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Leggett-Garg inequalities and no-signaling in time: A quasiprobability approach
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The Leggett-Garg (LG) inequalities were proposed in order to assess whether sets of pairs of sequential
measurements on a single quantum system can be consistent with an underlying notion of macrorealism. Here,
the LG inequalities are explored using a simple quasiprobability linear in the projection operators to describe the
properties of the system at two times. We show that this quasiprobability is measurable, has the same correlation
function as the usual two-time measurement probability (for the bivalent variables considered here) and has the
key property that the probabilities for the later time are independent of whether an earlier measurement was made,
a generalization of the no-signaling in time condition of Kofler and Brukner. We argue that this quasiprobability,
appropriately measured, provides a noninvasive measure of macrorealism per se at the two-time level. This
measure, when combined with the LG inequalities, provides a characterization of macrorealism more detailed
than that provided by the LG inequalities alone. When the quasiprobability is non-negative, the LG system has
a natural parallel with the Einstein-Podolsky-Rosen-Bohm system and Fine’s theorem. A simple spin model
illustrating key features of the approach is exhibited.
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I. INTRODUCTION

Much current research on the foundations of quantum
theory has focused on the question of whether quantum theory
admits a notion of realism. There are many variants on what
this might mean exactly [1,2], but loosely, it means that the
variables describing a given situation may be regarded as
possessing definite values. Together with an assumption of lo-
cality, where necessary, realism then implies that there exists an
underlying probability distribution describing these variables.
Quantum theory assigns probabilities unambiguously only to
sets of variables that commute. To investigate (local) realism,
one can thus ask whether the set of probabilities provided
by quantum theory for a set of pairs of commuting variables
can be patched together into a single probability for all the
variables.

The classic example of such an investigation is the Einstein-
Podolsky-Rosen-Bohm (EPRB) setup, which consists of a pair
of particles A and B in an entangled state |�〉 in which
their spins are highly correlated [3,4]. Measurements are
made on the spin of A in directions a or a′, with outcomes
s1,s2 taking values ±1, and on B in directions b or b′ with
outcomes s3,s4. Quantum mechanics provides expressions for
the four probabilities p(s1,s3),p(s1,s4),p(s2,s3),p(s2,s4), so,
for example,

p(s1,s3) = 〈�|P a
s1

⊗ P b
s3
|�〉, (1.1)

where the projection operators onto spin in direction a are
defined in terms of the Pauli matrices by

P a
s = 1

2 (1 + sa · σ ). (1.2)

These probabilities have the property that they are consistent
among themselves and with the correct single spin measure-
ment probabilities, for example,∑

s1

p(s1,s3) = p(s3) =
∑
s2

p(s2,s3). (1.3)
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Relations of this form are reflections of locality: the results
of measurements on particle B are unaffected by whether or
not A is measured. We can now ask whether the four pairwise
probabilities can be regarded as the marginals of an underlying
probability p(s1,s2,s3,s4), so that, for example,

p(s1,s3) =
∑
s2,s4

p(s1,s2,s3,s4). (1.4)

Clauser, Horne, Shimony, and Holt (CHSH) showed that
if such a probability exists then the correlation functions
C13,C14,C23, and C24, defined by

Cij =
∑

s1,s2,s3,s4

sisjp(s1,s2,s3,s4) (1.5)

must satisfy the eight inequalities

−2 � C13 + C14 + C23 − C24 � 2, (1.6)

plus six more obtained by moving the minus sign to the
three other possible locations [4]. The proof of this result
is straightforward. Fine proved the considerably less obvious
result that these eight inequalities are not just a necessary
condition but also a sufficient condition to guarantee the
existence of an underlying probability [5] (for alternative
proofs see Refs. [6–9]). It is not hard to find quantum states
for which these inequalities are violated and this has also been
experimentally verified. Hence, quantum theory exhibits many
situations in which local realism cannot be maintained.

Leggett and Garg [10] proposed to apply this general
structure to the superficially similar but actually rather different
situation of a single system described by a bivalent variable
Q subject to measurements at a sequence of times, t1 < t2 <

t3 < t4, described by projection operators of the form

Ps = 1
2 (1 + sQ̂), (1.7)

where again s = ±1 and we have PsPs ′ = δss ′Ps and∑
s Ps = 1.
We again focus on the set of four pairwise probabilities

p(s1,s2),p(s2,s3),p(s3,s4),p(s1,s4), which are now for pairs of

2469-9926/2016/93(2)/022123(9) 022123-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.022123


J. J. HALLIWELL PHYSICAL REVIEW A 93, 022123 (2016)

sequential measurements on the same system at pairs of times
(note the different pairings of the si compared to the EPRB
case). These are usually measured in a protocol in which no
more than two sequential measurements are made in each run.
That is, p(s2,s3) for example, is measured using a different set
of runs from those used to measure p(s1,s2).

We can then ask whether there is an underlying probability
for which these four probabilities are marginals. Under the
rather strong assumption (about which more shortly) that these
four pairwise probabilities are properly defined and compatible
with each other, the answer is again that such a probability
exists if and only if the eight inequalities similar to Eq. (1.6)
(plus six more) are satisfied, and in this context these are
referred to as the Leggett-Garg (LG) inequalities,

−2 � C12 + C23 + C34 − C14 � 2 (1.8)

(again noting the change in pairings of the si compared to
the EPRB case). Simpler versions involving just three times,
analogous to the Bell inequalities [3] are also commonly
studied. A large number of papers have been written on both
theoretical and experimental aspects of the LG inequalities and
a very useful and extensive recent review of the LG inequalities
is that of Emary et al. [11].

