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In this paper we investigate how common the phenomenon of finite time disentanglement (FTD) is with respect
to the set of quantum dynamics of bipartite quantum states with finite-dimensional Hilbert spaces. Considering
a quantum dynamics from a general sense as just a continuous family of completely positive trace preserving

maps (CPTP) (parametrized by the time variable) acting on the space of the bipartite systems, we conjecture that
FTD happens for all dynamics but those when all maps of the family are induced by local unitary operations. We
prove that this conjecture is valid for two important cases: (i) when all maps are induced by unitaries and (ii) for
pairs of qubits, when all maps are unital. Moreover, we prove some general results about unitaries that preserve
product states and about CPTP maps preserving pure states.
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I. INTRODUCTION

Following the definition of entanglement as a resource for
nonlocal tasks, as a consequence being quantified [1], the time
evolution of this quantity was the subject of intense interest.
Typically a composite system will lose its entanglement when-
ever its parts interact with an environment. It is of great interest
then for practical implementations of quantum information
protocols, which require entanglement, to understand how the
amount of entanglement behaves in time [2].

One characteristic of entanglement dynamics that has
drawn a great deal of attention was the possibility of an
initially entangled state to lose all its entanglement in a
finite time, instead of asymptotically. The phenomenon was
initially called entanglement sudden death [3], or finite time
disentanglement (FTD). The simplest explanation for this
fact is essentially topological: For finite-dimensional Hilbert
spaces, the set S of separable states, where entanglement is
null, has nonempty interior, i.e., there are balls consisting
entirely of separable states. Therefore, whenever an initially
entangled state approaches a separable state in the interior of
S and given that the dynamics of the state is continuous, it
must spend at least a finite amount of time inside the set, so
entanglement will be null during this time interval [4].

In Refs. [5,6] we explored how typical the phenomenon
is (for several paradigmatic dynamics of two qubits and two
harmonic oscillators) when one varies the initial states for a
fixed dynamics. Here we explore how typical it is with respect
to the dynamics themselves. More explicitly, given a dynamics
for a composite system, should one expect to find some initially
entangled state exhibiting FTD? Here we argue that the answer
is generally positive.
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The paper is organized as follows. In Sec. II we discuss the
generic existence of FTD and illustrate this discussion with a
well-known example of a family of maps. In Sec. III we state
and prove the technical lemmas and theorems already used in
Sec. II. We conclude this work in Sec. IV, discussing further
questions and open problems.

II. FINITE-TIME DISENTANGLEMENT

In a very broad sense, we can think of a (continuous-time)
quantum dynamical system as given by a family of completely
positive trace preserving (CPTP) maps A,, parametrized by
the real time variable ¢ for, say, > 0. If a quantum system is
in some state given by a density operator py at t = 0, for any
t > 0 we have the system at the quantum state p(¢#) = A(0o)-
Of course, one must have Ay = I, where [ is the identity map.
Although in some cases a discontinuous family of maps can
be a good approximation to describe a process (for example,
when a very fast operation is performed on a system or when
the system will not be accessed during some time interval),
strictly speaking, the family of maps should be at least
continuous.

Generally speaking, for a fixed dynamics A,, we say that
it shows FTD if there exist an entangled state o, and a time
interval (a,b), with 0 < a < b < o0, such that A,(pen) 1S a
separable state for all ¢ € (a,b). In Refs. [4,5] we pointed out
that the occurrence of such an effect is a natural consequence
of the set of separable states S having a nonempty interior.
Indeed, if an initially entangled state is mapped at some time 7
to a state in the interior of S, given the dynamics continuity, it
must spend some finite time inside S to reach that state. During
that time interval entanglement is null, although initially the
system had some entanglement. We formally state this fact for
future reference as follows.

Proposition 1. If a bipartite quantum dynamical system is
such that, for some 7 > 0, there exists an initially entangled
state pene Where its evolved state at time 7 is in the interior of
the separable states, there is FTD.
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FIG. 1. Pictorial representation of the set of quantum states when
dim(H) < oo.

This proposition is one of the main reasons why we believe
the following general conjecture is valid.

Conjecture 1. Given a bipartite quantum dynamical sys-
tem with finite-dimensional Hilbert space Hs ® Hp and a
continuous family of CPTP maps A,, there is no finite time
disentanglement if and only if for all # > O there exist unitary
operations Uy ; and Up ; acting on H4 and Hp, respectively,
such that A;(-) = (Ua,; @ Up,)()(Ua,; @ Up,1)*.

