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Various implementations of the Toffoli gate up to a relative phase have been known for years. The advantage
over the regular Toffoli gate is its smaller circuit size. However, its use has been often limited to a demonstration
of quantum control in designs such as those where the Toffoli gate is being applied last or otherwise for some
specific reasons the relative phase does not matter. It was commonly believed that the relative-phase deviations
would prevent the relative-phase Toffoli gates from being very helpful in practical large-scale designs. In this
paper, we report three circuit identities that provide the means for replacing certain configurations of the multiple
control Toffoli gates with their simpler relative-phase implementations, up to a selectable unitary on certain
qubits, and without changing the overall functionality. We illustrate the advantage via applying those identities
to the optimization of the known circuits implementing multiple control Toffoli gates, and report the reductions
in the controlled-NOT count, T count, as well as the number of ancillae used. We suggest that a further study of
the relative-phase Toffoli implementations and their use may yield other optimizations.
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I. INTRODUCTION

Multiple control Toffoli gates are the staple of quan-
tum arithmetic and reversible circuits. They are employed
widely within quantum algorithms, including in reversible
transformations, such as arithmetic circuits and all sorts
of Boolean operations over quantum registers, as well as
subroutines within other specialized quantum transforms.
Unfortunately, multiple control Toffoli gates are not simple
operations, and must be implemented using a certain library
of elementary gates—physically attainable transformations for
physical-level implementations, and fault-tolerant gates on the
logical level. As of the time of this writing, most advanced and
developed trapped ions [1] and superconducting [2] quantum
information processing approaches allow computations over at
most a few dozen qubits using at most a few dozen two-qubit
gates. The smallest of the multiple control Toffoli gates, the
three-qubit Toffoli gate, requires six controlled-NOT (CNOT)
gates as a physical-level circuit over controlling apparatus
allowing the application of the CNOT and arbitrary single qubit
gates, and seven T gates, as a logical fault-tolerant circuit
over the Clifford + T library without ancillae. The known
implementations of larger multiple control Toffoli gates come
at a substantially higher cost. This makes the multiple control
Toffoli gates be expensive computing primitives. As such, the
ability to replace them with their simpler counterparts that
nevertheless can guarantee the overall functional integrity, as
well as their optimization (multiple control Toffoli gates are
implemented using smaller size multiple control Toffoli gates
[3,4]), are important in practice. Ultimately, the difficulty of
implementing Toffoli gates may even be a deciding factor in the
ability to run an experiment of a desired size. Indeed, consider a
scenario where only a fixed number of certain elementary gates
can be applied. Imagine the goal is to run a discrete logarithm
type computation [4]. Since circuits implementing such an
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algorithm are dominated by reversible arithmetic operations,
which in turn rely on the Toffoli gates, it is conceivable that
optimizing Toffoli implementations would yield a resource
count that is possible to execute for a desired size computation.
Multiple control Toffoli gates are, of course, important beyond
just the discrete logarithm type algorithms.

The goal of this paper is to provide a framework for
replacing multiple control Toffoli gates with their simpler
relative-phase implementations. The advantage is illustrated
through an optimization of the implementations of the multiple
control Toffoli gates. The reported optimization is viewed as a
motivating example rather than a complete and finished study.
An in-depth look at the implementations of the relative-phase
multiple control Toffoli gates and their use in the optimization
of arbitrary quantum circuits may likely yield more results.

To draw a classical analogy, relative-phase Toffoli gates
may turn out to play a role analogous to the classical
NAND gates: while classical (quantum/reversible) circuits are
designed using a convenient for a human set of operations
(multiple control Toffoli gates), a compiler may decompose
those into NAND gates (relative-phase multiple control Toffoli
gates) before they are mapped into lowest-level transistors
(elementary quantum gates).

II. DEFINITIONS

In this paper, we will work with pure n-qubit quantum
states

∑2n−1
i=0 αi |i〉 and quantum transformations described by

the 2n × 2n unitary matrices U . Recall that a square matrix
U is called unitary if its inverse equals to its conjugate
transpose, U−1 = U †. While the property of unitarity defines
evolutions that are possible to attain physically, it does not
prescribe which ones may be implemented directly. To assist
with the presentation of the material, we will discretize the
family of transformations that may be obtained physically,
and call them elementary quantum gates. This does not limit
the applicability of the results—indeed, discrete circuits may
be thought of as certain versions of continuous Hamiltonians,
but are otherwise easier to work with. In particular, in this
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work we will rely on the following elementary gates: Pauli-X,
X = NOT = (0 1

1 0), Pauli-Z, Z = (1 0
0 −1), and its roots

Phase, P = √
Z = (1 0

0 i), T = 4
√

Z = (
1 0
0 1+i√

2
), and Pauli-Y ,

Y = (0 −i

i 0 ). A fourth root of Y will be mentioned in some
constructions, in the form of RY (π/4), that is equivalent
to the fourth root of Y up to a global phase. Recall that

RY (θ ) = (cos θ
2 − sin θ

2
sin θ

2 cos θ
2

). Finally, for completeness we will

need the Hadamard gate, H = 1√
2
(1 1
1 −1), and the two-qubit

CNOT gate that we introduce via the mapping of kets, rather
than the 4 × 4 matrix, as CNOT(a,b) : |a,b〉 �→ |a,b ⊕ a〉, and
everywhere else by linearity, due to the simplicity of such a
definition.

Quantum circuits are defined as the strings of quantum
gates, or otherwise products of matrices that correspond to
the individual gates. For multiple qubit circuit computations
via matrices, a proper Kronecker product needs to be taken to
compute matrix products. For example, a two-qubit operation
corresponding to the Hadamard gate on the first qubit is
given by the matrix H ⊗ Id, where Id is the identity applied
to the second qubit. Recall that the product of matrices is
taken in reverse order with respect to the order of gates in
the corresponding circuit. Following the standard notations,
circuits or unitaries composed of quantum gates or matrices
X, Y , Z, P , H , and CNOT are called Clifford. These unitaries
play an important role in quantum error correction, but
are not complete (moreover, simulable classically with a
polynomial size effort) for quantum computation. As such, for
completeness, a circuit library needs to contain a non-Clifford
gate, such as the T gate. The addition of any non-Clifford gate
to the Clifford circuits furthermore turns out to result in the
computational universality [4].

The above is meant to be a quick reminder of some basic
facts and an introduction of the notations used in this paper.
For an in-depth review we refer the reader to [4].

For convenience, we furthermore use the following nota-
tions: For a set of variables or qubits X = {x1,x2,...,xn}, |X|
equals n, being the number of individual qubits in this set, and
the conjugation (Boolean AND) of variables, x1&x2&...&xn is
denoted as simply x. When the number of variables in the set
X is zero, we assign x the value of 1. When the set of variables
X consists of a single element {x}, the conjugation of the
variables within the set, as well as the name of the variable,
coincide; this does not, however, cause any issues.

We next define the multiple control Toffoli gates.
Definition 1. A multiple control Toffoli gate over a set of

n qubits with the set X = {x1,x2,...,xn−1} being the controls,
and qubit y being the target, TOFn(X; y), is defined as the
matrix,

diag

{
1,1,....,1,

(
0 1
1 0

)}
.

