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Optimal experimental dynamical decoupling of both longitudinal and transverse relaxations
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Both longitudinal and transverse relaxations exist in the practical environment. Their simultaneous eliminations
are extremely demanding in real applications. Previous experimental work has focused mainly on the suppression
of transverse relaxation. In this paper we investigate the performance of three important dynamical decoupling
schemes—quadratic dynamical decoupling, periodic dynamical decoupling, and concatenated dynamical
decoupling—in an environment with hybrid errors. We propose a method to engineer arbitrary environment
by modulating the control field. The technique developed here is universal and can be applied to other quantum
information processing systems. Three-dimensional filter functions technique is utilized to analyze the fidelity
decay of a one-qubit state protected by dynamical decoupling sequences. This enables us to quantitatively
compare the performance of different dynamical decoupling sequences and demonstrate the superiority of
quadratic dynamical decoupling in experiments for the first time. Our work reveals that quadratic dynamical
decoupling is optimal conditioned on the appropriate noise properties. The difference of constructing dynamical
decoupling sequences with various Pauli pulses is also investigated.
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I. INTRODUCTION

Decoherence inevitably exists due to the coupling between
a quantum system and baths [1]. The most general one-qubit
decoherence Hamiltonian is H = ∑

i∈{0,x,y,z} σi

⊗
Bi , where

σi is the Pauli matrix and Bi is the bath operator. It contains
two types of noise: longitudinal relaxation of the population
(LR) and transverse relaxation of the phase correlation (TR
or dephasing) [2]. To well preserve or precisely manipulate
quantum systems, various techniques have been proposed,
such as quantum error correction [3], decoherence-free sub-
space [4–7], dynamical decoupling (DD) [8–10], composite
pulses [11], and dynamically error-corrected gates [12,13].
DD, one promising scheme to suppress decoherence, is mainly
dedicated to state preservation in quantum memory. Several
DD schemes have been proposed, such as the Hahn echo [14],
first introduced in the NMR system, CPMG [15,16], periodic
dynamical decoupling (PDD) [17], and Uhrig dynamical
decoupling (UDD) [18,19]. These schemes exploit the pulse
timing and pulse number as free degrees to attain the sequence
optimization in the sense of achieving higher decoupling or-
ders with fewer pulses. Among them, UDD has been proved to
be able to suppress the pure dephasing of one qubit to O(T N+1)
in a short duration time T , using only O(N ) spin-flip pulses
[20–22]. Unlike other DD schemes, UDD contains unevenly
spaced pulses, i.e., Tj = T sin2[jπ/(2N + 2)], where Tj is the
j th pulse timing, and UDD is particularly robust to noise with
a hard high-frequency cutoff. The superiority of UDD has been
experimentally demonstrated in different systems [23–25].

The system concerned may suffer from errors besides
dephasing, induced either by the divulging of the control field
or by the redundancy coupling between qubits. Under this
condition simultaneous suppression of transverse and longi-
tudinal relaxations requires more complicated DD schemes.

*gllong@mail.tsinghua.edu.cn

One of them is concatenated dynamical decoupling (CDD)
[26], in which X and Z (π rotation along the x and z axes
in the Bloch sphere) are iterated in the form of pN+1 =
pNXpNZpNXpNZ, where p0 is a time interval τ . Though
CDD can achieve the order of the interaction decoupling to
O(T N+1), the number of pulses needed is around O(4N ), so
this scheme is an experimental challenge when N is large.
More recently, another scheme, called quadratic dynamical
decoupling (QDD), which uses UDD as the building block,
has been proposed [27]. In QDDN1N2

(the subscript is the
decoupling order for TR and LR, respectively), one more layer
of the N1th-order UDD sequence is nested into the interval of
the original N2th-order UDD sequence. So the timing of the
pulses Ti,j in each interspace of the original UDD sequence is

Ti,j = Ti + (Ti+1 − Ti)sin2
( jπ

2N1 + 2

)
. (1)

The highest order of the population relaxation or dephasing
that QDDN1N2

can suppress depends on the parity of N1 and
N2 [28]. But it can be ensured that QDDN1N2

can always
eliminate the decoherence to O(T min{N1,N2}) [29]. In a general
single-qubit interaction scenario, where N = N1 = N2, the
decoupling order N can be achieved using only O(N2) pulses
[29,30], which is an exponential improvement in the pulse
number requirement. Rigorous performance bounds have also
been given [31].

