)−δ] and pN

max � ε. Owing to the
Holevo-Schumacher-Westmoreland theorem [41,42], the op-
timal secret sharing rate R is obtained by

r(ρABC) = lim
N→∞

1

N

[
max

ρN∈R2
ρ⊗N

S
(
ρN

ABC

) − S
(
ρ⊗N

ABC

)]
, (17)

where the maximum is taken over all uniformly dis-
tributed ensemble states ρN

ABC = ∑
m

1
M

Umρ⊗N
ABCU

†
m satisfying

Umρ⊗N
ABCU

†
m ∈ R2

ρ⊗N for all iN = 1,...M . The uniform distribu-
tion avoids a bias in the choice of the secret.

We then show the equivalence of the irreducible correlation
to the optimal secret sharing rate:

Theorem 2. For a tripartite state ρABC satisfying properties
(I) and (II), the equality

r(ρABC) = C(3)(ρABC)

holds for all choices of regions depicted in Fig. 1.
To show the above equivalence, we generalize ideas from

the proof for the bipartite [43] to the multipartite situation.
Since the right-hand side of Eq. (17) increases if the entropy
of the state ρN increases, we need to find random unitary
operations that conserve all bipartite RDMs and with an
average state close to ρ̃

(2)⊗N

ABC . However, if the maximum
entropy state is of the form of Eq. (7) or Eq. (16), that is,
the state is a direct sum of product of local RDMs, we can find
such a random unitary operation.

Proof of the equivalence between TEE and optimal secret
sharing rate

We first prove Theorem 2 for the case of Fig. 3(c). After that,
we will generalize the proof to the other cases. By assumption
and the proof of Theorem 1, the maximal entropy state ρ̃

(2)
ABC

is a QMS conditioned on B and can be decomposed as

ρ̃
(2)
ABC =

⊕
i

piρABL
i

⊗ ρBR
i C. (18)

Let us consider the spectral decomposition of ρABL
i
, that is,

ρABL
i

=
∑
Ki

λKi
�

Ki

ABL
i

, (19)

where �
Ki

ABL
i

is the projector on the eigensubspace correspond-

ing to eigenvalue λKi
. More explicitly, �

Ki

ABL
i

can written as

�
Ki

ABL
i

=
dKi∑

mKi
=1

∣∣Ki,mKi

〉〈
Ki,mKi

∣∣
ABL

i

,

where |Ki,mKi
〉 are an orthonormal basis of the eigenspace of

λKi
and dKi

denotes the degeneracy. Then we expand the state

ρABC by using eigenvectors of ρABL
i

to obtain

ρABC =
∑

i,Ki ,mKi

∑
j,Lj ,nLj

∣∣Ki,mKi

〉〈
Lj ,nLj

∣∣
ABL ⊗ w

i,Ki ,mKi
,j,Lj ,nLj

BRC
,

(20)

where HBL = ⊕
i HBL

i
and HBR = ⊕

i HBR
i

.
In the next step, we apply a random unitary UABL ∈ U of

the form

UABL =
⊕
i,Ki

U
Ki

ABL
i

,

where for every i and Ki , U
Ki

ABL
i

are drawn from an exact
1-design of the Haar measure on the eigenspace corresponding
to the eigenvalue λ. Since all subspaces are finite-dimensional,
the cardinality of U is finite. According to Schur’s lemma, this
random unitary operation transforms the state given by Eq. (20)
to

ρ̄ABC =
⊕

i,Ki ,mKi

�
Ki

ABL
i

⊗ w
i,Ki,mKi

BR
i C

,

where w
i,Ki,mKi

BR
i C

= w
i,Ki,mKi

,i,Ki ,mKi

BRC
. Since ρ̃(2) and ρ̄ have

same 2-RDMs as ρ, we obtain

ρ̃ABL =
⊕
i,Ki

piλKi
�

Ki

ABL
i

= ρ̄ABL

=
⊕
i,Ki

Tr

⎛
⎝∑

mKi

w
i,Ki ,mKi

BR
i C

⎞
⎠�

Ki

ABL
i

.

Thus, it holds that

Tr

⎛
⎝∑

mKi

w
i,Ki ,mKi

BR
i C

⎞
⎠ = piλKi

.