We will sometimes omit the superscript and write
TOF(X; y) when the controls and the target are explicitly
specified and the size of the multiple control Toffoli gate can
thus be restored. Similarly, we may omit the specification of
the qubits the gate operates on and write TOFn when we are
only concerned with the size of the gate. Finally, we may write

TOF when the goal is to specify the kind of gate being the
Toffoli and distinguish it from other kinds of gates. Observe,
that when |X| = 0 the above definition reports the Pauli-X
(NOT) gate, for |X| = 1 the definition introduces the CNOT gate,
when |X| = 2, it reduces to the usual Toffoli gate TOF3, and for
larger sets X, the multiply controlled Toffoli gates—Toffoli-4,
Toffoli-5, etc.

An alternate definition of the multiple control Toffoli
gate may cast it in the form of the mapping of kets, as
follows, TOFn(X; y) : |X,y〉 �→ |X,y ⊕ x〉. In some cases, the
mapping of kets may be easier to operate with than the
corresponding unitary matrix.

In our constructions, relative-phase implementations of
quantum unitary transformations play a major role. For the
purpose of this work, we define relative-phase implementa-
tions as follows.

Definition 2. A relative-phase version of a quantum n-qubit
unitary operation U = {ui,j }|i,j=0..2n−1 is any n-qubit unitary
V = {vi,j }|i,j=0..2n−1 such that |vi,j | = |ui,j | for all i and j .

In other words, a relative-phase version or otherwise
implementation of a unitary U is a unitary V such that the
elements of the two matrices differ by eiπφ , where φ ∈ R, and
φ may be different for different matrix elements. Observe that
eiπφ0 = 0, therefore relative-phase versions of unitaries have
zeros everywhere the original unitary does.

To illustrate, a relative-phase multiple control Toffoli gate
over the set of controls X = {x1,x2,...,xn−1} with the target y,
RTOF(X; y), can be written as follows,

diag

{
z0,z1,....,z2n−3,

(
0 z2n−2

z2n−1 0

)}
,

where zi are arbitrary length-1 complex numbers. Prefix “R” is
used to distinguish the relative-phase version from the multiple
control Toffoli gate itself. Observe that when all zi = 1, the
respective relative-phase Toffoli gate RTOF(X; y) becomes the
multiple control Toffoli gate TOF(X; y), and when all zi take
the same but fixed value z, the respective relative-phase Toffoli
gate RTOF(X; y) implements the multiple control Toffoli gate
TOF(X; y) up to an undetectable global phase z.

A relative-phase multiple control Toffoli gate RTOFn

may be thought of as a product of the multi-
ple control Toffoli gate TOFn and an n-qubit diago-
nal unitary Dn. Indeed, for a diagonal unitary Dn :=
diag{z0,z1,....,z2n−1} circuit TOFnDn implements a generic
relative-phase multiple control Toffoli gate R1TOFn =
diag{z0,z1,....,z2n−3,(

0 z2n−2
z2n−1 0 )}, whereas circuit DnTOFn

implements a generic relative-phase multiple control Toffoli
gate R2TOFn = diag{z0,z1,....,z2n−3,(

0 z2n−1
z2n−2 0 )}. Observe

how both gates are relative-phase multiple control Toffoli
gates, but different in the last two nonzero elements, that are
being permuted. We will exploit this property in the circuit
diagrams. In particular, of the two possible decompositions of
the relative-phase multiple control Toffoli gate into a product
of the multiple control Toffoli and a diagonal unitary, we
will select TOFnDn to be the canonic one, and draw the
respective relative-phase multiple control Toffoli gate with
same controls as the diagonal gate Dn and a distorted target,
such as illustrated in Fig. 1(c). The helpful intuition behind this
pictorial representation is as follows: A Toffoli gate TOF(X; y)
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FIG. 1. (a) A multiple control Toffoli gate TOF(X; y). (b) A
diagonal gate D1(X; y) and its inverse. Observe how different
diagonal gates can be visually distinguished by the number within
the control, and a diagonal gate and its inverse are related by the
different color of the control. (c) A relative-phase multiple control
Toffoli gate R1TOF(X; y) and its inverse R−1

1 TOF(X; y). (d) A type-y
special form SyR1TOF(X; y), and its inverse. (e) A controlled-unitary
U implemented up to some relative phase. The /—symbol denotes a
multiqubit register.

may be combined with a diagonal gate D(Z), Z ∈ {X,y},
following it to obtain a relative-phase Toffoli gate, or a Toffoli
gate TOF(X; y) may be combined with a diagonal gate D(Z),
Z ∈ {X,y}, preceding it to obtain the inverse of a relative-phase
Toffoli gate; conversely, each relative-phase Toffoli gate or its
inverse may be broken down into a suitable pair of the multiple
control Toffoli gate and the diagonal gate.

An important property of the relative-phase multiple con-
trol Toffoli gates is that every one of those is an inverse
of some other relative-phase multiple control Toffoli gate.
Indeed, for R1TOFn = diag{z0,z1,....,z2n−3,(

0 z2n−1
z2n−2 0 )} and

R2TOFn = diag{w0,w1,....,w2n−3,(
0 w2n−1

w2n−2 0 )} R1TOFn =
R−1

2 TOFn when wi = z−1
i for i = 0...2n − 3, w2n−2 = z−1

2n−1,
and w2n−1 = z−1

2n−2.
We next define special form relative-phase multiple control

Toffoli gates, that are important in some of the constructions
that follow.

Definition 3. For a set X = {x1,x2,...,xn}, and its subset
X′ = {xi1 ,xi2 ,...,xik } a type-X′ special form relative-phase
multiple control Toffoli gate, SX′

RTOF(x1,x2,...,xn−1; xn), is
defined as the matrix,

diag

{
z0,z1,...,z2n−3,

(
0 z2n−2

z2n−1 0

)}
,

where every pair of complex numbers zs and zt are equal
whenever the binary expansions of s and t are different only
in the digits i1,i2,...,ik−1, and ik .

To illustrate, a type-{x1} Sx1 RTOF(x1,x2,...,xn−1; xn) is
given by the matrix,

diag

{
z0,z1,...,z2n−1−1,

z0,z1,...,z2n−1−3,

(
0 z2n−1−2

z2n−1−1 0

)}
.

The type-{x1} special form relative-phase Toffoli gate
Sx1 RTOF has half the number of the degrees of freedom
compared to the equal size unrestricted relative-phase Toffoli
gate RTOF. In practice, this suggests that it should be easier to
find an efficient circuit implementing a relative-phase Toffoli
gate than it is to find one of the same size for a type-{x1} special
form relative-phase Toffoli gate. To give another example, a
type-X SXRTOF(x1,x2,...,xn−1; xn) is the most restrictive of
the kind. It is equal to the respective Toffoli gate up to a

global phase, and thereby does not give much freedom in
implementing by a circuit over the TOF(x1,x2,...,xn−1; xn).
This means that in the practical constructions, and whenever
possible, we will try to use a type-X′ special form relative-
phase multiple control Toffoli gate with the smallest size
set X′.