Two aspects should be taken into account when considering
the sequence performance: the sequence structure and the
number of pulses required to eliminate particular noise. The
sequence structure features in the designated pulse timing and
the form in which pulses are integrated. Once the structure
is determined, another degree of freedom we can control is
the number of specific pulses. To explain how these two
factors influence the operational fidelity, we consider a relative
simple scenario, where a one-qubit system is dominated by
the dephasing noise. The system Hamiltonian combined with
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the control field Hc can be written as H (t) = H0(t) + Hc(t),
where H0(t) = Sz ⊗ Bz(t) + I ⊗ B. Bz is the component
of the bath operator B along the z direction. Let Uc(t) =
T e−i

∫
dτHc(τ ) signify the control propagator; we can define

the toggling frame Hamiltonian H̃0(t) = U
†
c (t)H0(t)Uc(t) and

also introduce the notion Ũ (t), which stands for the error
propagator satisfying the equation

i
d

dt
Ũ (t) = H̃0(t)Ũ (t). (2)

The evolution after one DD sequence in the Schrödinger
picture can be determined as U = T e−i

∫
dtH̃0 . A DD sequence

with a superior structure can guarantee the total elimination
of the first several Dyson expansion orders of U , even if
it contains fewer effective pulses. And under a weak noise
regime, lower expansion orders play a decisive role in sequence
performance, while in a system where the noise is strong,
higher expansion orders will make a difference. Under this
condition the pulse number will become a significant factor,
and more pulses means greater noise suppression. So we
should balance the two essential factors when facing limited
resources (see Appendix A).

II. THREE-DIMENSIONAL FILTER FUNCTIONS

Beyond the two aspects we discuss above, another indeter-
minacy existing in quantum systems is the attribute of the
environment. Though experiment feedback can be utilized
to accomplish locally optimized DD [32], it will always be
beneficial to explicitly predict the sequence efficacy in an
arbitrary noisy environment. An important tool for achieving
this is the generalized transfer filter function (FF) technique
[19,33,34], which offers a novel perspective on understanding
the quantum evolution dynamics. Assuming that the system
concerned is subjected to classical fluctuation along three
axes in the Bloch sphere, we can redefine the respective noise
Hamiltonian as

H0(t) = βσ , (3)

where β represents the stochastic process along the three
principal axes. The toggling-frame error Hamiltonian can be
rewritten as [35,36]

H̃0(t) = U †
c (t)H0(t)Uc(t) =

∑
i=x,y,z

βiU
†
c (t)σiUc(t)

=
∑

i,j=x,y,z

βiRij (t)σj = β(t)R(t)σ , (4)

where R(t) is the control matrix, which depends only on the
control sequence we apply. For a sequence with consecutive
piece-constant control operators Pl , l ∈ {0, · · · ,n}, the control
matrix at time t in the lth interval has the expression

R(t) =
n∑

l=1

Gl(t)RPl (t − tl−1)�l−1, (5)

where Gl(t) has unit value within the lth time interval and
is 0 otherwise. Defining P0 = I , the control matrix for Pl is
derived from the Hilbert-Schmidt inner product

R
Pl

ij (t,tl−1) = 1
2 Tr

[
U †

c (t,tl−1)σiU
†
c (t,tl−1)σj )

]
. (6)

Letting Ql = PlPl−1 . . . P0, �l−1 characterizes the cumulative
effects of the previous control operators, which has the form
�l−1

ij = 1
2 Tr(Q†

l−1σiQl−1σj ).
The ultimate target is to design one DD scheme such that

the actual propagator U (t) is close to identity. We employ the
square modulus of the inner product of I and U (t) to evaluate
the decoupling performance, i.e.,

F = 1
4 〈|Tr(U (t))|2〉. (7)

Taking the Magnus expansion of U (t) and working in the
weak noise regime, we can neglect the higher orders of
the expansion and just keep the first two terms. The fidelity in
the time domain is [35,36]

F = 1 −
∑

i,j,k=x,y,z

∫ ∫
dτ1dτ2〈βi(τ1)βj (τ2)〉Rik(τ1)Rjk(τ2).