In physical terms, this says that FTD does not take place
only in the extremely special situation in which the pair of
systems is closed (or at most interacting with a classical
external field) and noninteracting. That is, whatever interaction
they may have, with each other or with a third quantum system
(such as areservoir), FTD takes place for some entangled state.
From now on, we denote the family of dynamics contained in
Conjecture 1 by Fy, 3, that is,

Framy = UAO}i=05 {A()}iz0
AC)=Ua,; @Up ) )Ua, @ Ug)'}. 9]

Once again, the intuition behind Conjecture 1 is geometric.
Figure 1 shows a pictorial representation of the set of quantum
states when the Hilbert space is finite dimensional, with the
distinguishing property of the set of separable states having a
nonempty interior. In Fig. 2 the arrows indicates the mapping of
initial states to their corresponding evolved ones, at an instant
of time 7 > 0. Note that all CPTP maps must have at least one
fixed point and all other states cannot increase their distance
to that fixed one; therefore for each instant of time ¢t > 0 we
can identify a direction for the flow of states. It is expected
that if the flow is directed towards a separable state, some
entangled states will be mapped inside the separable set (2 a).
Howeyver, even in the case where the flow is directed towards
an entangled one, if the displacement is small enough, some
entangled state located “behind” the set of separable states will
be mapped inside it (2 b). Below we prove this statement under
some special conditions.

is continuous and

A. Closed systems

We start with the additional assumption that the bipartite
system dynamics is induced by unitary operations for all # > 0
[there is some U, acting on H 4 such that A,(-) = U,(-1)U[].
That is, the pair of systems may have any interaction with
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FIG. 2. Arrows represent how initial states are mapped to time-
evolved ones: (a) flow directed towards a separable state and (b) flow
directed towards an entangled one. In fact, we should stress that it
is not always true that the whole family keeps fixed some p, i.e.,
A, (p) = pVt > 0 for some state p.

each other and they can even interact with classical external
sources (for instance, their Hamiltonian may vary in time due
to an external control of some of its parameters). Under such
conditions, FTD is a consequence of Proposition 1 above and
Theorem 5 (discussed in Sec. III).

Theorem 1. If a bipartite system has dynamics given by
A() = U,(-)U; for all t > 0, there is no FTD if and only if
{Ar}iz0 € Friy my-

Proof. Indeed, if the family A, is such that, for some 7 > 0,
Us is not a local unitary operation, there exists an entangled
state |yg) such that |p) = Ur [Yg) is a product state (see
Corollary 2). Take small enough 0 < A < 1 such that pgp =
Aﬁ 4+ (1 — M)|YE) (Y| is still an entangled state. We then

have that A(pg) = Aﬁ 4+ (1 — X)|Y¥p)(Yp] is a state in the
interior of the set of separable states (a convex combination of
an arbitrary point of a convex set with a point in the interior of
it results in an element also in its interior [7]). By Proposition

1, FTD takes place. |

B. Pair of qubits

Physically, although Theorem 1 allows for very general
interactions between the systems, it is restrictive with respect
to their interaction with their environment, since this environ-
ment must be effectively classic. Here we greatly relax this
restriction, with the consequence of diminishing the range of
quantum systems considered.

Theorem 2. If a bipartite system with Hilbert space H 5,
where dim(H 4) = dim(H ) = 2, has a dynamics such that
A1) =1 for all t > 0 (i.e., each map is unital), there is no
FTD if and only if {A;}i>0 € Fr, -

Proof. For an arbitrary instant of time 7, we have the
following four possibilities for the corresponding CPTP map
A;: (1) It is induced by a local unitary operation, (ii) it is
induced by a composition of a local unitary operation with the
SWAP operator, (iii) it is induced by a unitary operation that is
neither local nor the composition of a local unitary with the
SWAP operator, and (iv) it is not induced by any unitary. Let us
look at each situation.
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(i) Of course, if this holds for all + > 0, we do not have
FTD.

(iii) Here we can just apply Theorem 1 to show that there
is FTD.