The LG inequalities were originally proposed as a test of
realism at the macroscopic level, or macrorealism (MR) as it
has come to be known. In practice the systems studied are
rarely macroscopic, but the nomenclature is commonly used
and we will follow it here. In simple terms, MR means that
the system possesses trajectories in which the variables Q

take definite values at all four times and the four pairwise
probabilities are partial snapshots of these trajectories. More
precisely, the definition of macrorealism is broken down into
three separate assumptions:

(i) Macrorealism per se (MRps): the system is in one of the
states available to it at each moment of time.

(ii) Noninvasive measurability (NIM): it is possible in prin-
ciple to determine the state of the system without disturbing
the subsequent dynamics.

(iii) Induction (arrow of time): future measurements cannot
affect the present state.

Under these three assumptions, it has been shown in
numerous places that the LG inequalities follow (see for
example Refs. [10–12]). When the LG inequalities are violated
it means that one of these three assumptions is false. However,
what we are most interested in is violations of MRps but it is
difficult to distinguish this from violations of NIM, since the
sequential nature of the measurements makes NIM very hard to
maintain in realistic measurements. This assumption has been
the subject of much discussion since shortly after the original
Leggett-Garg paper (see for example, Refs. [13–15]) and a
recent and very extensive critique of this and other aspects of
the LG inequalities is that of Maroney and Timpson [12].

In their original work, Leggett and Garg suggested that
their inequalities could be tested in a way that respects NIM
using a so-called ideal negative measurement to measure the
correlation functions, in which the measuring device at the
first of each pair of times couples only to, say, the Q = +1
state, and the absence of a detection is then interpreted to mean
that the system must be in the Q = −1 state. As long as all
measurements at the first time in each pair are measured in this

way, the measurements are noninvasive since no interaction
took place [10].

Ideal negative measurements are demanding to implement
experimentally, but there are some promising experimental re-
sults that accomplish this [16,17]. An alternative experimental
protocol which also claims to involve no detectable disturbance
is that of George et al. [18]. There are considerable subtleties
in the interpretation of these interesting results and a useful
discussion of them may be found in Sec. VI of the review by
Emary et al. [11].

We also note that ideal negative measurements are still
invasive for a quantum-mechanical system, since, as often
noted, such null measurements still involve wave function
collapse [19] and indeed the probability for outcomes at the
second time only is changed in value by this collapse, but this
does not affect the value of the correlation function. What is
important here is that the use of ideal negative measurements is
one of a number of strategies to restrict the degree to which the
measured results are explained by hidden variable theories—it
is well-established that sets of correlation functions violating
the LG inequalities can be replicated using classical stochastic
models with disturbing measurements [20–23]. Or in more
colloquial terms, in the background to all such experiments
lurks the “stubborn macrorealist” who finds ingenious classical
explanations of the results. The challenge is therefore to
find strategies for testing the LG inequalities which limit
such classical explanations as much as possible. That is, to
confirm refutations of macrorealism, we seek combinations of
conditions which can be satisfied by quantum mechanics but
are very difficult to satisfy with any classical stochastic model.

An interesting recent proposal to precisely characterize
the NIM requirement is the no-signaling in time (NSIT)
condition proposed by Kofler and Brukner, by way of analogy
to the no-signaling condition in the analysis of the EPRB
case [24]. (Similar proposals have been made earlier, for
example, Refs. [12,25].) This condition reads

∑
s1

p12(s1,s2) = p2(s2), (1.9)

where p12(s1,s2) denotes the probability obtained under
measurement at both times t1 and t2 and p2(s2) denote the
probability obtained under measurement at t2 only, with no
earlier measurements. Corresponding conditions are assumed
for the other three pairs of times. This condition, which
is regarded as a statistical version of NIM, was originally
proposed as an alternative characterization of macrorealism,
different to the LG inequalities and was further developed
in Ref. [26]. The NSIT condition indicates the possibility that
MR can be satisfied or violated at just two times, independently
of any violations at three or four times indicated by the LG
inequalities. Here we will use it in conjunction with the LG
inequalities. NSIT implies that all the two-time probabilities
are compatible with each other and with the single-time
probabilities. Hence, if satisfied, it would have the desirable
consequence that the discussion of the LG inequalities and
their consequences may then proceed in a manner similar to
the EPRB case.

The NSIT condition is, however, generally not satisfied by
standard quantum-mechanical measurements. We briefly show
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why. For a system in initial state ρ the probability for a single
time measurement at time t is

p(s) = Tr[Ps(t)ρ], (1.10)

where Ps(t) = eiHtPse
−iH t is the projector in the Heisenberg

picture (we use units in which � = 1). In standard quantum
measurement theory, the probability for two sequential projec-
tive measurements at times t1,t2 is

p(s1,s2) = Tr
[
Ps2 (t2)Ps1 (t1)ρPs1 (t1)

]
. (1.11)

Summing over the final measurement we have∑
s2

p(s1,s2) = p(s1) (1.12)

in agreement with Eq. (1.10) but summing over the initial
measurement we find∑

s1

p(s1,s2) = Tr
[
Ps2 (t2)ρM (t1)

]
, (1.13)

where ρM (t1) denotes the measured density operator,

ρM (t1) =
∑
s1

Ps1 (t1)ρPs1 (t1), (1.14)

which is not in general equal to the single-time result,
Tr(Ps2 (t2)ρ). Hence, NSIT is not satisfied exactly in quantum
mechanics except perhaps at isolated parameter values, or for
specific initial states, so it is not a robust condition.