An alternate and equivalent definition of a type-X′ special
form relative-phase Toffoli gate is via a transformation given
by the circuit TOF(x1,x2,...,xn−1; xn)D(X \ X′). It further-
more serves as a basis for how we draw SRTOF gates in
the circuit diagrams. Compared to the multiple control Toffoli
gate, every control or target in the set X \ X′ of SX′

RTOF
appears distorted by the dingbat originating from the respective
D(X \ X′), and every control or target in the set X′ appears
undistorted [see Fig. 1(d)].

Beyond having fewer degrees of freedom compared to
an unrestricted relative-phase Toffoli gate, there is one more
important difference between the special form relative-phase
Toffoli gates and the relative-phase Toffoli gates: The inverse
of a type-X′ special form relative-phase Toffoli gate is not
always a type-X′ special form relative-phase Toffoli gate.

The use of the subscripts in formulas and different numbers
within dingbats in the quantum circuit diagrams allows one
to distinguish different versions of the relative phase and
special form relative-phase multiple control Toffoli gates.
For instance, notations R1TOF and R2TOF indicate that both
gates are some relative-phase Toffoli gates, but they are not
necessarily related. In contrast, an R−1

1 TOF is the inverse of
the R1TOF. Recall that a circuit implementing the inverse
operation may be constructed by conjugating the gates in
the circuit implementing the given unitary and inverting their
order. Observe further that any two TOF gates of the same
size are represented by identical matrices; this is not always
true for some two RTOF or a pair of SRTOF, therefore the
ability to distinguish different versions of the relative-phase
implementations is important, as these could be different gates.

We will draw quantum gates and circuits using standard
notations, including the relative-phase gates per diagrams
found in Fig. 1, with time propagating from left to right. Some
useful circuit identities clarifying and summarizing the above
discussions are shown next.

show canonic decomposition of SY,zR1TOF and SY R1TOF into
the product of the multiple control Toffoli gate TOF and the
diagonal gate D1; reading right-to-left, these rules show how to
combine a suitable pair of the multiple control Toffoli gates and
the diagonal gate into a (special form) relative-phase Toffoli
gate. When Y = ∅, the second circuit illustrates the R1TOF
gate.

show canonic decomposition of SY,zR−1
1 TOF and SY R−1

1 TOF
into the product of the diagonal gate and the multiple
control Toffoli gate. Indeed, looking at the second of the two

022311-3



DMITRI MASLOV PHYSICAL REVIEW A 93, 022311 (2016)

identities,

SyR−1TOF(X,Y ; z)

= (TOF(X,Y ; z)D1(X,z))−1

= D−1
1 (X,z)TOF(X,Y ; z),

being the circuit pictured on the right-hand side.

in other words, every R1TOF is also an R−1
2 TOF under the

proper choice of relative phases.
In general, for any reversible gate R(X) its relative-phase

version could be thought of as a product R(X)D(X), for a
proper diagonal unitary D(X). This suggests a possible route
in which the work reported in this paper may be extended.

III. MAIN RESULT

Our main result is summarized in the next three propo-
sitions. We apply it to obtain multiple corollaries, and to
optimize multiple control Toffoli gates in the section that
follows. The proofs of these three propositions rely on the
three circuit identities concluding the previous section, as well
as the following notion: The controlled-U implemented up to
a relative phase, RCU(V,W ; X), commutes with the controlled
V implemented up to a relative phase, RCV(V,Y ; Z), where the
qubit sets V,W,X,Y, and Z are disjoint. This rule also applies
to show that any two nonintersecting unitaries commute. We
assume the reader’s familiarity with the above commutation
rule, and do not explicitly prove it here.

Proposition 1. The conjugation of the controlled unitary U

over the qubit set Z implemented up to a possible relative
phase, R1CU (Y,a; Z), by a pair of multiple control Toffoli
gates TOF(X; a) allows the replacement of these multiple
control Toffoli gates with their relative-phase versions im-
plemented up to any desired unitary V (X), such as illustrated
next:

. (1)

Proof. The proof is accomplished via the following set of
circuit transformations:

TOF(X; a)R1CU (Y,a; Z)TOF(X; a)

= TOF(X; a)D2(X; a)D−1
2 (X; a)

R1CU (Y,a; Z)TOF(X; a)

= TOF(X; a)D2(X; a)R1CU (Y,a; Z)

D−1
2 (X; a)TOF(X; a)

= R2TOF(X; a)R1CU (Y,a; Z)R−1
2 TOF(X; a)

= R2TOF(X; a)V (X)V −1(X)R1CU (Y,a; Z)

R−1
2 TOF(X; a)

= [R2TOF(X; a)V (X)]R1CU (Y,a; Z)[
V −1(X)R−1

2 TOF(X; a)
]
. �

The result of Proposition 1 can be reduced to the following
form once RCU(Y,a; Z) is set to implement the Toffoli-type
gate, TOF(Y,a; z):

.

Indeed, the corresponding circuit on the left-hand side in
(1) computes

|X,Y,0,z〉 TOF(X;0)�→ |X,Y,x,z〉 TOF(Y,x;z)�→
|X,Y,x,z ⊕ xy〉 TOF(X;x)�→ |X,Y,0,z ⊕ xy〉,

which is indicated by the formulas on the output side. This, in
turn, leads to the following corollary.

Corollary 1. An n-qubit Toffoli gate TOFn can be imple-
mented with the cost not exceeding the sum of twice the cost
of an n-qubit relative-phase Toffoli gate RTOFn and the cost
of the CNOT gate, using one ancilla qubit set to and returned
in the value |0〉. In other words, in the presence of such an
ancilla,

Cost(TOFn) � 2 × Cost(RTOFn) + Cost(CNOT).

This corollary may be reformulated for a different choice
of the middle gate, e.g., as follows: Cost(TOFn) � 2 ×
Cost(RTOFn−1) + Cost(TOF3).

Other gate configurations are also supported by the relative-
phase Toffoli gates. The following proposition complements
the set of basic rules on which we base the proposed
optimization approach.

Proposition 2. Consider the conjugation of a controlled-
U gate R1CU (W ; X,Y ) implemented possibly up to some
relative phase, by a pair of identical multiple control Toffoli
gates, such as illustrated in (2) on the left-hand side. Then, the
following circuit identity holds for any unitary transformation
V over the qubit set {Z ∪ a} and any SY R2TOF(Y,Z; a) (a
type-Y special form relative-phase Toffoli gate):

. (2)

Proof. This proposition may be proved similarly to Propo-
sition 1,

TOF(Y,Z; a)R1CU (W ; X,Y )TOF(Y,Z; a)

= TOF(Y,Z; a)D2(Z; a)D−1
2 (Z; a)

R1CU (W ; X,Y )TOF(Y,Z; a)
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= TOF(Y,Z; a)D2(Z; a)R1CU (W ; X,Y )

D−1
2 (Z; a)TOF(Y,Z; a)

= SyR2TOF(Y,Z; a)R1CU (W ; X,Y )

SyR−1
2 TOF(Y,Z; a)

= SyR2TOF(Y,Z; a)V (Z; a)V −1(Z; a)

R1CU (W ; X,Y )SyR−1
2 TOF(Y,Z; a)

= [SyR2TOF(Y,Z; a)V (Z; a)]R1CU (W ; X,Y )

[V −1(Z; a)SyR−1
2 TOF(Y,Z; a)].

