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Nonexponential tunneling decay of a single ultracold atom

Gastón Garcı́a-Calderón1,* and Roberto Romo2,†
1Instituto de Fı́sica, Universidad Nacional Autónoma de México, Apartado Postal 20 364, 01000 Ciudad de México, Mexico
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By using an exact analytical approach to the time evolution of decay we investigate the tunneling decay of
ultracold single atoms to discuss the conditions for deviations of the exponential decay law. We find that R, given
by the ratio of the energy of the decaying fragment Er to its corresponding width �r , is the relevant quantity
in this study. When R is less than 0.3, the decay of the atom goes to a good approximation for the first few
lifetimes as exp(−�rt/2�)t−3/2. We also find that for values of R ∼ 1, the nonexponential behavior occurs in a
postexponential regime that goes as t−3 after around a dozen lifetimes. The above conditions depend on suitably
designed potential parameters and suggest that for values R � 1, the experimental verification of nonexponential
decay might be possible.
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I. INTRODUCTION

The recent experimental work on tunable few-fermion
systems consisting of ultracold gases in optical traps, which
is characterized by the control of the quantum state of the
system [1–3], has opened the way to investigate a variety of
aspects of few- and many-body physics [4–6]. As described
in these works, this can be achieved by exploiting Pauli’s
principle in a highly degenerate Fermi gas in a trap so that it
is possible to control the number of particles by controlling
the number of available lowest-energy single-particle states.
For a few particles, the confining trapping potential consists
of a one-dimensional optical potential created by a tight focus
of a laser beam and a magnetic field gradient in the axial
direction, in such a way that the states above a well-defined
energy become unbound. The resulting potential is formed
by an impenetrable barrier on the left, a barrier of finite
height on the right, and a well in between with a controlled
number of atoms which may decay out of the trap by tunneling
through the barrier. The above setup has been used to address
experimentally the tunneling decay of two or more atoms [1]
and has motivated theoretical studies on the dynamics of
multiparticle decay [5,7–10], in addition to studies on the
decay of two interacting or noninteracting particles [2,11–16].
In Ref. [1] the possibility of preparing just one atom in the
lowest energy level of an optical trap is also pointed out.

In contrast to the widespread view that tunneling decay of an
isolated single particle into open space is amply understood [5],
here we call attention to the old prediction of the deviations of
the exponential decay law at short and long times compared
with the lifetime of the decaying system. Here, by using an
exact analytical approach for decay [17–19], we investigate
the conditions that need to be fulfilled to be able to observe
nonexponential decay of single ultracold atoms tunneling out
of the potential profile using realistic parameters. We believe
that these systems are the closest realization for tunneling
decay in a highly isolated environment and hence might be
appropriate to test nonexponential decay at long times. This is
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a relevant issue from a fundamental point of view that requires
experimental verification.

We first provide an overview of the subject of decay of
particles by tunneling. It is well known that quantum decay, a
subject as old as quantum mechanics, was developed to explain
α decay in radioactive nuclei. In 1928, Gamow derived the an-
alytical expression for the exponential decay law exp(−�t/�),
with � being the decay rate, an expression that has been widely
used in the description of particle decay. For single-particle
decay and, it seems, also in multiparticle decay [8,10], one
may usually identify, in addition to the exponential regime,
two nonexponential regimes that occur, in general, at short
and long times compared with the lifetime of the system. The
short-time behavior, which is related to the existence of the
energy moments of the Hamiltonian [20], exhibits typically a
t2 behavior (see, however, [21]) and has been the subject of
a great deal of attention, particularly in connection with the
quantum Zeno effect [22,23]. The long-time, postexponential
regime is a consequence of the fact that in most real systems,
the energy spectrum E is bounded by below, i.e., E ∈ (0,∞),
leading to integer inverse power in time behaviors, as discussed
by Khalfin [24]. In that work, Khalfin indicated the relevant
role of the ratio of the energy of the decaying fragment Er to
the decaying width �r , R = Er/�r in determining the time
scale for the transition from exponential to nonexponential
decay. Subsequent theoretical work investigated further the
issue of the approximate nature of the exponential decay
law [25,26] and provided also estimates of the above time scale
for values R � 1 [27–29]. This is of interest because it gave
an explanation of the failure of finding deviations of the expo-
nential decay law at long times in radioactive nuclei [30,31].
Norman et al. [30] looked unsuccessfully for deviations from
exponential decay law using 56Mn up to 65 lifetimes. Here
R ∼ 1017, and Winter’s estimate in lifetime units, t0 = 5 ln(R)
for the onset of nonexponential decay, yields t0 ∼ 200, which
is beyond the experimental range of present-day technology.
Following the work by Khalfin [24], it was soon realized
that deviations from the exponential decay law could also be
obtained for small values of R, as in the proposal for observing
nonexponential decay in isolated autoionizing states located
very close to the energy threshold in atomic systems [32],
which so far has not been confirmed experimentally.
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The above results contributed to the widespread view that
nonexponential decay contributions were beyond experimental
reach and even to the alternative explanation that the inter-
action of the decaying system with the environment would
enforce exponential decay at all times [28,33]. Some years ago,
however, short-time deviations from exponential decay [34]
and the quantum Zeno effect [35] were finally observed, and
more recently, in 2006, the measurement of postexponential
decay in a number of organic molecules in solution, exhibiting
distinct inverse power in time behaviors, was reported [36].
The above long-time deviations from the exponential decay
law, however, were obtained due to the additional broadening
of the excited-state energy distributions produced by the
solvent. That is, instead of looking for states with very small
E, these authors considered systems with large values of �.
It is intriguing that the solvent, which may be regarded as
some sort of environment for these complex molecules, favors
a nonexponential behavior. To the best of our knowledge, there
is not at the present time a theoretical approach that explains
the above experimental results. It is worthwhile to point out
that these experiments refer to luminescence decays after laser
pulse excitation and hence do not refer to particle decay as
considered in the present work.