When NSIT is not satisfied exactly it is difficult to see
the relationship between the LG inequalities and the existence
or not of an underlying probability distribution—if the two-
time probabilities are not compatible, they cannot possibly
match to any underlying probability even if the LG inequalities
are satisfied. It is then not clear what violations of the LG
inequalities imply since they may come from either the failure
of NSIT or the lack of an underlying realistic description, or
both. For these reasons it is highly desirable to find a way to
ensure that the NSIT condition, or some modification of it, is
exactly satisfied.

The general issue at stake here is the question of finding
a reasonable counterpart for sequential measurements to the
probability formula Eq. (1.1) used in the EPRB case, together
with reasonable conditions on it, such as NSIT, or similar. In
particular, we note that when noncommuting observables are
involved, there is no unique formula for the joint probabilities
of such observables, or for the conditions under which these
probabilities are well defined, although this is fixed in part by
the specific types of measurement contemplated. We therefore
have the freedom to consider alternatives to the usual formula
Eq. (1.11), perhaps subject to suitable conditions, as long as
suitable measurement procedures are specified.

The main point of this paper is to show that the NSIT
condition and its desirable consequences can be satisfied in
quantum mechanics much more readily by switching attention
from the two-time measurement probabilities Eq. (1.11) to a
closely related measurable quasiprobability q(s1,s2) with very
similar characteristics as p(s1,s2), but which, by construction,
satisfies the NSIT condition Eq. (1.9) exactly. When measured
appropriately, it describes the noninvaded aspects of the system
at two times and may then be used as a noninvasive indicator
of MRps. In particular, we find that MRps holds at two times if

and only if the quasiprobability is positive. When positive, the
desired parallel between the LG inequalities with the EPRB sit-
uation and Fine’s theorem is achieved. The quasiprobability is,
however, still significant when negative. Used in conjunction
with the LG inequalities, the quasiprobability permits a more
elaborate characterization of macrorealism—it shows that MR
can hold or fail at two times whereas the LG inequalities alone
only give information about MR at three or four times. This
leads to a more refined picture of MR (suggested already by
Kofler and Brukner [24]).

We describe the approach involving a quasiprobability in
Sec. II and its interpretation in Sec. III. A model in which it
can be successfully implemented is described in Sec. IV and
we summarize in Sec. V.

Finally, we mention that an elegant approach to addressing
the failure of the two-time measurement probabilities to
satisfy NSIT has been recently developed by Dzhafarov
and Kujala [27] (see also the recent discussion of this
approach by Bacciagalupi [28] and the related work by Gühne
et al. [23]). In their “contextuality by default” approach,
modified LG inequalities are derived in which the bounds
on combinations of the correlation functions include terms
arising from violations of NSIT. These inequalities imply that
sufficiently large violations of the LG inequalities cannot be
explained by violations of NSIT and thus, the contextuality
of quantum theory is cleanly distinguished from signaling or
measurement effects. A comparison of this interesting work
with the present approach is a subject for future work.

II. A QUASIPROBABILITY APPROACH

The two-time probability Eq. (1.11) for sequential measure-
ments is closely linked with the quasiprobability

q(s1,s2) = 1
2 Tr

{[
Ps2 (t2)Ps1 (t1) + Ps1 (t1)Ps2 (t2)

]
ρ
}
. (2.1)

In this section we discuss its mathematical properties and how
it is measured. Eq. (2.1) is real and sums to 1, but can be
negative so is not a probability in general. (We focus on the
case of the bivalent variable Q. Some, but not all, of what
follows applies to more general variables.) The most important
property of Eq. (2.1) for what we do here is that, because it is
linear in both projection operators, we have

∑
s1

q(s1,s2) = Tr
[
Ps2 (t2)ρ

] = p(s2) (2.2)

∑
s2

q(s1,s2) = Tr
[
Ps1 (t1)ρ

] = p(s1) (2.3)

so it returns the correct single-time probabilities at both times,
not just one. So, unlike Eq. (1.11), the projection at the earlier
time does not affect the value of the probability p(s2) at the later
time. It therefore automatically satisfies a condition analogous
to the NSIT condition, Eq. (1.9), but at the expense of being
negative in some regimes. We use the word “analogous” here
since the NSIT condition refers to probabilities obtained by
sequential measurements, whereas the objects used here are
quasiprobabilities. We shall shall therefore refer to Eq. (2.2)
as generalized no-signaling in time. These conditions will
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also satisfied by the other three quasiprobabilities of interest,
q(s2,s3), q(s3,s4), and q(s1,s4).