An alternate proof may be constructed via restricting
W,X,Y, and Z to contain at most a single qubit each, and
multiplying the corresponding matrices [5]. The benefit of
considering such a matrix multiplication is in the ability to
show that the SY R2TOF(Y,Z; a) turns out to be the relative-
phase Toffoli gate that allows the most freedom in selecting
relative phases for a general unitary U , allowing one to
formulate this proposition as an “if-and-only-if” statement.
Furthermore, looking at the matrices helps to expand the set
of possible allowed relative-phase replacements once U is
known. �

The results of Propositions 1 and 2 may be generalized via
introducing a control set P that controls all three gates on the
left-hand side as well as all five gates on the right-hand side,
and a control set Q that controls all gates except V .

Observe that between the two propositions they cover all
situations when a relative-phase controlled U is conjugated by
a pair of multiple control Toffoli gates such that the targets
of those multiple control Toffoli gates do not intersect with
the U , resulting in the ability to replace a pair of multiple
control Toffoli gates with a pair of simpler gates. A similar
circuit identity may be developed for the scenario when the
target of the multiple control Toffoli gates intersects with the
qubits used by the unitary U . This circuit identity relies on
the special form relative-phase Toffoli gates. We have not yet
found practical examples where such circuit identity would
yield an advantage and the results of Propositions 1 and 2
do not apply, but formulate the statement of the respective
proposition for completeness.

Proposition 3. The conjugation of the controlled unitary U

implemented up to a relative phase, R1CU (X; Y,Z,a), by a
pair of the multiple control Toffoli gates TOF(W,Z; a) allows
the replacement of these multiple control Toffoli gates with
the type-{Z ∪ a} special form relative-phase version [up to a
multiplication by any desired unitary V (W )] and its inverse,
as follows:

.

We do not include an explicit proof, but mention that it
may be obtained similarly to that of Propositions 1 and 2. Fur-
thermore, we note that the scenario where R1CU (X; Y,Z,a)
is a diagonal gate, e.g., a controlled Rz implemented up
to a possible relative phase, is better handled by applying
Proposition 1 than Proposition 3 (e.g., see item III A, Sec.
III A). Indeed, Proposition 1 uses the most generic unspecified
type relative-phase Toffoli, and any controlled Rz may be
thought of as a targetless gate (|Z| = 0 in the statement of
Proposition 1) or otherwise, one may introduce a new target
qubit that applies a global phase (Fig. 4.5 in [4]).

A. Applications

The principal circuit equalities (1) and (2) suggest a circuit
optimization procedure by which a suitable pair of the multiple
control Toffoli gates can be replaced with their relative phase
or special form relative-phase implementations up to the
right-hand multiplication by any desired unitary over the
proper qubit set. The rules may be used interchangeably
and combined. In particular, we next illustrate how the
above approach can be applied to optimize the most popular
constructs used to implement/decompose the multiple control
Toffoli gates into simpler gates. In the following discussions,
we will omit unitaries V , with the understanding that if need
be, they may be added back in.

Corollary 2. (Optimization of the construction reported in
[3], Lemma 7.2.) A multiple control Toffoli gate TOFn can be
implemented by a circuit consisting of 4n − 14 relative-phase
Toffoli gates RTOF3 and a type-{y} special form relative-phase
Toffoli gate SyRTOF3(x,y; z) and its inverse over a circuit with
at least 2n − 3 qubits, such as illustrated in Fig. 2.

Proof. The numeric order of subscripts in the special form
and relative-phase Toffoli gates indicates the order in which the
circuit equalities (2) and (1) are applied to the original circuit
reported in [3], Lemma 7.2, to obtain the desired simplified
decomposition. Observe that when during this process a pair
of Toffoli gates TOF3(a,b; c) is replaced with a special form
or a relative-phase implementation, the circuit in the middle
may be equivalent to a combination of a suitable multiple
control Toffoli gate—possibly up to a relative phase, and a
transformation on the qubits outside the set {a,b,c}. This latter
transformation may be factored out, thereby allowing all circuit
alternations to retain the original functional correctness.

Finally, observe that the identities (1) and (2) may be used in
a number of different ways, resulting in different constructions,
and not just the particular one selected in the statement of
the corollary. In Fig. 2(b) we used one of such constructions
that minimizes the number of the special form relative-
phase Toffoli gates to gain most freedom in substituting
Toffoli gates with their relative-phase implementations. In
Fig. 2(c) we furthermore restricted the number of potentially
different RTOF gates via making the following assignments:
R4TOF:=R3TOF, R5TOF:=R−1

3 TOF, and R6TOF:=R−1
3 TOF.

This implementation will be used later in the paper. �
Corollary 3. (Optimization of the construction reported in

[3], Lemma 7.3.) A multiple control Toffoli gate TOFn can
be implemented by a circuit consisting of two relative-phase
Toffoli gates RTOFk and two special form relative-phase
Toffoli gates SRTOFn−k+2 over a circuit with at least n + 1
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FIG. 2. (a) and (b) Implementation of TOF6 on qubits 1–9 using S{8}RTOF3 and its inverse, and 10 RTOF3 gates. (a)–(c) Implementation
of TOF6 using a narrow selection of the relative-phase and special form relative-phase Toffoli gates.

qubits, such as illustrated next:

.

Proof. To obtain this construction, both circuit identities (1)
and (2) need to be applied once, in any order. �

Corollary 4. (Optimization of the construction in [4], page
184.) A multiple control gate CnU can be implemented by a
circuit consisting of 2n − 2 relative-phase Toffoli gates RTOF3

and one CU gate over a circuit with at least 2n qubits of which
some n − 1 qubits are set to and returned in the value |0〉, such
as illustrated next:

.

Proof. The circuit identity (1) is applied n − 1 times. �
The implementation in [7] optimizes the depth of the circuit

([4], page 184), but does not prevent our construction from
being applied. We formalize this observation in the following
corollary.

Corollary 5. (Optimization/generalization of the construc-
tion in Eq. (13) of [7].) A multiple control gate CnU can be
implemented by a circuit consisting of 2n − 2 relative-phase
Toffoli gates RTOF3 and one CU gate over a circuit with at

least 2n qubits of which some n − 1 qubits are set to and
returned in the value |0〉, such as illustrated next:

.

Some other optimizations include the following.
(1) Circuit in [3], Lemma 7.5, may rely on the simpler

relative-phase multiple control Toffoli gate and its inverse,
rather than two multiple control Toffoli gates (gates No. 2 and
No. 4 on the right-hand side).

(2) Circuit in [3], Lemma 7.9, may rely on the simpler
special form relative-phase multiple control Toffoli gate and
its inverse, rather than two multiple control Toffoli gates (gates
No. 2 and No. 4 on the right-hand side).

(3) Circuit in [3], Lemma 7.11, may rely on the simpler
relative-phase multiple control Toffoli gate and its inverse,
rather than two multiple control Toffoli gates (gates No. 1 and
No. 3 on the right-hand side).