We denote the normalized operator 1
piλKi

∑
mKi

w
i,Ki ,mKi

BR
i C

by

ρ
Ki

BR
i C

. Note that ρBR
i C = ∑

Ki
qKi

ρ
Ki

BR
i C

, where qKi
= λKi

dKi
,

but the states in {ρKi

BR
i C

} are not necessarily orthogonal to each
other. Then, ρ̄ABC can be written as

ρ̄ABC =
⊕
i,Ki

piλKi
�

Ki

ABL
i

⊗ ρ
Ki

BR
i C

.

The difference between ρ̄ and ρ̃(2) is that ρ̄ has additional
correlations between ABL

i and BR
i C via the index Ki .

Summarizing the above calculations, we obtain an ensem-
ble of states { 1

|U | ,UiρABCU
†
i ∈ Rk

ρ} where the entropy of the
averaged state ρ̄ABC is given by

S(ρ̄ABC) = H ({pi}) +
∑

i

piH
({

qKi

})

+
∑
i,Ki

piqKi

[
log2 dKi

+ S
(
ρ

Ki

BR
i C

)]
. (21)
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From Eqs. (18) and (19), the entropy of ρ̃(2) is given by

S
(
ρ̃

(2)
ABC

) = H ({pi}) +
∑

i

piH
({

qKi

})

+
∑
i,Ki

piqKi
log2 dKi

+
∑

i

piS
(
ρBR

i C

)
. (22)

By taking the difference between Eqs. (21) and (22), the third-
order irreducible correlation of ρ̄ABC can be bounded by

C(3)(ρ̄ABC) = S
(
ρ̃

(2)
ABC

) − S(ρ̄ABC)

=
∑

i

pi

⎡
⎣S(ρBR

i C) −
∑
Ki

qKi
S
(
ρ

Ki

BR
i C

)⎤⎦

=
∑

i

pi

⎡
⎣S

⎛
⎝∑

Ki

qKi
ρ

Ki

BR
i C

⎞
⎠ −

∑
Ki

qKi
S
(
ρ

Ki

BR
i C

)⎤⎦

�
∑

i

piH
({

qKi

})
� max

i
log2 Di

� log2 D,

where Di and D denote the number of different eigenvalues of
ρABL

i
and ρABL , respectively. If we consider N copies of ρABC,

D grows only polynomially in N , whereas the total dimension
of the Hilbert space grows exponentially. If the dimension of
the Hilbert space HA ⊗ HBL is denoted by dABL , the number
of eigenvalues DN of the N -copy state ρ⊗N

ABC is bounded by [44]

DN � log2(N + 1)dABL .

Given the expression for the rate

r(ρABC) = lim
N→∞

1

N

[
max

ρN∈R2
ρ⊗N

S
(
ρN

ABC

) − S
(
ρ⊗N

ABC

)]
,

and using that the irreducible correlation is additive, we obtain

r(ρABC) = lim
N→∞

1

N

[
max

ρN∈R2
ρ⊗N

S
(
ρN

ABC

) − S
(
ρ⊗N

ABC

)]

= lim
N→∞

1

N

[
max

ρN∈R2
ρ⊗N

S
(
ρN

ABC

) − S
(
ρ̃(2)⊗N

)]

+ S
(
ρ̃

(2)
ABC

) − S
(
ρ⊗N

ABC

)
= C(3)(ρABC) − lim

N→∞
1

N
max

ρN∈R2
ρ⊗N

C(3)
(
ρN

ABC

)

� C(3)(ρABC) − lim
N→∞

1

N
log2(N + 1)dABL

= C(3)(ρABC). (23)

This establishes a lower bound on the optimal rate R by
C(3). However, the upper bound r(ρABC) � C(3)(ρABC) follows
directly from Eq. (23) and the definition of C(3)(ρABC). This
completes the proof.