Equation (2.1) is one of a number of possible quasiprob-
abilities, which match the correct marginals. It bears some
resemblance to a Wigner function for finite-dimensional
systems [29], for example, but is not exactly of that form.
The form Eq. (2.1) is particularly suited to the Leggett-Garg
situation, and to the measurement scheme we use, as we
shall see below. Also, we note that Eq. (2.1) was mentioned
by Marcovitch and Reznik [30] in their exploration of the
mathematical parallels between the LG system and the EPRB
situation but what we do with it here is different.

This quasiprobability is simply related to the standard
quantum-mechanical two-time probability Eq. (1.11) by

q(s1,s2) = p(s1,s2) + 2ReD(s1,s2| − s1,s2), (2.4)

where

D(s1,s2|s ′
1,s2) = Tr

[
Ps2 (t2)Ps1 (t1)ρPs ′

1
(t1)

]
(2.5)

is the decoherence functional whose off-diagonal terms are
measures of interference between the two different quantum
histories represented by sequential pairs of projectors. (We
use here the mathematical language of the decoherent histories
approach [31–40] but this is not a decoherent histories analysis
of the LG inequalities.) When

ReD(s1,s2|s ′
1,s2) = 0, for s1 �= s ′

1, (2.6)

a condition normally referred to as consistency, there is no
interference and we have q(s1,s2) = p(s1,s2), and the NSIT
condition Eq. (1.9) is satisfied exactly. However, noting that
p(s1,s2) is always non-negative, we see from Eq. (2.4) that
q(s1,s2) will be non-negative if the off-diagonal terms of the
decoherence functional are bounded,

2|ReD(s1,s2| − s1,s2)| � p(s1,s2). (2.7)

The requirement that the quasiprobability Eq. (2.1) is non-
negative

q(s1,s2) � 0 (2.8)

was named linear positivity by Goldstein and Page and is
one of the weakest conditions under which probabilities can
be assigned to noncommuting variables, subject to agreeing
with the expected formulas for commuting projectors and to
matching the probabilities for projectors at a single time [41]. It
is satisfied very easily in numerous models, for suitably chosen
ranges of parameters, since it requires only partial suppression
of quantum interference, not complete destruction of it.

The quasiprobability may be expanded out as

q(s1,s2) = 1
4 (1 + 〈Q̂(t1)〉s1 + 〈Q̂(t2)〉s2 + C12s1s2), (2.9)

where

C12 = 1
2 〈Q̂(t1)Q̂(t2) + Q̂(t2)Q̂(t1)〉 (2.10)

(see Refs. [42,43] for more on this useful representation). It
will therefore be positive under the conditions

− 1 + |〈Q̂(t1)〉 + 〈Q̂(t2)〉| � C12 � 1 − |〈Q̂(t1)〉 − 〈Q̂(t2)〉|.
(2.11)

By contrast the two-time measurement probability, which is
always non-negative, has an extra term,

p(s1,s2) = 1
4 (1 + 〈Q̂(t1)〉s1 + 〈Q̂(t2)〉s2 + C12s1s2

+ 1
2 〈[Q̂(t1),Q̂(t2)]Q̂(t1)〉s2). (2.12)

This extra term, which clearly vanishes when Q̂(t1) and Q̂(t2)
commute, is the reason why measurements at t1 affect the
probability at t2, since the average at t2 is

∑
s1,s2

s2p(s1,s2) = 〈Q̂(t2)〉 + 1

2
〈[Q̂(t1),Q̂(t2)]Q̂(t1)〉. (2.13)

This extra term is in fact the only difference between q(s1,s2)
and p(s1,s2) and in particular note that the quasiprobability
and the two-time measurement probability have the same
correlation function,

C12 =
∑
s1,s2

s1s2p(s1,s2) =
∑
s1,s2

s1s2q(s1,s2) (2.14)

as previously noted [30,44] but this is not true for variables
with more than two values.

There is in fact a simple physical way to understand why
the correlation functions are the same. The correlation function
may be written in terms of the probabilities for the two values
of Q being the same, p(same) = p(+,+) + p(−,−) and being
different, p(diff) = p(+,−) − p(−,+). We then have

C12 = p(same) − p(diff). (2.15)

Since the probabilities all sum to 1 we also have

p(same) + p(diff) = 1. (2.16)

Hence, the correlation function is constructed from sets
of histories, which, although they are constructed from
noncommuting operators, have zero interference, since the
probabilities involved add up correctly. However, despite
this essentially classical property and the similar fact that
the correlation function is independent of the order of
measurement, Eq. (2.10), its value can still be simulated using
invasive classical measurement models so, to avoid this, must
be measured using noninvasive measurement protocols.

The two-time measurement probabilities Eq. (1.11) can be
measured in a standard way. We start with the initial state ρ,
evolve to time t1, measure Q, then evolve to time t2, measure
Q again. Carrying out such a run many times and noting the
fraction of times the values ±1 are obtained at the two times
we thus determine the probability of sequential measurement.

The quasiprobability Eq. (2.1) can be measured most
directly using sequential measurements in which the first mea-
surement is weak [45–47]. For example, a weak measurement
of Q at time t1 followed by a projective measurement at time
t2 will yield, for the two-time probability, a term proportional
to p(s2) at lowest order plus a small bias proportional to
the expression ReTr(Ps2 (t2)Q̂(t1)ρ). Since Q̂ = P+ − P−, this
may be written

ReTr
(
Ps2 (t2)Q̂(t1)ρ

) = q(+,s2) − q(−,s2). (2.17)

We also know from Eq. (2.2) that

p(s2) = q(+,s2) + q(−,s2) (2.18)
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so if p(s2) is measured in a separate set of runs we can deduce
all four components q(±,s2) of the quasiprobability.