(4) Circuit ([6], Fig. 3) may rely on the simpler relative-
phase Toffoli gates and their inverses, as is best seen via
applying Proposition 1.

IV. OPTIMIZING IMPLEMENTATIONS OF THE
MULTIPLE CONTROL TOFFOLI GATES USING THE
EXISTING RELATIVE-PHASE TOFFOLI CIRCUITS

In this section we study in detail how to optimize the imple-
mentations of the multiple control Toffoli gates, show that all
of the known optimized implementations can be explained by
the means of the relative-phase Toffoli substitutions described
in this work, and report some new optimized circuits.

A. Circuit cost

The question of the efficiency of implementing a certain
transformation requires one to formally define a circuit cost.
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Depending on the definition of cost, certain circuits will be
preferred over other circuits.

There are a number of different definitions of the circuit
cost used in the literature, each originating from considering
certain specific requirements. At the highest abstraction level,
first, one needs to determine if they are dealing with logical
level or physical level circuits.

In the former case, one has to derive the protocols and com-
pute the costs of the constructible fault-tolerant gates, given the
selected approach to error correction. Within this framework
Clifford+T circuits received a significant attention. This is
because Clifford gates such as Pauli-X, Y , Z, Hadamard,
Phase, and CNOT are believed to be relatively inexpensive
to implement fault tolerantly on the logical level. The non-
Clifford gate T , or any other constructible non-Clifford gate
required for computational universality, is more difficult to
generate. The known approaches employ state purification and
gate teleportation as a means of generating the T gate, that can
get quite costly in the realistic systems [8]. As a result, the cost
of the implementation of a logical circuit can be very crudely
approximated by the number of the T gates used.

In the case of physical level circuits, one is limited to the
ability of the controlling apparatus to apply transformations
to the physical quantum information processing system of
choice. There is a great variety of the possibilities here. We
consider a simple and popular weak interaction model, where
the single-qubit gates can be implemented efficiently, and
of the two-qubit gates, that take considerably more effort
to implement, we have just the CNOT gate. The cost of the
circuits can thus be evaluated via counting the number of the
CNOT gates in the single-qubit and CNOT gate circuits. Despite
apparent oversimplification, there is a specific promising
quantum information processing approach, where exactly
this formula describes the circuit cost at a high abstraction
level. Indeed, trapped ions with the Molmer-Sorenson gate
[9] operate in the weak coupling regime (two-qubit gates
take roughly 10- to 20-fold effort to implement compared to
arbitrary single-qubit gates), and the Molmer-Sorenson gate
itself is equivalent to the CNOT up to a conjugation by a pair of
RZ(a) and RZ(−a) gates on both qubits, for a proper choice
of parameter a, and a few single-qubit Phase and Hadamard
gates.

An advantage of measuring the cost of the circuit imple-
mentations by the T count and the CNOT count is due to the
popularity of these circuit cost metrics in the literature, and
the ability to compare relative-phase inspired implementations
developed in this work to the known ones.

Disadvantages of using either one of these two circuit cost
metrics are numerous. Neither circuit metric accounts for the
following:

(1) the depth, that could be more important than the gate
count, especially when one is, quite naturally, concerned with
the speed of the computation given by a quantum circuit rather
than just its size;

(2) the connectivity pattern of the qubits. Indeed, physical
space spans only three dimensions, and every qubit cannot be
connected to every other qubit in a scalable fashion within a
finite-dimensional space; or

(3) the number of ancillary qubits used, that is particularly
important on the physical level. The number of ancillary qubits

used also influences the efficiency of connections between
primary qubits. This is because both primary qubits and
ancillary qubits share the same physical space and yet need
to be as close to each other as possible for higher efficiency.

These are all very important practical considerations.
However, our goal is to demonstrate the advantages of the
framework introduced in this paper for designing efficient
circuits, therefore we restrict the attention to the above two
simplistic metrics. We furthermore encourage one to apply the
techniques from this paper to designing efficient circuits in
the scenario where the details of the circuit cost function are
known.

B. Toffoli and Toffoli-4 gates up to a relative phase

First, recall a circuit implementing the Toffoli gate
TOF(a,b; c) itself:

. (3)

This circuit may be drawn in many different ways using no
more than the minimal numbers of six CNOT gates and 7 T/T †

gates, however, we prefer this form since it has the largest
number of gates operating on the qubits a and c after no more
gates are being applied to the qubit b.

Literature encounters two apparently related implementa-
tions of the Toffoli gate up to a relative phase ([4], page 183,
and [7]), that we summarize in one distilled picture; see Fig. 3.
There are more symmetries and properties to this circuit than
those that necessarily meet the eye on the first glance. In
particular, we note the following.

(1) Gates 1–10 implement a type-{c} special
form relative-phase Toffoli gate ScRTOF(a,b; c) =
diag{1,1,1,1,1,1,(0 i

i 0)}, whereas gates 2–10
implement a relative-phase Toffoli gate RTOF(a,b; c) =
diag{1,1,1,1,1, − 1,(0 −i

i 0 )}.
(2) The first gate, the controlled Z, can be moved to the

end of the circuit, resulting in the construction of the type-
{c} special form relative-phase Toffoli gate ScRTOF(a,b; c) =
diag{1,1,1,1,1,1,( 0 −i

−i 0 )}.

FIG. 3. Toffoli gate implemented up to a relative phase. Gates
1–10 implement a type-{c} special relative-phase Toffoli gate, known
as the controlled-controlled-iX in [7], whereas circuit with gates 2–10
implement some generic relative-phase Toffoli gate. The controlled-Z
gate CZ(a; c) may commute through the Hadamard H (c), at which
point it will change into CNOT(a; c), and the circuit will show in
an alternate form. It may be established, via applying the result of
Corollary 1, that the CNOT count of the circuit with gates 2–10 is
optimal.
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FIG. 4. Circuit implementing Toffoli-4 up to a relative phase, RTOF(a,b,c; d).

(3) Simultaneous substitution T �→ T † and T † �→ T al-
lows constructing more circuits implementing a relative-phase
Toffoli gate.

(4) The circuit given by gates 2–10 is self-inverse.
(5) Qubits a and b may be interchanged. Applying this

operation gives modified relative-phase Toffoli circuits.
(6) Adding gates T m(a) and T n(b) (powers of the T gate),

where m,n ∈ {0,1,...,7}, to both the beginning and the end of
the circuit in Fig. 3 allows constructing more relative-phase
Toffoli gates.

(7) Consider gates 3–9. Using the CNOT-T algebra termi-
nology [7,10], the T gate is being applied to {c, − (b ⊕ c),a ⊕
b ⊕ c, − (a ⊕ c)} (negative sign indicates the application of
T †). Instead, we may apply the T gate to {c,b ⊕ c, − (a ⊕ b ⊕
c), − (a ⊕ c)}. Then, the circuit we obtain looks as follows:

.