In the case of Figs. 1(b) and 1(c), i.e., the maximum entropy
state can be written as Eq. (16), we iteratively perform random
unitary operations as discussed in the previous case to systems

AB and AC. Let us rewrite ρ̃
(2)
ABC as

ρ̃
(2)
ABC =

⊕
a,b,c

p(a,b)p(c|a,b)ρAR
a BL

b
⊗ ρBR

b CL
c

⊗ ρCR
c AL

a
,

where p(c|a,b) = p(c|a)p(c|b)/p(c). We then introduce the
spectral decomposition ρAR

a BL
b

= ∑
Kab

λKab
�

Kab

AR
a BL

b

. Let us
define a set of unitaries {UARBL} in the same way as in the
previous case. Consequently, the averaged state becomes

ρ̄ABC =
⊕

a,b,Kab

p(a,b)λKab
�

Kab

AR
a BL

b

⊗ ρ
Kab

AL
a BR

b C

for some state ρ
Kab

AL
a BR

b C
. We further introduce the spectral de-

composition ρCR
c AL

a
= ∑

Lac
μLac

�
Lac

CR
c AL

a
and a set of unitaries

{UCRAL} similar to {UARBL}. After performing the second
average over the unitaries {UCRAL}, the state can be written
as

¯̄ρABC =
⊕

a,b,c,Kab,Lac

p(a,b)p(c|a,b)λKab
μLac

�
Kab

AR
a BL

b

⊗ �
Lac

CR
c AL

a
⊗ ρ

Kab,Lac

BR
b CL

c

.

Since the remaining correlation in ¯̄ρABC is also bounded by the
logarithm of the number Kab,Lac of different eigenvalues, we
can use the same argument as in the case of Fig. 1(c). Therefore,
Theorem 2 holds for all situations presented in Fig. 1.

V. APPROXIMATELY VANISHING CORRELATIONS

In general, assumptions (I) and (II) are not perfectly
satisfied and there are small local correlations between
separated regions. These correlations only vanish in the
thermodynamic limit. We are interested in whether the TEE
and the irreducible correlation are close if the correlations are
sufficiently small, i.e., each region is sufficiently larger than
the correlation length. Unfortunately, our proofs cannot be
generalized straightforwardly to this situation and we cannot
answer this question completely. However, by introducing a
“smoothed” version of the irreducible correlation, we can show
that at least the Levin-Wen–type TEE and the “smoothed”
irreducible correlation are close.

To discuss finite deviation due to the local correlations, it
may be useful to define a set of multipartite states where their
k RDMs are δ-similar to ρ as

Rk,δ
ρ ≡ {

σ ∈ S(Hn) | ∀Sk s.t. |Sk| = k, ‖σSk − ρSk‖Tr � δ
}
.

Then, we define the δ variation of the irreducible correlation
as

C
(k)
δ (ρ) ≡ S(ρ̃(k−1),δ) − S(ρ̃(k),δ),

where ρ̃(k),δ is the state having maximum entropy among all
states in the closed convex set Rk,δ

ρ .
In order to generalize our results to finite correlation

lengths, we have to relax the condition that two far-apart
regions have exactly zero correlation to the case that the
correlation is arbitrarily small. While Iρ(A : B|C) ≈ 0 does
not guarantee that ρABC is close to a state with a Markov
decomposition in Eq. (7) [32], it has been discovered [33]
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that Iρ(A : C|B) ≈ 0 implies that there exists a recovery map

B→BC such that

ρABC ≈ (idA ⊗ 
B→BC)ρAB.

By using this result, it is possible to extend our argument for
the case of Fig. 3(c) if the assumptions are satisfied with small
error δ. In fact, one can obtain that∣∣C(3)

δ (ρ) − Iρ(A : C|B)
∣∣ � f (δ) (24)

for some function f (δ), which goes to 0 in the limit δ → 0
(see the Appendix for details). Hence, if δ is sufficiently
small, the δ variation of the irreducible correlation and the
Levin-Wen–type TEE are close. However, |C(k)

δ (ρ) − C(k)(ρ)|
is not necessarily to be small due to the discontinuity of the
irreducible correlation [29]. Also, the proof of the Kitaev-
Preskill–type TEE is more involved since the maximum
entropy state cannot be written in terms of the recovery maps
of local QMSs. Moreover, a way to extend the relation to the
optimal secret rate is unclear, since the proof fully relies on
the Markov decomposition.