In 2005 Jittoh et al. published a theoretical study on
particle decay using a single-pole approximation, in which
they estimate that for values of R < 0.5 in s-wave spherical
symmetric systems or one-dimensional systems, there exists
a novel regime where the decay is nonexponential at all
times [37]. These authors, however, did not discuss that
regime in actual physical systems. Later, Garcı́a-Calderón
and Villavicencio [38] suggested the possibility that this
novel full-time nonexponential regime could be observed in
semiconductor double-barrier resonant quantum structures.

As pointed out at the beginning of this Introduction, in this
work we investigate the conditions that need to be fulfilled to
be able to observe nonexponential decay in the deterministic
preparation of a tunable single atom in an optical trap [1].
As pointed out above, we believe that these systems are the
closest realization of decay by tunneling of a particle out of a
single-particle potential. We derive analytical expressions for
the nonescape probability as an expansion involving the full
set of decaying states of the system at all times and study the
conditions of validity for the single-pole approximation.

It is worth pointing out that the formulation considered here
refers to the full Hamiltonian H to the problem, and hence it
differs from approaches where the Hamiltonian is separated
into a part H0 corresponding to a closed system and a part
H1 responsible for the decay, which is usually treated to some
sort of perturbation theory, as in the work by Weisskopf and
Wigner to describe the decay (also exponential) of an excited
atom interacting with a quantized radiation field [39]. These
approximate approaches have become a standard procedure for
treating a class of decay problems where perturbation theory
can be justified, as in studies of nonexponential decay in atomic
spontaneous emission [40,41].

This paper is organized as follows. Section II provides
an overview of the theoretical formalism that we consider
here. Section III discusses some model calculations and ana-
lyzes different postexponential scenarios, and finally, Sec. IV
presents some concluding remarks.

II. FORMALISM

The formalism that we shall consider here has its roots in
the old work by Gamow which imposed outgoing boundary
conditions on the solutions to the Schrödinger equation to
describe the process of decay [42,43]. As is well known,
these boundary conditions lead to complex energy eigenvalues,
its imaginary part being twice the decay rate that appears
in the expression of the exponential decay law. Outside the
interaction region, the amplitude of such solutions, known as
decaying, resonant, or quasinormal states, grows exponentially
with distance, and hence the usual rules of normalization and
completeness do not apply. The approach initiated by Gamow,
however, evolved over the years. In particular, significant
developments in the 1970s on the analytical properties of
the outgoing Green’s function to the problem provided a
suitable framework to study distinct approaches to the issues
of normalization and eigenfunction expansions involving these
states [44,45]. In particular some of these developments
have led to an exact analytical description of decay by
tunneling [17,18].

The effective trap potential that results after application
of the magnetic field to the initially confining trap and of the
spilling process that guarantees that the decaying atom remains
in the lowest decaying state corresponds to a one-dimensional
system in which the transmission channel is closed [1,14]. This
potential is analogous to a spherical potential of zero angular
momentum.

The solution to the time-dependent Schrödinger equation as
an initial value problem may be written at time t in terms of the
retarded Green’s function g(x,x ′; t) of the problem as [17,18]

�(x,t) =
∫ L

0
g(x,x ′,t)�(x ′,0) dx ′, (1)

where �(x,0) stands for a state initially confined within the
internal interaction region (0,L). Here, for simplicity of the
discussion and without loss of generality, it is assumed that
ψ(x,0) is a real function. A convenient form of the retarded
time-dependent Green’s function is expressed in terms of the
outgoing Green’s function G+(x,x ′; k) of the problem. Both
quantities are related by a Laplace transformation [17,18].
In the present approach, instead of the common practice of
assuming the analytical properties of G+(x,x ′; k), we impose
the condition, justified on physical grounds, that the potential
vanishes after a certain distance, i.e., V (x) = 0, x > L. As a
consequence, it can be rigorously proved that G+(x,x ′; k) may
be extended analytically to the whole complex k plane, where
it has an infinite number of poles distributed in a well-known
manner [46].