Observe how similar it is to [4], page 183—essentially, Y

rotations are replaced by Z rotations. Optimality of the above
circuit employing RY rotations in place of T (sometimes
known as the Margolus gate) was shown in [11]. Conjugating
this circuit by a pair of Hadamard gates on the qubit c

allows one to obtain a relative-phase Toffoli RTOF(a,b̄; c),
where b̄ denotes the negative control. Similarly, if the T/T †

gates of the circuit in Fig. 3, gates 3–9, were replaced with
RY (π/4)/RY (−π/4), as illustrated next,

,

we would have obtained an RTOF(a,b̄; c).
We found no relative-phase Toffoli-4 implementations in

the literature, but realized that one may be constructed as
follows. Consider circuit in Fig. 3, gates 2–10. Replace
CNOT(a; c) with a type-{c} special form relative-phase Toffoli
gate ScRTOF(x,a; c); this operation introduces a new qubit, x.
The result is an RTOF(x,a,b; c). Figure 4 illustrates the result
of such a procedure for SRTOF selection per Fig. 3 (observe
that the controlled Z was commuted through the Hadamard
gate to obtain the CNOT). In the matrix form, the gate looks as
follows, diag{1,1,1,1,1,1,1,1,1,1,1,1,i, − i,( 0 1

−1 0)}.

C. Results of the simplification

Since T-count optimal and CNOT-count optimal implemen-
tations of the three-qubit Toffoli gate are known, we will
concentrate on the Toffoli-4 and larger gates. This section
is not meant to report complete results of the optimization that
is possible to obtain (indeed, there is no guarantee there are no
better relative-phase Toffoli-4 gates to be used, and we did not
look for the relative-phase Toffoli-5 and larger gates), rather
show a clear advantage of using relative-phase and special
form relative-phase Toffoli gates and motivate their further
in-depth study.

Consider Toffoli-4 implementation via a circuit with
Clifford + T gates. Using the matrix determinant argument,
one may establish that the Toffoli-4 may not be implemented
unless at least one ancilla qubit is available. This is because the
determinant of the 16 × 16 matrix representing the Toffoli-4
evaluates to the number (−1), whereas the determinants of all
Clifford + T library gates, when viewed as 16 × 16 matrices,
are equal to 1. By composing the products of matrices
with determinant 1 it is impossible to obtain a matrix with
determinant (−1). As a result, at least one ancilla is required.

Once we have established that an ancilla qubit is required,
there are two options for the kind of ancilla qubit it is. One,
more restrictive, prescribes that the ancilla be available in the
state |0〉; the other provides the ancilla in some unknown state
|x〉. In both cases, when implementing Toffoli-4 with the help
of an ancilla, special care needs to be taken to return the value
of ancilla to its original state. We consider both cases next.

D. Optimization of Toffoli-4

Ancilla |0〉, minimizing T count. Literature encounters two
results, [10] and [7], both based on the optimization of [4], page
184. In particular, [10] reports an optimized circuit with 15 T

gates (down from unoptimized 21), and [7] observes that two
Toffoli gates can be replaced with the relative-phase Toffoli
called the controlled-controlled-iX (Fig. 3), which explains the
optimization obtained in [10]. Our solution uses a somewhat
simpler relative-phase Toffoli [see Fig. 3, dashed (gates 2–10)],
to obtain TOF4(a,b,c; d):

. (4)

There is no advantage in the number of T gates. However, our
solution explains both known circuits and features a smaller
overall gate count.
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Ancilla |0〉, minimizing CNOT count. Reference [7] uses
controlled-controlled-iX to obtain an implementation with 14
CNOTs. To our knowledge, this was the best known result in
the literature to date. Our construction, (4), requires only 12 =
3 + 6 + 3 CNOT gates, since our relative-phase Toffoli (Fig. 3,
dashed) requires one less CNOT gate. Observe, that per [13] the
lower bound for the number of CNOT gates is eight. Therefore,
our 12-CNOT construction may not be improved by more than
four CNOT gates.

Arbitrary single-qubit ancilla, minimizing T count. The
best known solution, [10], optimizes the 28-T -gate implemen-
tation from [3], Lemma 7.2. The result is a circuit with 16 T

gates. Our solution matches this solution, and in fact explains
how it works. Indeed, we obtain the desired TOF4(a,b,c; d) as
follows:

, (5)

where x is the ancilla qubit in an unknown state,
R1TOF(a,b; x) is the relative-phase Toffoli per Fig. 3, dashed;
and the SxR2TOF(x,c; d)V (c,d) pair is given by (3), dashed.
Essentially, V (c,d) is designed such as to undo all gates applied
to the qubits c and d at the end of the implementation given by
(3). We have not found a suitable special relative-phase Toffoli
gate implementation that is different from the implementation
of the Toffoli gate itself, per (3), and giving a better optimiza-
tion once combined with proper V (c,d). The resulting T count
of our construction is thus 16 = 4 + (7 − 3) + 4 + (7 − 3).
Apart from the matching number of T gates, our solution
contains fewer Clifford gates (e.g., 14 CNOTs vs 54 CNOTs in
[10]), and may also be rewritten as a T -depth four circuit (T
depth 1 per each relative-phase Toffoli stage) at the cost of a
higher number of ancillae and a higher number of CNOT gates.

Arbitrary single-qubit ancilla, minimizing CNOT count.
Using CNOT-optimal implementation of the controlled-
controlled-iX from [7] over [3], Lemma 7.2, would yield a
circuit with 20 CNOT gates, as is done in [12]. The original
circuit ([3], Lemma 7.2) uses 24 CNOT gates after each Toffoli
is substituted with their CNOT-optimal implementation. Our
construction, (5), contains 14 = 3 + 4 + 3 + 4 CNOT gates.

Observe that the above implementations, if considered as
circuits over the Clifford + T library, use the minimal number
of ancillae, being one.

E. Optimization of Toffoli-5

One may once again apply the determinant argument to
establish that the Toffoli-5 gate needs at least one ancilla to
be available before it may be implemented as a Clifford + T

circuit.
All ancillae in the state |0〉, minimizing T count. The best

known solution is given by [10] via an optimization of the
construction in [4], page 184, and explained by [7] to be a four

controlled-controlled-iX and one Toffoli circuit. The T count
is 23 and both known solutions use two ancillae. Our solution
implementing TOF5(a,b,c,d; e) is as follows:

, (6)

per R1TOF4 implementation found in Fig. 4 and Toffoli
implementation from (3). Our solution uses 23 = 8 + 7 + 8 T

gates, relies on only one ancilla, and has a smaller total number
of gates compared to the previously known constructions.

All ancillae in the state |0〉, minimizing CNOT count. The
construction from [7] gives the best known CNOT count of 22
over a circuit that uses two ancillae. Our circuit (6) contains 18
CNOTs and uses only one ancilla. Recall that the lower bound
for the number of CNOT gates is 10 [13].

All ancillae in an unknown state, minimizing T count. The
best known solution is given in [10] and features 28 T gates.
Our solution implementing TOF5(a,b,c,d; e) is as follows:

, (7)

where x is the ancilla qubit in an unknown state,
R1TOF4 is the relative-phase Toffoli from Fig. 4, and the
SxR2TOF(x,d; e)V (d,e) pair is given by (3), dashed. Observe,
that the overall number of T gates is 24 = 8 + (7 − 3) + 8 +
(7 − 3), we use one less ancilla compared to the best known
construction, and a smaller overall number of the non-T gates.