However, the generalized NSIT condition Eq. (2.2) is a
central condition in this approach and it would be preferable
to have a protocol which actually checks this condition rather
than assuming it. This is achieved using the scheme similar
to that used for ideal negative measurements described earlier.
The measuring device is first coupled weakly to only the Q =
+1 state at time t1. This weak measurement followed by a
projective measurement at t2 yields q(+,s2). A similar set of
weak measurements are then made with a coupling to the
Q = −1 state and we thus obtain q(−,s2). These two sets of
measurements are sufficient to determine all four components
of the quasiprobability. However, we then have the possibility
of checking that Eq. (2.18) holds by measuring p(s2) in a
separate set of runs. This is a useful check since, as noted in
Ref. [11], weak measurements are not necessarily noninvasive.

As an alternative method of measurement, we could use
the standard two-time probabilities p(s1,s2) to read off the
correlation function and the average 〈Q̂(t1)〉, since these are
the same for q(s1,s2). The average 〈Q̂(t2)〉 is then measured
using a different set of runs (i.e., not using the runs in which
a measurement was made at t1). From these results q(s1,s2)
can then be constructed. Since projective measurements are
used to determine the correlation function, this method may,
on the face of it, be more susceptible to alternative classical
explanations (of the type outlined earlier). However, this can
be avoided using ideal negative measurements to determine
the correlation function.

Finally, note that although we introduced the quasiprobabil-
ity in terms of the quantum-mechanical expression Eq. (2.1),
the subsequent equivalent expression Eq. (2.9) indicates that
there is an alternative and more operational way of introducing
it which does not involve quantum mechanics directly. This
is to first measure the two averages and correlation function
noninvasively, along the lines indicated above, and then to
attempt to construct a probability matching them. There is, of
course, not always a probability but one is uniquely led to the
quasiprobability Eq. (2.9), which is positive in some cases. The
subsequent discussion and interpretation are then the same as
if we had started from Eq. (2.1). Hence operational grounds
provide an equivalent origin for the quasiprobability Eq. (2.1).

The set of four quasiprobabilities q(sj ,sk) for jk =
12,23,34,14, subject to the generalized NSIT condition
Eq. (2.2) and to Eq. (2.3), and measured according to one of the
above prescriptions, are the sought-after generalization of the
two-time measurement probabilities p(sj ,sk), with which we
can discuss macrorealism and the LG inequalities. We there-
fore turn now to the interpretation of these quasiprobabilities.

III. INTERPRETATION OF THE QUASIPROBABILITIES

We shall argue that the quasiprobabilities, properly mea-
sured, give a noninvasive measure of MRps at the two-time
level, which can then be used in conjunction with the LG
inequalities to characterize different types of macrorealism.

We first note that our generalized NSIT condition Eq. (2.2)
and the original NSIT condition Eq. (1.9) yield essentially the
same result if we average s2 in both conditions, since they
both indicate that the average 〈Q̂(t2)〉 is independent of an

earlier measurement. This is the essential physical content of
NSIT and we thus see that it is independent of whether it is
expressed through a true probability or quasiprobability. The
average 〈Q̂(t1)〉 is of course also unaffected by a later mea-
surement as long as the induction assumption holds but this is
always assumed. Furthermore, the measurement prescriptions
outlined above for the quasiprobabilities, either through weak
measurements or ideal negative measurement determine the
correlation function in a noninvasive way. Hence, given the
way it is defined and measured, the quasiprobabilities may be
thought of as the noninvaded part of the description of the
system at two times. [Note that this is not true of the usual
formula, Eq. (1.11), even when measured using ideal negative
measurements, since 〈Q̂(t2)〉 is disturbed.]

Second, given this description of the system at two times,
which satisfies NIM, the sign of the quasiprobability is then an
indicator of whether MRps holds at the two-time level. This is
perhaps intuitively clear, but to see in more detail, recall that
the LG inequalities were derived under the key assumptions
of MRps and NIM (and induction). Proceeding in exactly the
same way, the same assumptions mean that we may take Q(t1)
and Q(t2) to be independent random variables described by a
probability. Noting that they satisfy the simple inequality

(1 + s1Q(t1))(1 + s2Q(t2)) � 0 (3.1)

and averaging this, we obtain

1 + 〈Q(t1)〉s1 + 〈Q(t2)〉s2 + C12s1s2 � 0, (3.2)

which is precisely the linear positivity condition q(s1,s2) � 0.
Since we have argued that the quasiprobability satisfies NIM
already, this shows that MRps holds at the two-time level, for
each of the four pairs of times, if and only if

q(sj ,sk) � 0 (3.3)

for each of the four quasiprobabilities. That is, the sign of the
quasiprobabilities gives a noninvasive indicator of MRps.

Consider now what this means for the various different
cases. Consider first the case in which the parameters of the
model are such that linear positivity Eq. (3.3) holds for all
four pairs. We can then ask if the four quasiprobabilities
can be matched to an underlying probability p(s1,s2,s3,s4),
and the necessary and sufficient condition is the set of eight
LG inequalities. This therefore yields a close parallel with
the EPRB case and Fine’s theorem. Violations of the LG
inequalities in this case are then refutations of MRps at the
three- and four-time level.