VI. CONCLUSION AND OPEN PROBLEMS

We have presented an information-theoretical approach
to analyze the TEE of states with zero correlation lengths.
In particular, we have established the equivalence between
the TEE, the irreducible correlation, and the optimal secret
sharing rate. Via the irreducible correlation we obtain an
interpretation of the TEE in both Kitaev-Preskill’s and Levin-
Wen’s approaches as the distance of the ground state to the
set of Gibbs states corresponding to Hamiltonians with only
bipartite interactions. This means that a nonzero TEE implies
that the reduced state on ABC (see Fig. 1) contains genuine
tripartite correlations in the sense that the reduced state cannot
be approximated by a Gibbs state of a Hamiltonian with
only bipartite interactions. Moreover, the equivalence to the
optimal secret sharing rate provides an intuitive operational
meaning to the TEE as the amount of information that can
be encoded in topologically nontrivial global regions without
being detectable by access to any partial (i.e., topologically
trivial) regions.

Although we only show our results for exactly vanishing
correlation lengths, we expect that they also hold approxi-
mately if the local correlations are vanishing approximately,
i.e., (I) and (II) are not satisfied perfectly. Unfortunately, our
techniques based on QMS do not allow us to generalize our
result straightforwardly in this direction, suggesting that new
technical tools are required. Thanks to recent breakthroughs
in the study of quantum states with small conditional mutual
information [33,45], we can show that the Levin-Wen–type
TEE is close to a smoothed version of the irreducible
correlation. But due to the lack of continuity of the irreducible
correlation, this does not suffice to prove that in general the
TEE and the irreducible correlation are close. Moreover, it is
not clear how to extend our result to the Kitaev-Preskill–type
TEE [i.e., Fig. 1(a)], since the maximum entropy state cannot
be represented via recovery maps.

Our results motivate us to investigate further the relation
between the irreducible correlation and characteristic proper-
ties of topological orders such as long-range entanglement and

locally indistinguishable ground states [46,47]. Furthermore,
it is known that the TEE is related to the total quantum
dimension [5] of the corresponding anyonic model. It would
thus be interesting to derive such a relation from a more
operational approach using the interpretation of the TEE as
the optimal secret sharing rate. To do so, the Wilson loop
operators, which are nonlocal operators related to the quantum
dimensions of anyonic charges, might be utilized as global
encoding operators.

Besides, another interesting question is whether the op-
erational interpretation of the irreducible correlation to the
optimal secret sharing rate extends to general quantum
multipartite states. If the equivalence holds, it provides a useful
formula to obtain an operational decomposition of the n-partite
total correlation via the maximum entropy principle.
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APPENDIX : PROOF OF EQ. (24)

In realistic models of topological ordered phases, our
assumptions (I) and (II) hold only approximately due to local
interactions. In the following we restrict our consideration to
the region given in Fig. 3(c). Namely, we assume that

Iρ(A : B2C) � ε (A1)

and

Iρ(A : B2|B1) � ε, (A2)

Iρ(B1 : C|B2) � ε (A3)

hold, and we choose ε as an upper bound for all these
quantities.

By using Pinsker’s inequality, the first assumption (A1)
implies that

‖ρAB2C − ρA ⊗ ρB2C‖Tr � 2
√

ε.

By using the monotonicity of the trace norm, this also implies
that ‖ρAC − ρA ⊗ ρC‖Tr � 2

√
ε.

The following theorem about the recovery maps recently
proven in Ref. [45] is crucial in the proof.

Theorem 3. [45] For any state ρBC on HB ⊗ HC there
exists a CPTP map (recovery map) 
B→BC such that for any
state ρABC satisfying TrAρABC = ρBC ,

Iρ(A : C|B) � −2 log2 F [ρABC,(idA ⊗ 
B→BC)ρAB],

where F (ρ,σ ) = Tr[
√√

ρσ
√

ρ] is the fidelity between ρ

and σ .
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Note that the fidelity satisfies ‖ρ − σ‖Tr � 2
√

1 − F 2.
Therefore the assumptions (A2) and (A3) imply that there
exists CPTP maps 
B1→AB1 and 
B2→B2C such that

∥∥ρAB1B2 − (

B1→AB1 ⊗ idB2

)
ρB1B2

∥∥
Tr � 2

√
1 − 2−ε, (A4)∥∥ρB1B2C − (

idB1 ⊗ 
B2→B2C

)
ρB1B2

∥∥
Tr � 2

√
1 − 2−ε . (A5)

Similar to the proof of Theorem 1 in the main text, we
define a global state ρ̃ABC by

ρ̃ABC ≡ (
idAB1 ⊗ 
B2→B2C

)
ρAB1B2 . (A6)

The 2-RDMs of this global state are close to the original state
ρ. By tracing out system A in Eq. (A6), we obtain that