We can furthermore explain how to obtain the solution
with 12k − 20 T gates to implement a k-controlled Toffoli
gate using k − 2 unrestricted ancillae featured in [10] without
resorting to a computer optimization. This is done via the use
of the relative-phase Toffoli and Toffoli-V pair from Fig. 3
(dashed) and (3), dashed, over the construction reported in
Corollary 2. We illustrate how this works using the circuit
from Fig. 2(c) and observe that the arguments easily generalize
to arbitrary k. Substituting relative-phase and special relative-
phase-V pair implementations into the construction in Fig. 2(c)
replaces each relative-phase Toffoli with a circuit containing 4
T gates. The total number of the T gates would thus be 48 (for
arbitrary k, 16k − 32), higher than 40 [10]. However, observe
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that R3TOF and R−1
3 TOF are inverses of each other. This means

that the gates T † and H on the target qubit that the R3TOF
ends with would cancel with H and T that the R−1

3 TOF begins
with. This cancellation happens between all four such pairs
{R3TOF,R−1

3 TOF} found in the circuit. The total reduction is
thus by eight T gates (for arbitrary k, 4k − 12), leading to a
circuit with 40 T gates (for arbitrary k, 16k − 32 − 4k + 12 =
12k − 20).

All ancillae in an unknown state, minimizing CNOT

count. [12] includes an implementation where the controlled-
controlled-iX is used within [3], Lemma 7.2, for all but
two gates. This construction relies on 36 CNOT gates. For
arbitrary n, the CNOT count is 16n − 44, which we further
refer to as cc-iX implementation in Table I. Observe that
[14] reports an implementation with 26 two-qubit gates using
two ancillae. The optimization in [14] is motivated by a
computational model where the two-qubit interaction given
by diag{I,X±t }, where t ∈ R[0,1] and X is Pauli-X, is
tunable and parametrized by time. Therefore, for example,
a controlled-

√
NOT would cost half as much as the CNOT,

as it only needs to be evolved for half the time. In our
calculations given here, we do not allow such things to happen,
but observe that it would be interesting to apply the reported
relative-phase Toffoli constructions within that framework.
Controlled-

√
NOT may be implemented as a 2-CNOT circuit

(Fig. 4.6 in [4]). The 26 two-qubit gate circuit of [14] has
18 controlled-

√
NOT gates and eight CNOT gates, therefore it

would be transformed into one with 44 CNOT gates. Note,
however, that it would make little sense from the point
of view of the computational model considered in [14], as
a length-0.5 interaction is being replaced with a length-2
interaction.

In comparison, our solution, given by (7), is a circuit with
20 (= 6 + 4 + 6 + 4) CNOT gates that uses only one ancilla—
the latter being provably optimal within the framework of
Clifford + T circuits.

We generalize the above examples of Toffoli-4 and Toffoli-5
optimization to any number of qubits in the following two
propositions.

Proposition 4. A size n � 4 multiple control Toffoli gate
TOFn may be implemented using � n−3

2  ancillary qubits, set
to and returned in the value |0〉, by a circuit with:

8n − 17 T gates,
6n − 12 CNOT gates, and
4n − 10 Hadamard gates.

Proof. The proof is by induction. The statement is clearly
true for n = 4 and n = 5, as has been explicitly verified in the
previous discussions. To prove the transition from an even n =
2k to the odd n = 2k + 1 observe that the middle gate TOF3

can be replaced with the circuit (4). This introduces an RTOF3

(Fig. 3, dashed) and its inverse. Note that a new ancillary qubit
is being introduced on this step, and the gate counts increase by
8 = 4 + 4 for T , by 6 = 3 + 3 for CNOT, and by 4 = 2 + 2 for
Hadamard. The transition from an odd n = 2k + 1 to the even
n = 2k + 2 is accomplished via replacing RTOF3 with RTOF4

(Fig. 4) and its inverse with the inverse of RTOF4. Observe that
the gate counts grow by 8/6/4 for T /CNOT/Hadamard, but no
new ancilla is being introduced. �

Note that [7] reports a circuit with n − 3 |0〉 ancillae, 8n −
17 T gates, 8n − 18 CNOT gates, and 4n − 10 Hadamard gates.

Proposition 5. A size n � 5 multiple control Toffoli gate
TOFn may be implemented by a circuit using � n−3

2  ancillary
qubits residing in an arbitrary state and returned unchanged,
by a circuit with

8n − 16 T gates,
8n − 20 CNOT gates, and
4n − 10 Hadamard gates.

Proof. To assist with proving this proposition, define the
following gates:

(1) RT L(a,b,c) per Fig. 3, dashed. This is a relative-phase
Toffoli gate. The implementation contains nine elementary
gates: four T gates, three CNOTs, and two Hadamards.

(2) RT S(a,b,c) per Fig. 3, gates 2–6. This is a relative-
phase Toffoli followed by a V (b,c) that removes the last four
gates. The circuit contains five elementary gates: two T gates,
two CNOTs, and one Hadamard.

(3) SRT S(a,b,c) per circuit (3), dashed. This is a Toffoli
gate (as such it is also a type-{b} special form relative-phase
Toffoli) followed by a V (a,c) that removes the last six gates.
SRT S contains nine elementary gates: four T gates, four
CNOTs, and one Hadamard.

(4) RT 4L(a,b,c,d) per Fig. 4. This is a four-qubit relative-
phase Toffoli. It contains eight T gates, six CNOTs, and four
Hadamards.

(5) RT 4S(a,b,c,d) per Fig. 4, dashed. This is a relative-
phase Toffoli-4 RT 4L(a,b,c,d) followed by a V (b,c,d)
that removes the last eight gates. It is composed of the
following elementary gates: four T gates, four CNOTs, and
two Hadamards.

We first prove the proposition for the resource count of n −
3 ancillae, 8n − 16 T gates, 8n − 18 CNOT gates, and 4n − 10
Hadamard gates, and then introduce the RT 4L/RT 4S gates
that further improve the ancilla and CNOT count. The proof
relies on the construction found in Fig. 2(c). Assuming qubits
are numbered 1 to 2n − 3 and we are attempting to implement
TOFn(1,2,...,n − 1; 2n − 3), select the gates in Fig. 2(c) as
follows:

(1) First gate is SRT S(n − 1,2n − 4,2n − 3).
(2) Next k = 1..n − 4 gates are RT S(2n − 4 − k,n − 1 −

k,2n − 3 − k).
(3) Next gate is RT L(1,2,n).
(4) Next k = 1..n − 4 gates are RT S−1(n − 1 + k,k +

2,n + k) (inverses of the gates in item 2 read in reverse order).
(5) Next gate is SRT S−1(n − 1,2n − 4,2n − 3) (this is the

matching inverse pair for the gate in item 1).
(6) Next k = 1..n − 4 gates are RT S(2n − 4 − k,n − 1 −

k,2n − 3 − k) (same as item 2).
(7) Next gate is RT L−1(1,2,n) (this is the matching inverse

for the gate in item 3).
(8) Last k = 1..n − 4 gates are RT S−1(n − 1 + k,k +

2,n + k) (same as item 4).
Observe that the desired preliminary gate counts are

satisfied. Next step is introducing RT 4L/RT 4S gates to
replace as many RT L and RT S as possible.