Clemente and Kofler [26] have shown that the LG in-
equalities cannot, in general, provide a sufficient condition for
macrorealism (although they are clearly necessary). However,
the above result is not in conflict since it is not as general—it
involves a quasiprobability with a restricted set of parameter
ranges. (Fine’s theorem in the LG inequalities is also discussed
in Ref. [48].)

Although NIM is explicitly incorporated in this approach,
it is of interest to see how hidden variable explanations are
restricted in their power to explain LG violations, in this
case where linear positivity is satisfied. The hidden variable
models that replicate the correlation functions violating the
LG inequalities have the feature that they replicate the
standard two-time measurement probabilities Eq. (1.11). In
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particular, they are invasive and will not in general satisfy NSIT
because they disturb p(s2) [20–23]. Hence, the role played by
(generalized) NSIT is to eliminate this type of hidden variable
explanation. It is not clear, however, that it eliminates all hidden
variable explanations. We find, for example, for the case of a
maximally mixed initial state discussed in the next section,
that 〈Q̂(t2)〉 is zero whether or not an earlier measurement is
made, so p(s2) is undisturbed by the presence of an earlier
measurement. For this reason it is desirable to ensure that
the correlation function is measured noninvasively in the
measurement protocol. Hence, noninvasiveness is ensured by
a combination of NSIT and the measurement protocol.

When NSIT is satisfied and the two-time quasiprobabilities
are positive, hidden variable models of the noninvasive type
may be found to describe each of the two-time situations, but
they cannot be patched together into a hidden variable model
for the values of Q at all four times unless the LG inequalities
are satisfied. Hence, hidden variable models cannot in general
replicate both the quasiprobabilities satisfying linear positivity
and LG inequality violation (unless there is some very
implausible collusion going on between the measurements at
different pairs of times in which new invasiveness effects not
present at two times appear at three or more times, as discussed,
for example, in Ref. [14]). As we shall see, quantum mechanics
can meet both constraints.

Suppose now that linear positivity Eq. (3.3) is violated,
which means that at least one of the quasiprobabilities is
negative for some parameter values of interest. This means
that MRps has failed at the two-time level. This case has no
parallel in the EPRB situation. Since the LG inequalities are
independent conditions, they may or may not be satisfied in
this case (this is not in conflict with Fine’s theorem). Perhaps
surprisingly, we can therefore have a situation in which MRps
is violated at the two-time level, but satisfied at the three-
or four-time level, if the LG inequalities are satisfied. This
simply indicates the fact that the LG inequalities alone are
not enough to fully characterize macrorealism, since there are
cases such as this, where they miss MRps violations, as noted
by Kofler and Brukner [24]. If both linear positivity and the
LG inequalities are violated then it means that MRps fails at
both the two-time level and at three and four times.

In the cases where linear positivity is violated, so MRps
fails at two times, it is again of interest to ask whether this may
have arisen from an underlying classical model. Generally
speaking, quasiprobabilities with regions of negativity often
arise in situations where the system is in fact described by
an underlying positive probability (i.e., satisfies MRps in
our langauge) but has been rendered negative by invasive
measurements. Here, however, we are not looking at general
quasiprobabilities but at the very restricted class of quasiprob-
abilities Eq. (2.1), which satisfy the conditions Eqs. (2.2)
and (2.3), one of which is our generalized NSIT condition,
which specifically limits measurement disturbances and also
the correlation function is measured noninvasively. So linear
positivity violation cannot be simulated by classical models
with disturbing measurements.

In brief, the quasiprobability Eq. (2.1), properly measured,
supplies a noninvasive measure of MRps at two times, which
can be used in conjunction with the LG inequalities to
characterize macrorealism in a number of different ways. It

shows that MRps can be violated, or not, at two times, or
at three or four times. Of these, perhaps the most interesting
case is that in which MRps holds at the two-time level but
is violated at three or more times, since it is a parallel with
the EPRB case and in particular, like that case, it involves on
the one hand, essentially classical behavior at two times, but
on the other, involves subtle quantum correlations, which do
not appear until three or more times are considered. A model
exhibiting this is presented in the next section.

Finally, as a tangential issue, we note the following. In
looking for a probability for all four variables that matches
the four quasiprobabilities in the regime where they are
non-negative, it would be natural to consider the four-time
quasiprobability,

q(s1,s2,s3,s4) = ReTr
[
Ps4 (t4)Ps3 (t3)Ps2 (t2)Ps1 (t1)ρ

]
, (3.4)

a possible generalization of Eq. (2.1) to four times [41].
It clearly matches the two-time quasiprobabilities so, when
non-negative, it solves the matching problem. However, it does
not have a straightforward relationship to the LG inequalities.
If Eq. (3.4) is non-negative then the LG inequalities must
be satisfied. However, if the LG inequalities are satisfied, it
does not imply that Eq. (3.4) is non-negative. Fine’s theorem
shows that if the LG inequalities are satisfied then there
exists some probability matching the given two-time marginals
(generally a family of probabilities), but it is not necessarily
Eq. (3.4). In fact an explicit example involving the EPRB setup
show that there are situations in which the CHSH inequalities
are satisfied, so a probability exists, but the counterpart to
Eq. (3.4) is negative somewhere [42]. Hence, linear positivity
for Eq. (3.4) is not the most general solution to the matching
problem. This is not directly relevant to the main thrust of this
paper and will be explored further elsewhere.