(iv) We can find a maximally entangled state pg such
that A,(pg) is mixed (see Theorem III). If A_(p) is the
smallest eigenvalue of the partial transposition of p, we
have that A_(pg) = —3 and A_[A(pg)] =8 > —3 (see Ref.
[8]). We can choose 0 < p < 1 such that A_[ppg + (1 —
Pl =p(=5 =+ <0and A_[pA(pg) + (1 — p)j] =
p(8 — 1)+ 1 > 0. That is, the initial state ppg + (1 — p)J is
entangled but its time evolved state at 7, pA(pg) + (1 — p)%,
is in the interior of the set of separable states. By Proposition
1, we have FTD.

(ii) Finally, if this is the case, the continuity of the family of
maps allows us to conclude the existence of a0 < f < ¢ where
A7 fits in either case (iii) or (iv), since the set of CPTP maps
induced by such unitaries is disjoint from the set induced by
local unitaries (a continuous path between two disjoint sets
must necessarily pass through the complement of them). W

C. Example: Markovian dynamics

A Markovian dynamics [9] is distinguished by a semigroup
property satisfied by the family of CPTP maps

Ay = Ao Ay 2

for all £,+' > 0. It holds then [10] that the dynamics can be
equivalently described by a differential equation (a Lindblad
equation)

9O it o+ i (ApA*‘ ~Liara, p}) (3)

dt ’ P e e
where H is self-adjoint while A; are linear operators. Lindbla-
dian equations can describe a plethora of physical phenomena
such as the dissipation of electromagnetic field modes of a
cavity, spontaneous emission of atoms, and spin dephasing
due to a random magnetic field. Therefore, despite the fact
that the semigroup condition is somewhat restrictive, it is
satisfied by many relevant quantum systems. The first term
on the right-hand side (rhs) generates a unitary evolution and
can usually be interpreted as the Hamiltonian evolution of the
isolated system. The term involving the operators A; is usually
called a dissipator, being responsible for the contractive part
of the dynamics.

When an operator A; is proportional to the identity it does
not contribute to the dynamics. Moreover, the dynamics will
preserve the purity of initial states if and only if all operators
A; are of such kind (that is, the dynamics is Hamiltonian).

Lemma 1. For p(t), a solution of Eq. (3) with initial

condition ) (v, it holds that 1im,ﬁ()“%/f“” =0 for all |yr)
ifandonly if A; = A;I fori =1,...,N.
Proof. Indeed, for t > 0,

d Tr[ p?
TN, (%,
dt dt

N
. 1
= 2Tr(—t[H,p]p+ E AipAjp — E{A?Ai,p}p)

i=1
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Since lim;_,gp = [¥) (1], it follows that

N
=23 (LW IAY) P = AP, @)

i=l1

. d Tr[p*(1)]
hmtaod—

By the Cauchy-Schwarz inequality
LAY 1P < IHWIPHA )P = AP,

we can conclude the rhs of Eq. (4) is zero if and only if all terms

in the sum are zero and |¥) o< A; |¢) foreveryi =1,...,N.
These proportionality relations holds for all |¢) if and only if
all A; are proportional to the identity operator. |

The above lemma shows that, for every ¢ > 0, the CPTP
map defined by Eq. (3) is not induced by a unitary operation. It
is also easy to check that every CPTP map given by Eq. (3) is
unital as long as " (A;A* — A*A;) = 0. With this in hand,
by Theorem 2, we can state the following.

Corollary 1. If a bipartite system with Hilbert space H 45,
where dim(H4) = dim(Hpg) = 2, has a dynamics described
by Eq. (3), where some A; is not a multiple of the identity and
SN (A;AF — A*A;) = 0, there is FTD.

III. UNITAL PURE STATE PRESERVING MAPS
AND PRODUCT PRESERVING UNITARIES

In this section we prove some results about CPTP maps,
such as the characterization of unital and pure state preserving
ones, which were used in the Sec. II.

Consider a bipartite quantum system with finite-
dimensional Hilbert space H. We say that a CPTP map A,
acting on the set of all density operators D(H), is pure state
preserving if A(|y) () is a pure state for every pure state |1).
Trivial examples of such maps are those induced by unitary
operations [A(p) = UpU' for a unitary U acting on H] and
the constant maps A(p) = |¢o) (Po| where |¢p) is a fixed state.
Moreover, a CPTP map is said to be unital if it maps the
maximally mixed state on itself.

Theorem 3. Every pure state preserving unital map A :
D(H) — D(H), where dim(H) = d < oo, is induced by a
unitary operation.