(1) First, replace the circuit RT S(n,3,n +
1)RT L(1,2,n)RT S−1(n,3,n + 1) (last gate in item 2, the gate
in item 3, and first gate in item 4) with RT 4L(1,2,3,n + 1)
and RT S(n,3,n + 1)RT L−1(1,2,n) RT S−1(n,3,n + 1) (last
gate in item 6, the gate in item 7, and first gate in item 8)
with RT 4L−1(1,2,3,n + 1). Note that this procedure may
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TABLE I. Optimization of the multiple control Toffoli gates using RTOF3 and RTOF4 gates.

Gate Source Optimization goal No. T No. CNOT No. H No. P/Z No. ancillae Ancillae type

TOF4 [10] T 15 35 6 3 1 |0〉
[7] T 15 14 6 0 1 |0〉

Ours T , CNOT 15 12 6 0 1 |0〉
[10] T 16 54 6 6 1 |x〉

cc-iX [12] CNOT 22 20 8 0 1 |x〉
Ours T , CNOT 16 14 6 0 1 |x〉

TOF5 [10] T 23 63 10 6 2 |00〉
[7] T 23 22 10 0 2 |00〉

Ours T , CNOT 23 18 10 0 1 |0〉
[10] T 28 90 10 13 2 |xx〉

cc-iX [12] CNOT 38 36 16 0 2 |xx〉
Ours T , CNOT 24 20 10 0 1 |x〉

TOF6 [10] T 31 94 14 9 3 |000〉
[7] T 31 30 14 0 3 |000〉

Ours T , CNOT 31 24 14 0 2 |00〉
[10] T 40 132 14 20 3 |xxx〉

cc-iX [12] CNOT 46 52 24 0 3 |xxx〉
Ours T , CNOT 32 28 14 0 2 |xx〉

TOF11 [10] T 71 232 34 24 8 |00000000〉
[7] T 71 70 34 0 8 |00000000〉

Ours T , CNOT 71 54 34 0 4 |0000〉
[10] T 100 328 34 55 8 |xxxxxxxx〉

cc-iX [12] CNOT 134 132 64 0 8 |xxxxxxxx〉
Ours T , CNOT 72 68 34 0 4 |xxxx〉

TOFn,n � 5 [10] T 8n-17 N/A N/A N/A n-3 |00...0〉
[7] T 8n-17 8n-18 4n-10 0 n-3 |00...0〉

Ours T , CNOT 8n-17 6n-12 4n-10 0 � n−3
2  |00...0〉

[10] T 12n-32 N/A N/A N/A n-3 |xx...x〉
cc-iX [12] CNOT 16n-42 16n-44 8n-24 0 n-3 |xx...x〉

Ours T , CNOT 8n-16 8n-20 4n-10 0 � n−3
2  |xx...x〉

only apply for n � 5. It furthermore reduces the CNOT count
from 7 = 2 + 3 + 2 to 6 twice, for a total saving of two
CNOTs. Finally, observe that the qubit n is no more used.
Thus, we save one ancillary qubit worth of computational
space.

(2) For k = 1..� n−6
2  we introduce four RT 4S gates by

replacing a pair of neighboring RT S on the left- and right-hand
sides of the previous step. In particular, we replace RT S

(n + 2k, 2k + 3, n + 2k + 1)RT S(n − 1 + 2k, 2k + 2, n +
2k) (item 2) with RT 4S(n − 1 + 2k, 2k + 2, 2k + 3, n +
2k + 1) and RT S−1(n − 1 + 2k, 2k + 2, n + 2k)RT S−1(n +
2k, 2k + 3, n + 2k + 1) (item 4) with RT 4S−1(n − 1 + 2k,
2k + 2,, 2k + 3, n + 2k + 1), and similarly in the second
half of the circuit (items 6 and 8). Observe that this oper-
ation does not change the gate counts, but frees up qubit
n + 2k that is no more used, providing a reduction of one
ancilla.

The total reductions from the above construction are
a pair of CNOT gates, and � n−3

2 � qubits, leading to the
resource counts as announced in the statement of the
proposition.

Looking at the following circuit helps visualize all replace-
ments and gate counts:

In the above, dashed gates are replaced with RT 4L(1,2,3,8)
and its inverse, freeing qubit 7, and dotted gates are replaced
with RT 4S(8,4,5,10) and its inverse, freeing qubit 9. The line
starting with “T ” reports the T count, the line starting with
“T 3C” reports the CNOT count when only RTOF3 are being
used, the line starting with “T 4C” reports the CNOT count when
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RTOF4 are allowed, and the line starting with “H” reports the
Hadamard gate count. �

We summarize the results in Table I and compare them
against best known. The names of the columns are self-
explanatory. Observe that [14] features multiple control Toffoli
implementations using 12n − 34 two-qubit gates over a circuit
with n − 3 ancillae. In comparison, our implementation uses
8n − 20 CNOT gates over a circuit with only � n−3

2  ancillae.
It is furthermore interesting to highlight that in terms of
implementing a multiple control Toffoli gate the cost of
moving away from using unrestricted ancillae to ancillae
residing in the state |0〉 is only one T gate, but in terms of
the CNOTs, it is a noticeable term, 2n − 8.

V. OPEN PROBLEMS

The problem of systematically synthesizing and analyzing
multiple control relative-phase Toffoli implementations—both
unrestricted as well as the special form, is important to address
next. The results of such a search could be used directly
to optimize implementations of the multiple control Toffoli
gates, arithmetic parts of quantum algorithms, and reversible
circuits.

How efficient may a relative-phase multiple control Toffoli
gate implementation be? In the three-qubit case the answer is
as follows: It requires at least three CNOTs as a circuit over CNOT

and any single-qubit gates library, as otherwise, per Corollary
1, we would come to a contradiction with any lower CNOT gate
count [13]. If it is established that the Toffoli gate requires 7
T gates in the presence of ancillae, a similar argument can be
applied towards showing that any relative-phase Toffoli gate
requires at least 4 T gates as a circuit over the Clifford + T

library.
The reported constructions obtain best solutions simulta-

neously for two circuit cost metrics arising from different

considerations, the CNOT count and the T count. It may be
that this is not a coincidence. Is there a relation between these
two resource counts?

VI. CONCLUSION

In this paper, we reported an approach for systematic
optimization of quantum circuits via replacing suitable pairs
of the multiple control Toffoli gates with their relative-phase
implementations. This operation preserves the functional
correctness. However, since the relative-phase Toffoli gates
are easier to implement than their regular counterparts, the
advantage can be witnessed through the optimized resource
counts. We have furthermore illustrated the advantage via
optimizing and, when applicable, explaining the nature of
best known implementations of the multiple control Toffoli
gates. Our demonstrated optimizations include a simultaneous
optimization of the T count by a factor of 4

3 in the leading
constant, the CNOT count by a factor 2 in the leading constant,
and the number of ancillary qubits by a factor of 2 in the
leading constant. The above refers to the optimization of the
circuit implementing the multiple control Toffoli gate using
arbitrary ancillae, whose construction resulted from employing
the relative-phase Toffoli gates.
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