(8)

We can see that the fidelity decay is determined by the overlap
of the noise self-correlation function and the control matrix.
Transforming the above equation to the frequency domain, we
have

F = 1 − 1

2π

∑
i,j,k=x,y,z

∫ ∞

−∞

dω

ω2
Sij (ω)Rjk(ω)R∗

ik(ω), (9)

where Sij (ω) is the cross-power spectral density (PSD)
between the random variables βi(t) and βj (t) and the control
matrix in the frequency domain is

R(ω) =
n∑

l=1

eiωtl−1 RPl (ω)�l−1, (10)

where

RPl (ω) = −iω

∫ tl−tl−1

0
dteiωt RPl (t). (11)

For the DD issue, the consecutive operations are sim-
plified as π rotations interleaved with free evolutions. By
calculating the respective control matrix, we can use the
technique described above to quantify the effectiveness of DD
sequences while incorporating the noise influence on pulses.
Furthermore, assuming that all the pulses in DD sequences are
ideal, i.e., the pulses’ power is infinite, we see that Eq. (11)
is equal to 0 when Pl denotes π pulses. The interval between
pulses is the identity operator so RPl=I is independent of t and
the integral in Eq. (11) can be easily solved. For a DD sequence
consisting of n identical X pulses, due to the orthogonality of
Pauli operators, the matrix of �l−1 will only have two nonzero
terms, �l−1

yy and �l−1
zz , the values of which switch between 1

and −1. When there are pulses executing around different axes
in a DD sequence, �l−1 depends on the specific operations
we apply and will always be a diagonal matrix. Similarly,
RPl (ω) and thus R(ω) are also diagonal in the bang-bang
limit. |Ri,i(ω)|2 represents the noise suppression ability along
the i axis in the Bloch sphere. The smaller the product is,
the better suppression the DD sequence can achieve. We call
F(ω) = R(ω)R∗(ω) the FF matrix and Fi(ω) = |Ri,i(ω)|2 the
FF along the i axis.

Now we can derive the three-dimensional FFs based on
Eq. (10) for QDD3,3, CDD2, and PDD (eight pairs of X and
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FIG. 1. (a) Schematic of a consecutive piecewise constant control
sequence. (b, c) FF values along the x axis (b) and the z axis (c) for
QDD3,3, CDD2, and PDD sequences. The total evolution time is fixed
at 2.5 ms. The reason we only present the filter functions along the x

and z axes is that noise we inject into the system in the experiments
along the y axis is absent in the Bloch sphere.

Z evenly spaced pulses). Without loss of generality, Z pulses
are nested into X pulses for QDD. Each sequence contains
16 effective pulses and is applied within the same amount
of time. Sixteen is the minimum number of effective pulses
which not only ensures the equality of pulse resources required
but also guarantees the imparity of decoupling order. The
results are shown in Fig. 1. We can see that the frequency
response is the combined effect of the DD pulse number
and the sequence structure. For FF along the x axis, QDD,
with the optimal sequence structure and the most Z pulses,
has the steepest roll-off, which means that it will have the best
performance for eliminating LR noise. However, for TR noise,
PDD outperforms QDD after a certain frequency because the
pulse number effect outweighs the structure effect. Recent
experimental research has focused on one-qubit dephasing
issues, in which case only the z component of the FFs is
involved. No attempt has been made so far to investigate the
practicability of FFs with more than one dimension, even
in the DD scenario. Thorough studies on this issue are of
great significance since questions may arise with respect to
the feasibility of a designed DD sequence in an environment
with hybrid errors. Taking QDD, for example, we can gain
all the knowledge about whether QDD will be optimal only
through its FFs in three dimensions. So we can obtain the
actual capability of the protocol to suppress specific noise,
lending ourselves to the full evaluation of one DD sequence.