Proof. Take a Naimark dilation of A, that is, a unitary U
acting on a larger space H ® R and a fixed vector |R) € R
such that A(p) = Trr[U(p ® |R){R|)U*] for all p € D(H).

It must be the case that U |¢) ® |R) is a product vector
for all |¢) € H since otherwise Trr[U(|¢)(¢| ® |R)(R|)U*]
would not be a one-dimensional projector and A would not
preserve pure states.

Now, if {|¢ j)}¢=1 is an orthonormal basis, we have that
A(lg;){¢j]) = P; for some one-dimensional projectors P;.

From A being unital, it holds that A(27=1 lpj) ;) =

ijl P; = I, so the projectors P; must be mutually orthogo-
nal.

With the preceding two paragraphs in mind, it must be true
that, for j =1, ... ,d, there are normalized vectors |/;) € H
and |R;) € R such that U |¢;) ® |R) = |¥j) ® |R;). More-
over, the set {|y j)}‘jzl must be orthonormal. On the other
hand, for j = 2,....d,

U(lg1) +19;) ® |R) = [¥1) ® |R1) + |¥;) ® |R;).
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For the vectors on the rhs of this equation being products, given
that |¢;) is orthogonal to |¢;), it must hold that |R;) = z; |R;)
for some z; € C of unity modulus. If we define a unitary
V acting on H by V |¢;) =z, [¥;) for j =1,....d, we get
A(p) = VpV* for all density operators p. |

Lemma 2. Let H 4 and Hp be two two-dimensional Hilbert
spaces. If @), [¥) € H4 ® Hp and |¢) + €' |/) is a product
vector for all 6 € R, then |¢) and |¢) are products too.

Proof. Let |¢) =a|00) 4+ b|11) be a Schmidt decom-
position for |¢) and |¢) = « |00) + B]01) 4+ |10) + 5§ |11)
be the expression for [¢p) with respect to the basis
{|00), |01}, |10}, |11)}. For arbitrary z € C, we can define the
family of vectors

|z) = |¢) +z|¥)
= (az+a)|00) + (bz +8)|11) 4+ B|01) + y |10).

For each z, the above state factorizes if and only if the following
determinant is zero:

_ @z +a) B

b y bz +5)

= abz*+(ad + ba)z + as + By.
Ifa,b # 0(i.e., |{) is entangled), D cannot be identically zero
for all values of z. Therefore, |) must be a product. By similar
reasoning, we conclude that |¢) is also a product. |

Lemma 3. Let H 4,’H g be two Hilbert spaces with dimension
d>2.1f |¢), |¥) € Ha ® Hp and |¢) + €' [{) is a product
state for all 6 € R, then |¢) and |y) are products too.

Proof. Let us argue by contradiction. Suppose that |r)
is entangled; thus in the Schmidt decomposition [¢) =
27:1 Yy |Il) there are at least two indices /; and [, such that
Y1, Y1, 7 0. Writing |¢) = Zk.j ¢, ; |kj) in the same basis as
|) and defining yr ; = Y6y, ; we get

10) = 1¥) + € 1) =Y (Wrj + €’ ;) 1kj) VO € R.

k,j

Therefore, |#) is a product, by hypothesis, for all
6 € R. Projecting |¢) at the subspace generated by
{Iilh), 1lil2), 1), |l212)}, we obtain

&)=Y (s +e ) lkj).

k,jelli,h}

Since &) € C*> ® C? is a product for all values of 6, we can
apply Lemma 2 and obtain the desired contradiction. |
Theorem 4. If A is a unital map acting on H,p = C? ® C?
and preserves the purity of maximally entangled states, then
A is induced by a unitary operation.
Proof. Take a representation of A in terms of a unitary U
acting on a larger space Hp ® Hpy such that

A(p) = Trr[U(p ® |R)(RDU™],

where |R) € Hg. With U(|00) ® |R)) = |¢) and U(|]11) ®
|R)) = |¢), we have, for all 8 € R,

(100) + ¢ [11)) ® |R) +=> |¥) + € ).

As A preserves the purity of (|00) + e |11)), the state
[¥) + €? |¢) is a product for all 6, with respect to Hz @
‘Hg. Lemma 3 implies that |¢) and |¢) are both products,
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100) ® |R) > [¥00) ® | Roo), (5a)
111) ® |R) > Y1) ® |Ruy). (5b)

Let B = {|W.), |D+)} be the Bell basis in H 45. The map

A satisfies
1=A0) = A(P4) (D]
FH PN (P + W) (W] + W) (W_|).