IV. A SIMPLE SPIN MODEL

We now address the question of finding situations in which
the LG inequalities are violated but linear positivity is satisfied
for the four two-time quasiprobabilities. Mathematically, it is
not hard to see how this can be achieved. For a given set
of correlation functions C12,C23,C34,C14 violating the LG
inequality four quasiprobabilities satisfying linear positivity
are easily found by finding values of the averages 〈Q̂(t)〉 at
the four times satisfying Eq. (2.11). However, the averages
are not freely chosen and the issue is to find a specific model
supplying the averages and correlation functions in which there
are parameter ranges doing the job.

We consider a simple model involving spins, which is often
studied in this context (see, for example, Ref. [22]). We take the
bivalent variable Q̂ to be the Pauli matrix σz, the Hamiltonian
to be

H = 1
2ωσx (4.1)

and the initial state to be the |+〉 state in the z direction. It is
readily shown that

〈Q̂(t)〉 = cos ωt (4.2)

and the correlation function Eq. (2.10) is

C12 = cos ω(t2 − t1). (4.3)
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The LG inequalities then read,

−2 � cos ω(t2 − t1) + cos ω(t3 − t2) + cos ω(t4 − t3)

− cos ω(t4 − t1) � 2 (4.4)

(plus six more of this form). For simplicity we take t1 = t,t2 =
2t,t3 = 3t,t4 = 4t and the inequalities then read

−2 � 3 cos ωt − cos 3ωt � 2, (4.5)

which is maximally violated (exceeds 2 by a factor of
√

2) at
ωt = π/4. However, we must also check for linear positivity.
One of the quasiprobabilities is

q(s1,s2) = 1
4 [1 + s1 cos ωt1 + s2 cos ωt2

+ s1s2 cos ω(t2 − t1)]. (4.6)

With the above choices of times, we find

q(±,−) = 1
4 (1 − cos 2ωt), (4.7)

which is non-negative. However,

q(±,+) = 1
4 (1 ± 2 cos ωt + cos 2ωt) (4.8)

from which it is easily seen that q(+,+) and q(−,+) always
have opposite signs so one of them is always negative for all t .

Different choices of time intervals other than the evenly
spaced one considered do not improve the situation. At some
length it may be shown that, for arbitrary times t1,t2,

q(+,+)q(−,−) = 1

4
sin ωt1 sin ωt2 cos2

(
ω(t1 − t2)

2

)
(4.9)

and

q(+,−)q(−,+) = −1

4
sin ωt1 sin ωt2 sin2

(
ω(t1 − t2)

2

)
.

(4.10)

These two expressions therefore always have opposite signs,
which means that there is no regime in which all four of the
q(s1,s2) are non-negative. The above results show that it is
quite easy to find situations where the LG inequalities are
either violated or satisfied but linear positivity is not satisfied.

The situation with regard to linear positivity is significantly
improved by taking a mixed initial state and we choose a family
of such states of the form

ρ = 1
2 (1 + ασz), (4.11)

where |α| � 1. The correlation function Eq. (4.3) is the same
(since it is in fact independent of the initial state) and the
average now is

〈Q̂(t)〉 = α cos ωt. (4.12)

From this we immediately see from Eq. (2.9) that in the case
α = 0, the maximally mixed state, all the averages are zero and
therefore all the quasiprobabilities are trivially non-negative
since all the correlation functions satisfy restrictions of the
form |C12| � 1. So linear positivity is always satisfied in this
case.

The original NSIT condition Eq. (1.9) with the probabilities
taken to be the usual quantum-mechanical ones is also satisfied
exactly in this case [24]. This feature has sometimes been
taken to mean that there is no measurement disturbance in

the case of a maximally mixed state [49] but this is not
necessarily the case [50]. The fact that the averages are all zero
in this case actually means that the (original or generalized)
NSIT condition loses its usefulness in terms limiting hidden
variable explanations—the correlation functions could still
be replicated by an invasive classical model but the telltale
disturbances in p(s2) could be averaged to zero by the mixed
initial state. Hence, in this case a noninvasive measurement
of the correlation function is necessary. This illustrates the
statement made in Sec. III that NSIT is only a partial indicator
of noninvasiveness and must be used in conjunction with the
measurement protocol. (The contextuality by default approach
also has analogous features for a maximally mixed state [28].)

Consider now more general values of α. The condition
Eq. (2.11) for the non-negativity of q(s1,s2) is conveniently
rewritten

1 ± C12

|〈Q̂(t1)〉 ± 〈Q̂(t2)〉| � 1, (4.13)

where, to be clear the ± on top and bottom are correlated (i.e.,
they are both plus or both minus). Inserting the explicit values
this condition reads

|α| � 1 ± cos ω(t2 − t1)

| cos ωt1 ± cos ωt2| . (4.14)

It is clearly always satisfied for α = 0, as noted, but can never
be satisfied for the pure state case |α| = 1. It can be satisfied
by other values of α but this can impose a restriction on the
ranges of the possible values of the times.