III. EXPERIMENTAL VALIDATION

Three-dimensional FFs can explicitly determine the ability
of DD sequences to suppress arbitrary noise. We experimen-
tally verify this in a liquid-state NMR system, where the H
nucleus as in the chloroform sample, is the information carrier
and the C nucleus is the observing qubit (see Appendix B). One
critical obstacle in our experiment is to create a Hamiltonian

with hybrid errors since naturally dephasing is the dominating
error in our system. The most simple hybrid-error Hamiltonian
for one qubit is H = βz(t)Iz + βx(t)Ix . The fluctuation of the
energy splitting βz(t) can result in TR and the second term
βx(t)Ix is responsible for LR. We simulate the Hamiltonian by
injecting classic noise into the H qubit. Our method builds
on the recent insight that unitary bath engineering can be
achieved through modulation of the control field [37,38]. The
main idea is to incorporate all the noise terms into the control
Hamiltonian and one assumes the presence of a perfectly stable
qubit, i.e., there is no ambient decoherence. We first illustrate
how to separately engineer LR or TR, and we then present the
method of engineering hybrid noise. Following this are our
experimental results and discussion.

A. Longitudinal relaxation noise

We inject the longitudinal relaxation noise by rotating
the qubit around some certain axis in the X-Y plane with a
fluctuating Rabi rate. In this way we simulate the βx(t)Ix =
β̂x(t)�Ix term in the Hamiltonian, where � is the Rabi rate.
βx(t) with the power spectral density S(ω) ∼ ω takes the form

β̂x(t)� =
N∑

j=1

αx

√
jω0sin(jω0 ∗ t + φj ), (12)

where αi={x,y,z} is the noise amplitude and φj is a random
phase. Nω0 determines the high-frequency cutoff, with ω0

being the base frequency. By changing the form of the
coefficient of every term in the summation, we can simulate
different types of noise with different PSDs.

B. Transverse relaxation noise

Classical noise that results in dephasing mainly comes
from the inhomogeneous and nonstatic magnetic field in
our system [1], corresponding to the random variation of
the Larmor frequency ωL. If we neglect the longitudinal
relaxation, the initial state |ψ(0)〉 = α|0〉 + β|1〉 under the
Hamiltonian βz(t)Iz = β̂z(t)ωLIz in the rotating frame after
some τ will become

|ψ(τ )〉 = e
−i

∫ τ2
τ1

βz(t)Izdt (α|0〉 + β|1〉)
= αe

− i
2

∫ τ2
τ1

β̂z(t)ωLdt |0〉 + βe
i
2

∫ τ2
τ1

β̂z(t)ωLdt |1〉
= αe−i�θτ /2|0〉 + βei�θτ /2|1〉.

(13)

Here �θτ is the integral of β̂z(t)ωL. The final state is the same
as the one rotated from the initial state by the radio-frequency
(RF) pulses for �θτ along the z axis, i.e.,

|ψ(τ )〉 = e−i�θτ Iz (α|0〉 + β|1〉)
= αe−i�θτ /2|0〉 + βei�θτ /2|1〉. (14)

So if we want to engineer the dephasing noise, we need to rotate
the system for �θτ around the z axis before each decoupling
pulse, which imitates the phase change between eigenstate |0〉
and eigenstate |1〉 after the previous decoupling pulse due to
fluctuation of the magnetic field. Starting with this method,
we have to investigate the relationship between the PSD of the
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Larmor frequency noise Sβz
(ω) and that of the phase change

Sθ (ω). We obtain that

Sβz
(ω) ∼ ω2Sθ (ω). (15)

For example, if the θ (t) we generate before each experiment
is

θ (t) =
N∑

j=1

αz√
jω0

sin(jω0 ∗ t + φj ), (16)

the differentiation of θ (t) gives

β̂z(t)ωL = d

dt
θ (t) =

N∑
j=1

αz

√
jω0cos(jω0 ∗ t + φj ). (17)

The self-correlation function of βz(t) should be [37]

〈βz(t)βz(t + τ )〉 = lim
T →∞

1

2T

∫ T

−T

dtβz(t + τ )βz(t)

= ω2
Lα2

z

2

N∑
j=1

jω0cos(jω0τ ).
(18)

And the PSD is thus the Fourier transform of the self-
correlation function:

Sβz
(ω) =

∫ ∞

−∞
dτe−iωτ 〈βz(t + τ )βz(t)〉

= πω2
Lα2

z

2

N∑
j=1

jω0[δ(ω − jω0) + δ(ω + jω0)]. (19)

So by generating the phase function, Eq. (17), with the PSD
satisfying Sθ (ω) ∼ 1/ω, we simulate the Larmor frequency
noise, with the PSD being Sβz

(ω) ∼ ω.