Since the images A(|®4)(P4|) and A(|Wi)(W4|) are four
one-dimensional projectors (A preserves the purity of maxi-
mally entangled states) that sum up to the identity, they must
be mutually orthogonal.

Observe that the combinations (|Y) ® |Roo)) £ (|¥11) ®

|R1)) must be products with respect to Hp ® Hg because
they are images of |®.) ® |R) under U. We state that

|Roo) = €' |Ryy).

Otherwise  [Yo) o [¥1;) and then A(|®L ) (Dy|) =
[Woo) (Wool = A(]P_)(P_]|), contradicting the fact that
A(|P4) (D) are mutually orthogonal. Again, from

01) ® |R) = [¥o1) ® |Ror),
110) ® |R) +> [¥10) ® |R10),

we derive that |Rg1) = €'® |R1o). Now define |€) = a |d,) +
b|®_)+c|W¥y)+d|¥_) for a suitable choice of constants
a,b,c,d # 0 such that |§) is maximally entangled. Therefore,

U(&) ® |R)) = (a [¥o0) + be™™ |¥11)) ® |Roo)
+ (¢ [Yo1) + de ™ |Yr10) @ |Ror)

and then |Ry) = ¢ |Ry;). We can define a unitary operator
V, acting on H 4, given by

100) V> [0, (62)
1) & e [y, (6b)
101) > =P [y, (6¢)
110) > 7O [yy0). (6d)
With this definition, we have A(-) = V(-)V*. |

When H 4 = H g, we can define the so-called SWAP operator
S by S(l¢) ® |¥)) = |¥) ® |¢). If the Hilbert spaces are not
the same but have the same dimension, we can take any
isomorphism W : H,4 — Hp between them and define the
operators Sy = (W' ®1Ip)oSo(¥® Ip), where I is the
identity operator on Hp, i.e., Sy |¢) ® |¥) =¥ (|¥) ®
W(|¢)), which we will also denote by SWAP.

The following theorem characterizes unitary operations
acting on composite Hilbert spaces that preserve product
vectors.

Theorem 5. Let U be a unitary operation acting on a Hilbert
space H4 ® Hp, where H 4 () has finite dimensiondy () = 2.
Then U is product preserving if and only if it is a local unitary
operation or, for the case dim(H 4) = dim(H ), a composition
of a local unitary operation with a SWAP operator.
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Proof. Consider an orthonormal basis in each space
{|j)A}(jj.1:(§H")_1 and {|k) )97~ The unitary operation
must map states |j), ® |k)p into elements [ ;i) , ® [dji) g
which are mutually orthogonal. Since the images of the prod-
uct vectors (| /)4 + 1j')4) ® |k) . that is, [Vx) , ® i) g +
[Vjk) 4 ® |@jk) - are also product vectors, we must have one
of two options

W) a L 1Yjudss 1Pjk)g X |bjik) g (7a)

or

1Pj) g L1@ji) g [Wji) g Vi) - (7b)

For a fixed k, if one of the options is valid for a pair
j and j’, it must be valid for all such pairs. Indeed,
suppose that the first option is valid for, say, j =0 and
Jj/ =1 and the second for j =0 and j' = 2. The image of
the product vector (|1)4 + [2)4) ® |k)p, given by [Yx)4 @
|P1x) g + |¥2k) 4 ® |d2k) g, would be an entangled vector since
we would have [Yr1x) 4 L [Vor)as [W2k)a X Vo) as [1k)p X
\dor) 5> and |¢ai) g L |go) . Therefore, [, L [Wa) and
|P1k)p L |d2x) -

(i) Assume that (7a) is true. That means that the vectors
|¢jx) p are proportional to each other for fixed k, while the
vectors |x) 4, also for fixed k, form an orthonormal basis.
We can write then U | j), ® [k} 5 = ¢ /1) , ® [dox) 5-

If we consider the image of the vectors |j), ® (|k)z +
|k") 5), we deduce that we have the following options:

i) g L 1@ji) g (Wjnd 4 X Wja) o (8a)

or

Vi) a L 1Wji)ss 1@k p X Pji)p - (8b)

Again, similarly to what we have above, if one of the option is
valid for a pair k and &/, for fixed j, it must be valid for all such
pairs. However, given that (7a) is true, now only (8a) can also
be true. Indeed, if (8b) were true, we would have, for example,
the subspace generated by the vectors {|j)4 ® |0)5,[0)4 ®
|k) g}, of dimension dim(H 4) + dim(H ) — 1, mapped to the
subspace Ha ® |¢oo), of dimension dim(H ), contradicting
the fact U is unitary.