The relevant point here is that the residue of G+(x,x ′; k) at
a pole κn is proportional to the functions un(x) and un(x ′) and
provides its normalization condition [17,18,45]. The decaying
or resonant states un(x) satisfy the Schrödinger equation of the
problem,

[En − H ]un(x) = 0, (2)

where H is the full Hamiltonian H = −(�2/2m)d2/dx2 +
V (x), with m being the mass of the decaying particle.
Equation (1) satisfies outgoing boundary conditions at x = L,
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namely,

un(0) = 0,

[
dun(x)

dx

]
x=L

= iκnun(L), (3)

with κn = αn − iβn. The quantity En in (2) refers to the
complex energy eigenvalue En = (�2/2m)κ2

n = En − i�n/2,
where En yields the resonance energy of the decaying fragment
and �n stands for the corresponding decaying width. Using
Cauchy’s integral theorem allows us to obtain a discrete
expansion of G+(x,x ′; k) in terms of the functions {un(x)}
and the poles {κn} along the internal potential region. This
expansion may be used to obtain a representation of g(x,x ′,t)
that may be inserted into Eq. (1) to obtain the time-dependent
solution [17,18],

�(x,t) =
∞∑

n=−∞

{
Cnun(x)M(y◦

n), x � L,

Cnun(L)M(yn), x � L,
(4)

where the coefficients Cn are given by

Cn =
∫ L

0
�(x,0)un(x)dx (5)

and the functions M(yn) are defined as [17]

M(yn) = i

2π

∫ ∞

−∞

eik(x−L)e−i�k2t/2m

k − κn

dk

= 1

2
e(imr2/2�t)w(iyn), (6)

where yn = e−iπ/4(m/2�t)1/2[(x − L) − (�κn/m)t] and the
function w(z) = exp(−z2)erfc(−iz) stands for the Faddeyeva,
or complex error, function [47], for which there exist efficient
computational tools [48]. The argument y◦

n of the functions
M(y0

n) in (4) is that of yn given above with x = L.
Notice that the sums in (4) run, respectively, over the poles

κ−n = −αn − iβn, located on the third quadrant of the k plane,
and the poles κn = αn − iβn, located on the fourth quadrant.
It follows from time-reversal invariance that κ−n = −κ∗

n [46].
The functions {un(x)} are normalized according to the

condition ∫ L

0
u2

n(x)dx + i
u2

n(L)

2κn

= 1 (7)

and satisfy a closure relationship along the internal region of
the potential which, provided the initial state is normalized to
unity, leads to the expression [17,18]

Re

{ ∞∑
n=1

C2
n

}
= 1. (8)

Equation (8) indicates that the terms Re {C2
n} cannot be

interpreted as a probability since, in general, they are not
positive-definite quantities; however, each of them represents
the “strength” or “weight” of the initial state in the correspond-
ing decaying state. One might see the coefficients Re {C2

n} as
some sort of quasiprobabilities [49].

The equivalence between the non-Hermitian formulation
that leads to the time-dependent solution given by Eq. (4) and
the Hermitian formulation based on continuum wave functions
is discussed in Ref. [19]. There, the advantage of using the

analytical expressions for the distinct decaying regimes that
follow from the former formulation is contrasted with the
“black-box” numerical treatment that characterizes the latter
formulation.

It is worth mentioning that the formalism outlined above
differs from the so-called rigged Hilbert space formulation
in many respects, as discussed in Refs. [17,50]. For example,
since in that approach the poles located on the third quadrant of
the k plane are not taken explicitly into consideration, there is
no analytical description of the nonexponential contributions
to decay, as given by Eq. (14) and discussed below. It might
also be worthwhile to mention here that decaying states, in
spite of their non-Hermitian nature, have been used in a large
variety of topics but with different names: resonant states,
quasinormal modes or Siegert states, for example, in quantum
transients [51,52], gravitational waves and black holes [53],
and nonadiabatic processes involving molecules [54].

A. Nonescape probability

Two quantities of interest in decaying problems are the
survival probability S(t), which yields the probability that
at time t the system remains in the initial state, and the
nonescape probability P (t), which provides the probability
that at time t the particle remains within the confining region
of the potential. When the initial state overlaps strongly with
the lowest decaying state, both quantities exhibit a very similar
behavior with time [55]. It seems that such is the case for atom
decay in ultracold traps, where the spilling process leaves just
one atom in the lowest decaying state [1].