C. Hybrid noise

In order to simulate hybrid noise, i.e., LR and TR, one
cannot just combine the two methods as we mentioned above
since the term β̂x(t)�Ix does not commute to β̂z(t)ωLIz.
Now we demonstrate how to simulate two kinds of noise
simultaneously. In the Schrödinger picture, the Hamiltonian
of the qubit and the control field is

H (t) = β̂x(t)�cos(ωt)σx + ωL[1 + β̂z(t)]Iz. (20)

In the rotating frame, under the resonance condition “ω ≡ ωL,”
the Hamiltonian takes the following form:

Hr (t) = β̂x(t)�Ix + β̂z(t)ωLIz. (21)

In the frame that removes the second term, β̂z(t)ωLIz, the
Hamiltonian is

H̃ (t) = U †
z (t)β̂x(t)�IxUz(t)

= ei
∫ τ

0 β̂z(τ )ωLIzdτ β̂x(t)�Ixe
−i

∫ τ

0 β̂z(τ )ωLIzdτ

= β̂x(t)�eiIz[θt−θ0]Ixe
−iIz[θt−θ0]

= β̂x(t)�[Ixcos(�θt ) − Iysin(�θt )].

(22)

Transforming back to the rotating frame, the overall
evolution results from the net propagator: U (t) =
e−iIz�θtT exp{−i

∫ t

t0
β̂x(τ )�[Ixcos(�θτ ) − Iysin(�θτ )]dτ }.

So in order to create a hybrid noisy environment, βx(t) and
θ (t) are numerically generated with a desired noise power
density spectrum and then used to modulate the corresponding
RF continuous wave, which will be applied during the interval
of the decoupling pulses. The continuous RF waves rotate the
qubits at a fluctuating Rabi frequency around a changing axis
in the equatorial plane. At the end of the interval an additional
rotation around the z axis for the �θt angle is applied. We
change the rotating axis by changing the phase of the RF wave
and achieve the fluctuating Rabi frequency by modifying the
RF-wave output amplitude.

D. Experimental result

As mentioned above, the sequence performance is deter-
mined by two essential factors: the sequence structure and
specific pulse number. Fixing the total number of pulses, one
has to balance the two factors for a given noise environment.
In our experiments QDD3,3, CDD2, and PDD are utilized to
protect the one-qubit coherence. The sequence duration does
not include the π pulse lengths, which is 10 μs each for H
nuclei. Also, all pulses are exempt from noise injection and
the noise wave between pulses is continuous. Then it can be
seen that the self-correlation of β(t) is 0 during each pulse and
no overlap should exist between 〈βi(τ1)βj (τ2)〉 and RPl=π (t) in
Eq. (8). So the specific form of pulses is irrelevant to the final
fidelity. Therefore the calculations of FF matrices in Sec. II
are still valid and can be matched to the experiments we have
undertaken. Since the system is clean along the y axis, the
operational fidelity can be written as

F =1 − 1

2π

∫ ∞

−∞

dω

ω2
Sxx(ω)Rxx(ω)R∗

xx(ω)

− 1

2π

∫ ∞

−∞

dω

ω2
Szz(ω)Rzz(ω)R∗

zz(ω).
(23)

Neglecting higher order noise cross-correlations and incorpo-
rating an approximation to higher order terms, the fidelity has
the very simple form

F = 1
2 {1 + exp[−χ (τ )]}, (24)

where χ (τ ) ≡ 1
π

∑
i=x,z

∫ ∞
−∞

dω
ω2 Sii(ω)Rii(ω)R∗

ii(ω).
The sequence duration cannot be too long since the qubit

system is supposed to be stable before any noise is injected.
On the other hand, we need discernible experimental results so
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FIG. 2. Fidelity comparison in different kinds of noise environments. The initial state is along the y axis, 1
2 (|0〉 + i|1〉), and ohmic noise