ρ̃B1B2C = (
idB1 ⊗ 
B2→B2C

)
ρB1B2 ,

and therefore we have∥∥ρB1B2C − ρ̃B1B2C

∥∥
Tr � 2

√
1 − 2−ε

because of Eq. (A5). Combining Eq. (A4), Eqs. (A5) and (A6)
yield

ρ̃AB1B2 ≈ TrC
(
idAB1 ⊗ 
B2→B2C

)(

B1→AB1 ⊗ idB2

)
ρB1B2

= TrC
(

B1→AB1 ⊗ idB2C

)(
idB1 ⊗ 
B2→B2C

)
ρB1B2

≈ TrC
(

B1→AB1 ⊗ idB2C

)
ρB1B2C

= (

B1→AB1 ⊗ idB2

)
ρB1B2

≈ ρAB1B2 .

The precise calculation is performed by using the triangle
inequality and the monotonicity of the trace norm. As a result,
we obtain ∥∥ρAB1B2 − ρ̃AB1B2

∥∥
Tr � 6

√
1 − 2−ε . (A7)

Finally, since ρAB2 ≈ ρA ⊗ ρB2 , taking the partial trace over
B yields

ρ̃AC = TrB2

[(
idA ⊗ 
B2→B2C

)
ρAB2

]
≈ TrB2

[(
idA ⊗ 
B2→B2C

)(
ρA ⊗ ρB2

)]
= TrB2

(
ρA ⊗ ρB2C

)
= ρA ⊗ ρC

≈ ρAC.

In the third line, we used Theorem 3 applied to the tripartite
state ρA ⊗ ρB2C . More precisely, we obtain that

‖ρAC − ρ̃AC‖Tr � 4
√

ε.

Since 4
√

ε � 6
√

1 − 2−ε , we conclude that

ρ̃ABC ∈ R2,δ
ρ

for δ = 6
√

1 − 2−ε .
So far we have constructed a global state ρ̃ABC with 2-RDMs

similar to ρABC. Although this is not the maximum entropy state
in R2,δ

ρ , we can obtain good bounds of C
(3)
δ from this state. To do

so, we use the fact that a state that is approximately recoverable
has small conditional mutual information [33]. Equation (A7)
implies that∥∥ρ̃ABC − (

idAB1 ⊗ 
B2→B2C

)
ρ̃AB

∥∥
Tr � δ

by definition of ρ̃ABC. From Eq. (10) in Ref. [33], we obtain
that

Iρ̃(A : C|B) � 7 log2 dA

√
δ

for sufficiently small δ. Therefore, by using strong subadditiv-
ity, we find that for any state (including the maximum entropy
state) σABC ∈ R2,δ

ρ ,

Sσ (ABC) � Sσ (AB) + Sσ (BC) − Sσ (B)

� Sρ̃(AB) + Sρ̃(BC) − Sρ̃(B)

+ 2δ log2 dAd2
BdC + 3η(2δ)

� Sρ̃(ABC) + 2δ log2 dAd2
BdC

+ 3η(2δ) + 7
√

δ log2 dA

≡ Sρ̃(ABC) + 1
2f (δ), (A8)

where η(x) = −x log2(x). The first line follows by the strong
subadditivity. In the second line, we used the triangle inequality
to obtain ‖σAB − ρ̃AB‖ � 2δ and then used the Fannes
inequality. The third line follows by Theorem 3. Note that
limδ→0 f (δ) = 0. In conclusion, it holds that

C
(3)
δ (ρ) � Sρ̃(ABC) + 1

2f (δ) − Sρ(ABC)

+ 2δ log2 dAd2
BdC + 3η(2δ)

� Iρ(A : C|B) + f (δ),

where we again used the Fannes inequality.
Since the maximum entropy state in R2,δ

ρ has entropy larger
or equal to ρ̃ABC, inequality (A8) also implies that

C
(3)
δ (ρ) � S(ρ̃ABC) − S(ρABC)

� Sρ(AB) + Sρ(BC) − Sρ(B)

− 1
2f (δ) − S(ρABC)

� Iρ(A : C|B) − 1
2f (δ).

Hence, we conclude that∣∣C(3)
δ (ρ) − Iρ(A : C|B)

∣∣ � f (δ)

holds for sufficiently small δ.
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