To explore this further, we choose the equally spaced time
intervals described above. We find that the four sets of linear
positivity conditions Eq. (3.3), for the cases ij = 12,23,34,14
respectively, read

|α| � 1 ± cos ωt

| cos ωt ± cos 2ωt | , (4.15)

|α| � 1 ± cos ωt

| cos 2ωt ± cos 3ωt | , (4.16)

|α| � 1 ± cos ωt

| cos 3ωt ± cos 4ωt | , (4.17)

|α| � 1 ± cos ωt

| cos ωt ± cos 4ωt | . (4.18)

We seek the minimum value of the right-hand side in these
four inequalities. It is easily seen (e.g., by simply plotting
them) that the − cases have their lowest minima at t = 0 and
the + cases have their lowest minima at ωt = π . The least
of all the minima occurs for the − case in Eq. (4.18) and
this minimum takes the value 1/15. Hence, we find that linear
positivity is satisfied for all ranges of t if

|α| � 1
15 . (4.19)

There is therefore a nontrivial neighborhood around the
maximally mixed state, α = 0, in which linear positivity is
satisfied. Since generalized NSIT Eq. (2.2) is always satisfied
by the quasiprobability, the combination of generalized NSIT
plus linear positivity represents a clear improvement on
the original NSIT condition Eq. (1.9), which can only be
satisfied at α = 0 but not in a neighborhood of it. Hence, the
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framework described here is more robust than the original
NSIT condition.

For values of α outside this range, linear positivity can still
be easily satisfied, but for time ranges that are restricted. To
characterize these ranges precisely would require a detailed
solution of the inequalities Eqs. (4.15)–(4.18), which may
not be possible algebraically. However, it is simpler and most
relevant to focus on the range of values of t close to ωt = π/4
at which the maximum violation of the LG inequalities holds.

We easily find that, by inserting the value ωt = π/4,
Eqs. (4.15) and (4.16) are satisfied at this point if

|α| �
√

2 − 1 (4.20)

and Eqs. (4.17) and (4.18) hold if |α| � 1, which is true already.
Hence, linear positivity is easily satisfied at this single point.
Furthermore, since the quasiprobabilities depend continuously
on α, this means that for any fixed α with |α| <

√
2 − 1 there

is a nontrivial time interval surrounding the point ωt = π/4,
for which linear positivity is satisfied.

This model therefore confirms that there is a nontrivial class
of mixed initial states for which linear positivity is satisfied and
the LG inequalities are significantly violated, thus successfully
implementing the protocol described earlier.

For pure initial states, for which linear positivity is not
satisfied, one could consider a modified model in which the
dynamics includes a decoherence mechanism described by
a simple Lindblad evolution equation [14,51]. This would
create larger ranges in which linear positivity is satisfied
(since it suppresses interference) but it would also lessen the
violation of the LG inequalities (similar to the mechanism of
disentanglement [52]). We have carried out calculations of a
simple version of such a model. We find that the protocol still
works in that it is possible to find ranges of time for which the
LG inequalities are violated but both these ranges and the LG
inequality violations are very small so this case may not be
very relevant to experiment.

V. SUMMARY AND DISCUSSION

Conventional approaches to understanding the LG inequal-
ities are faced with either the theoretical and experimental
difficulties of meeting the NSIT condition Eq. (1.9), or a
more general version of NIM, or the conceptual difficulties
of interpreting them when this condition is not satisfied, in
which case it is frequently asserted that a violation of the LG
inequalities says more about the effect of measurement than
about realism. Although some promising experiments have
been done [16–18] that avoid these problems, it remains of
interest to find alternative approaches.

Here we have proposed one such approach, which is to
replace the usual two-time sequential measurement proba-
bilities with measurable quasiprobabilities with very similar
properties but which satisfy the analog of the NSIT Eq. (1.9)
exactly. We have shown that these quasiprobabilities have a
number of properties, which can make them very useful in the
study of macrorealism and the LG inequalities.

First, because of the way they are defined and measured,
they describe the noninvaded part of the description of the
system at two times. This is unlike the usual two-time mea-
surement formula Eq. (1.11), in which p(s2) is affected by an
earlier measurement, even if carried out using an ideal negative
measurement. In particular, the fact that the quasiprobabilities
satisfy generalized NSIT gives partial control over the degree
to which invasive classical models can replicate the quantum
results, but this to some degree also involves the specific
measurement protocol used.

Second, the quasiprobabilities give a noninvasive indicator
of MRps at two times. In particular, they are positive if and
only if MRps holds. When positive, we obtain a natural parallel
between the LG inequalities and Fine’s theorem in the EPRB
case. More generally, the quasiprobabilities together with the
LG inequalities give a more refined account of macrorealism
at two, three, and four times and in particular highlight
some situations in which the LG inequalities alone are
insufficient.

We have shown in a simple model that parameter ranges
are easily found for which linear positivity is satisfied but the
LG inequalities are maximally violated. Situations in which
linear positivity is not satisfied with the LG inequalities either
satisfied or not satisfied are also easily exhibited. This model
also showed that the various interesting properties indicated
by the quasiprobability can be satisfied in a robust way, unlike
the original NSIT condition.

It will be of particular interest to check some of these ideas
in experimental tests. This should be straightforward using
simple modifications of existing experiments.
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