[S(ω) ∼ ω] is injected into the system. (a–c) Fidelity difference between two arbitrary DD sequences calculated through filter functions (FFs).
The duration of all sequences is 2.5 ms. (a) Fidelity difference between QDD3,3 and CDD2 (QDD3,3 vs CDD2). The cutoff frequency of
dephasing noise is denoted on the horizontal axis; that of LR noise, along the vertical axis. So the region near or in the red zone, with a value
above 0, is the region where QDD outperforms CDD. (b) QDD3,3 vs PDD (eight pairs of X and Z evenly spaced pulses). (c) CDD2 vs PDD.
(d) Comparison of the fidelity decay between FF prediction (solid lines) and experimental data (squares, diamonds, and stars) in the partially
isotropic noise environment. Each data point is the averaging result of 30 noise realizations. Error bars, two standard deviation units in length
each, are presented; the first few are smaller than the data symbols. In all panels αx ≡ αz = 3 satisfies.

the duration should be long enough to reveal the influence of
the noise engineered. Similarly, a noise amplitude that is either
too high or too low will not distinguish the efficacy of three
sequences. In experiments we choose the duration to be 2.5 ms
and αi=x,z to be 3, in general, unless explicitly specified. The
explicit results are shown in Fig. 2. The two kinds of noise we
injected into the system have the same noise amplitude, i.e.,
αx ≡ αz, so the high-cutoff noise frequency ωcut determines
which noise dominates the system. When LR is the main
noise, QDD has a significant advantage over the other two
DD sequences, which can be understood as, since Z pulses
are nested into X, QDD has both the highest number of Z

pulses and the optimal sequence structure. However, for a pure
dephasing noise environment, CDD and PDD will show better
protection of the state after a certain frequency, as we can see
from the blue zones in Figs. 2(a) and 2(b). This is because when
the noise is strong, higher order terms of Dyson expansions of
the total evolution propagator U (t) become important. Though
QDD3,3 has the strongest suppression for the first several
order expansion terms, CDD and PDD can achieve more
suppression over the higher orders due to the more effective
X pulses. When ωx

cut = ωz
cut, we denote the noise environment

as partially isotropic [39], which is indicated by the black
line in Figs. 2(a) and 2(b). Experimental data are shown in
Fig. 2(d), which shows the consistency of the fidelity decay
between FF predictions and experimental data in the isotropic
noise environment. Moving to an extreme scenario, where
only specific noise exists, we still observe the competition of
the pulse number effect and the structure effect as shown in
Fig. 3. Numerical simulations are done to estimate the fidelity
of experimental data. Noise waves used in the experiments are
adopted to derive the ideal final state through Schrödinger
equation integration. The absolute distances between the
experimental data and the relative simulation results are all
below 0.1. Pulse errors are the main sources of experiment
infidelities. We eliminate the errors by symmetrizing the
pulse phases. But since the single noise injection procedure
is equivalent to unitary operations, the symmetry of pulse

phases will be damaged when the noise becomes stronger
and the pulse errors then cannot be neglected. In the QDD
scheme one pulse can be successively applied, which will
more easily lead to error accumulation. That is why the
experimental data for QDD stray farther from the simulation
ones.

So we can conclude that QDD is conditionally optimal
and close attention should be paid when it is applied. It is
proved that UDD, the building block for QDD, can achieve the
best decoupling in baths with an ohmic spectrum and a sharp
cutoff, so we inject ohmic noise into the system in order to
maximum the capacity of QDD. A weaker performance should
be expected if noise with 1/ω spectra is selected. It is also
shown that the FF technique is a powerful tool to quantitatively
characterize the performance of different DD sequences in all
kinds of noisy environments. Of course, the superiority or
inferiority of QDD over the other two DD schemes can be

FIG. 3. The performance of QDD, CDD, and PDD in the extreme
single LR noise (a) or TR noise (b) environment. Solid lines
represent filter-function prediction data; squares, diamonds, and stars,
experimental data. Experimental infidelities are also all below 0.1.
Each data point is the averaged result of 30 noise realizations. The
first few error bars are smaller than the symbols. To magnify the
dephasing phenomenon, the noise strength for experiments in (b) is
αz = 6 and the sequence duration is 3 ms.
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FIG. 4. Three-dimensional filter-function comparison of QDDZX and QDDYX .

easily seen from the FF analysis. When the noise frequency
exceeds the weak region and the convergence assumption is
violated, the FF technique becomes less accurate. In this case,
the experimental data start to deviate from the fidelity curve
predicted by the FF technique as shown in Fig. 3.