Since we have that (8a) is true, we can write U |j), ®
lk)g = €% [Yrj0) , ® |dox) g. Using this expression and de-
manding that the states (|j), + /') 4) ® (|k)z + k') 5) are
of the product form for all pairs j,j’ and k,k’, we obtain
e Oty) = ¢l +00 n particular, if k' = j' =0, we get
Ojx = 0jo + Bor(mod 27), since 6o = 0 by construction. Fi-
nally, we have U = Uy ® Ug with Uy |j), = €'% |;0) , and
Ug k) g = €' |doi) .-

(i1) Assume that (7b) is true. Note first that it is necessary to
have dim(H4) > dim(H ) since, for fixed k, we are varying
over dim(? 4) orthonormal vectors on A, which therefore give
rise to a set of orthonormal vectors [@)  inHp. So U(]j) 4 ®
k) g) = €% [ o) 4 ® |Pji) - Now only the option (8b) can
be true, so again we have dim(Hp) > dim(H 4), and therefore
dimH 4 = dim’H p, which allows us towrite U(|j) 4 ® |k)p) =
€% |Yor) 4 ® l¢pjo) 5. Considering again that the image of
the states (|j)4 +1j)4) ® (k)5 + |k’)5) must be product
vectors, we have éjk = éj() + Bgr(mod 27). In other words,

PHYSICAL REVIEW A 93, 022313 (2016)

U= (Ua®Up)o Sy, where Uxlj)s = e |yn;), Up=
&% o) g, and W k) 5 = [K) p. n

Putting these results together we have the following.

Corollary 2. If U is a unitary operator acting on a Hilbert
space H4 ® Hp, where H, (p) has finite dimension and
preserves entangled states, then it is a local unitary operation
or, for the case dim(H 4) = dim(H ), a composition of a local
unitary operation with a SWAP operator.

Proof. If U preserves entangled states, its inverse U~
preserves product states. From Theorem 5, there are unitaries
V4 and Vjp acting on H 4 and 'H p, respectively, such that U L
Vi@ VgorU™' = SoV,® Vg, therefore U = Uy ® Up or
U=Us®UpoS,withUy =V, and Ug = V' [

IV. DISCUSSION

Although we could not prove Conjecture 1 in its full gener-
ality, we manage to do it for some large and important families
of quantum dynamics. They include all possible dynamics for
a bipartite closed system, whatever interaction the parts might
have and whatever time variation their Hamiltonian may have.
For qubits, a much larger class of dynamics was considered,
only requiring a technical condition (unitality) on CPTP maps
describing the time evolution. Since the proof for qubits seems
quite technical and the geometric ingredients are the same for
other finite dimensions, the conjecture that the only class of
bipartite dynamics not to show FTD is the local unitaries must
hold, but still demands a final proof.

The requirement of finite-dimensional Hilbert spaces seems
to be essential. Indeed, the geometric insight is based on the
fact that the set of separable states has a nonempty interior,
which ceases to be true whenever one of the Hilbert spaces is
of infinite dimension [11]. Of course, even in that case, where
generically one does not expect FTD, many physically relevant
dynamics actually can show it, such as those preserving
Gaussian states [6].

Another situation where topology changes, and conse-
quently the entanglement dynamics changes, is when one is
restricted to pure states. There, the set of separable states
(indeed, product states) has an empty interior. For these
systems, FTD can only happen if tailored. For example,
starting from an entangled state, some family of global
unitaries is applied up to a time when the state is a product;
from this time on, only local unitaries are applied. This is
clearly not generic in the set of dynamics.

As a final comment, it is natural to recall that for practical
implementations of quantum information processing, it is
important to fight against FTD. Our results about the generic
nature of FTD do not make this fight impossible. Even for
dynamics where FTD does happen, is is natural to search
for initial states where it can be avoided, or at least delayed
[2,3,12,13].
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