IV. SUBSTITUTING Z WITH Y

Alternatively, DD schemes can be constructed with X and Y

pulses. Therefore theoretically we consider a one-qubit system
with noise Hamiltonian H (t) = βx(t)Ix + βy(t)Iy + βz(t)Iz,
again assuming that the noise amplitudes along three axes are
equal, i.e., αx ≡ αy ≡ αz. For QDD2,2 consisting of X and
Z as basis pulses (QDDzx), we compare its performance with
that consisting of X and Y (QDDyx). Through calculation with
Eq. (10), we also derive the three-dimensional FFs for QDDzx

and QDDyx . The results show that there is no difference with
respect to the state fidelity if the noise environment is really
isotropic, in which noise along three axes has the same PSD
and high-cutoff frequency. But the noise suppression along
the three Bloch-sphere axes differs. If Y (Z) and X pulses
are applied, the suppression along the x and z (y) axes will
be greater than that along y (z) axis (see Fig. 4). If the noise
environment is not isotropic, one has to carefully choose the
optimal scheme in order to achieve the best decoupling.

V. CONCLUSIONS

We have studied in detail the experimental elimination
of both longitudinal relaxation and dephasing with various
DD schemes in the NMR system. The superiority of QDD
is experimentally examined and our experiments show that
QDD is optimal in most circumstances when the pulse
number and sequence structure are considered. An approach
to engineering an environment with hybrid noise has been
proposed. Three-dimensional FF technique is utilized to study
the performance of the various types of DD schemes, and it
shows that the performance of a DD scheme depends on both
how the pulses are arranged and the number of pulses applied.
For a specific noisy environment in a real system, one can
first probe the noise spectrum using DD sequences [40] and
then construct the optimal decoupling scheme via the FFs.

These findings are valuable for practical quantum information
processing.
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APPENDIX A: SEQUENCE PERFORMANCE

As mentioned in the text, the evolution after one DD
sequence for a one-qubit system dominated by dephasing noise
can be determined as

UN = T e−i
∫

dtH̃0

= I +
∞∑

n=1

∫ τn+1

0
dτn · · ·

∫ τ2

0
dτ1H̃0(τn) · · · H̃0(τ1)

= I +
∞∑

n=1

∑
�α

∫ τn+1

0
dτn · · ·

∫ τ2

0
dτ1S̃

αn

z · · · S̃α1
z

⊗ Bαn . . . Bα1 , (A1)

where �α = {α0, . . . ,αn−1}. αi ∈ {0,1} and

S̃αi

z =
{
I, αi = 0;
S̃z ≡ U †SzU, αi = 1;

Bαi =
{

B, αi = 0;
Bz, αi = 1.

The nth term (n < N + 1) in the Dyson expansion above
consists of 2n integrals, in which the integrand can be expressed
as the direct product of the system and the bath due to the
commutation relationship. For each order the system part of the
integral is the permutation of the operators S̃z and I . When only
S̃z exists, the integral is 0 under both UDD and PDD. Because
of the nature of UDD, the integral with an odd number of S̃z’s is
equal to 0. However, for PDD with the same number of pulses,
only the n = 1 term can be guaranteed to be fully eliminated,
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TABLE I. Comparison of integral values in the first four orders of the Dyson expansion between PDD and UDD. The bath is assumed to
be static for the sake of easy calculation. The superscript of PDD(n)

N (or UDD(n)
N ) stands for the expansion order and the subscript denotes the

effective pulse number. Numbers in parentheses are the integral values where the integrand consists only of S̃z, while numbers in brackets are
those where the integrand has an odd number of S̃z’s. We see that integral values with an odd number of S̃z’s are all 0 for UDD under the
condition n < N , which is not the case for PDD. But more effective pulses can achieve more suppression for all expansion orders as long as
the convergence condition is satisfied.

Sequence Integrand

S̃z I

PDD(1)
3 (0) 1.2337

PDD(1)
7 (0) 1.2337

UDD(1)
3 (0) 1.2337

S̃zS̃z S̃zI I S̃z I I

PDD(2)
3 (0) [0.003] [0.003] 0.1903

PDD(2)
7 (0) [7.432 ∗ 10−4] [7.432 ∗ 10−4] 0.1903

UDD(2)
3 (0) [0] [0] 0.1903

S̃zS̃zS̃z S̃zS̃zI S̃zI S̃z S̃zI I I S̃zS̃z I S̃zI II S̃z I II

PDD(3)
3 (0) 3.2 × 10−6 1.27 × 10−5 [4.584 × 10−4] 3.2 × 10−6 [0] [4.584 × 10−4] 0.0130

PDD(3)
7 (0) 2 × 10−7 8 × 10−7 [1.146 × 10−4] 2 × 10−7 [0] [1.146 × 10−4] 0.0130

UDD(3)
3 (0) 7.5 × 10−7 2.999 × 10−6 [0] 7.5 × 10−7 [0] [0] 0.0130

S̃zS̃zS̃zS̃z S̃zS̃zS̃zI S̃zS̃zI S̃z S̃zS̃zI I S̃zI S̃zS̃z S̃zI S̃zI S̃zI I S̃z S̃zI I I

I S̃zS̃zS̃z I S̃zS̃zI I S̃zI S̃z I S̃zI I II S̃zS̃z I I S̃zI III S̃z I III

PDD(4)
3 (0) [0] [2 × 10−8] 4.9 × 10−7 [2 × 10−8] 1.2 × 10−7 1.1 × 10−6 [2.949 × 10−5]

[0] 1.2 × 10−7 1.2 × 10−7 [2.8 × 10−7] 4.9 × 10−7 [2.8 × 10−7] [2.949 × 10−5] 5.027 × 10−4

PDD(4)
7 (0) [0] [0] 3.1 × 10−8 [0] 8 × 10−9 6.9 × 10−8 [7.733 × 10−6]

[0] 8 × 10−9 8 × 10−9 [4 × 10−9] 3.1 × 10−8 [4 × 10−9] [7.733 × 10−6] 5.027 × 10−4

UDD(4)
3 (0) [0] [0] 1.16 × 10−7 [0] 4.62 × 10−7 0 [4.91 × 10−7]

[0] 4.62 × 10−7 4.62 × 10−7 [4.442 × 10−6] 1.16 × 10−7 [4.418 × 10−6] [4.91 × 10−7] 5.027 × 10−4

yet higher orders of expansions, in which the integral with an
odd number of S̃z’s is not 0, are only suppressed.

In the weak noise regime, lower orders of the expansion
determine the total propagator so UDD will outperform PDD

FIG. 5. Fidelity of a single-qubit final state derived from integra-
tion of the Schrödinger equation. The initial state is also 1

2 (|0〉 + i|1〉).
The same noise waves are used to modulate H1 and H2. Each data
point is the average of 30 simulation results. The order of magnitude
for the fidelity difference of states driven by H1 and H2 is around
10−3, which is far beyond the experimental observation.

even if PDD contains more effective pulses. On the other hand,
higher orders will make a difference if the noise is strong
and the pulse number will become a significant factor. This
character is illustrated in Table I.

Comparing QDD3,3 with PDD with an equal total pulse
number and sequence length, for example, we can see that
QDD3,3 is superior in the sense that it has the optimal sequence
structure and more Z pulses, while it consists of only three
effective X pulses, which is far fewer than the eight X pulses
that PDD has. So it will be interesting to see if, although
consisting of only three X pulses, QDD will always outperform
any other sequences in an arbitrary noisy environment.

APPENDIX B: EFFECT OF CARBON NUCLEI

In the chloroform sample, a J coupling interaction exists
between hydrogen nuclei and carbon nuclei. The J value is
215 Hz. To show that the coupling barely has any effect on
our experiments, we have done two numerical integrations of
the Schrödinger equation with different Hamiltonians. One
of them contains the J coupling interaction term, denoted
H1 = 2πJ IHz ICz + Hc, and the other one only has the control-
field term, H2 = Hc. Hc executes the DD schemes while it
implements the noise engineering during the pulse interval.
A comparison of the simulation results is shown in Fig. 5,
which indicates that the existence of carbon nuclei makes no
difference in our experiments.
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