Here we consider the nonescape probability, which is
defined as

P (t) =
∫ L

0
�∗(x,t)�(x,t) dx. (9)

In order to calculate the above quantity one requires the time-
dependent solution along the internal region of the potential.
Hence one may insert the top expression of Eq. (4) into Eq. (9)
to obtain the expansion of the nonescape probability in terms
of decaying states,

P (t) =
∞∑

m,n=−∞
CmC∗

nImnM(y◦
m)M∗(y◦

n), (10)

where

Imn =
∫ L

0
um(x)u∗

n(x)dx. (11)

Equations (4) and (10) are given in terms of M functions,
and consequently, their exponential and nonexponential be-
haviors are not exhibited explicitly. These may be obtained
by using the symmetry relations κ−n = −κ∗

n and u−n(x) =
u∗

n(x) to write the sums over the poles located on the
fourth quadrant. Here one may use the relation M(y◦

n) =
exp(−iEnt/�) exp(−�nt/2�) − M(−y◦

n) [17,47] to write the
time-dependent wave function along the internal region as

�(x,t) =
∞∑

n=1

Cnun(x)e−iEnt�e−�nt/2� − In(x,t), x � L,

(12)
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where the nonexponential contribution In(x,t) is given by

In(x,t) =
∞∑

n=1

Cnun(x)M(−y◦
n) − C∗

nu
∗
n(x)M(y◦

−n). (13)

In this last expression the argument y◦
−n is equal to y◦

n with κn

substituted by κ−n = −κ∗
n .

Substitution of Eqs. (12) and (13) into Eq. (9) provides,
therefore, an expression for the nonescape probability that
exhibits explicitly the exponential and nonexponential con-
tributions to decay. Notice that assuming an initial state that
overlaps strongly with the longest lifetime state, say, n = r , it
may be seen in view of (8) that Re {C2

r } ≈ 1 and also that Irr ≈
1, and ignoring the nonexponential contributions, one obtains
the well-known exponential decay law P (t) = exp(−�t/�).

Equations (4) and (10) are exact and may be used to find
out the validity of different approximations.

The functions M(−y◦
n) and M(y◦

−n) that appear in the
nonexponential contribution given by Eq. (13) exhibit at long
times a t−3/2 behavior with time [17]. As a consequence, the
time-dependent solution may be written along the exponential
and long-time regimes as [17]

�(x,t) ≈
∞∑

n=1

Cnun(x)e−iEnt/�e−�nt/2�

− ib Im

{ ∞∑
n=1

Cnun(x)

κ3
n

}
1

t 3/2
, x � L, (14)

with

b = e−iπ/4

2
√

π

(
2m

�

)3/2

. (15)

B. Decay of a single level

In what follows we restrict the discussion to the situation
that corresponds to an atom located in the lowest decaying
state, n = 1, of the effective ultracold trap potential. On
physical grounds one expects that the initial state overlaps
strongly with that state, and therefore Re{C2

1} may provide
the main contribution to Eq. (8). This justifies considering
the single-pole approximation, n = 1, in the expansion of the
decaying wave function given by Eq. (14). This is a good
approximation except near the time origin, where more poles
are needed [21]. Hence we may write

�(x,t) ≈ C1u1(x)e−iE1t/�e−�1t/2� − ib Im

{
C1u1(x)

κ3
1

}
1

t 3/2
,

x � L. (16)

Inserting Eq. (16) into Eq. (9) allows us to write the nonescape
probability as

P (t) ≈ P e(t) + P e,ne(t) + P ne(t), (17)

where P e(t) stands for the purely exponential decay contribu-
tion,

P e(t) = |C1|2I1e
−�1t/�, (18)

P e,ne(t) refers to the interference term that
involves exponential and nonexponential

contributions,

P e,ne(t) = −Re

{[ |C1|2I1

κ∗
1

3 − C2
1Y1

κ3
1

]
b∗e−iE1t/�

}
e−�1t/2�

1

t3/2
,

(19)

and P ne(t) stands for the long-time postexponential contribu-
tion,

P ne(t) = |b|2
2

Re

{[ |C1|2I1∣∣κ3
1

∣∣2 − C2
1Y1(
κ3

1

)2

]}
1

t3
. (20)

In the above expressions I1 and Y1 are defined as

I1 =
∫ L

0
|u1(x)|2dx (21)

and

Y1 =
∫ L

0
u2

1(x)dx. (22)

We end this section by referring to an exact single-level
resonance expression for the survival probability [56], which
allows us to derive an approximate expression of the time
t0 (in lifetime units) for the transition from exponential to
postexponential decay,

t0 ≈ 5.41 ln(R) + 12.25, (23)

where we recall that R = E1/�1. Equation (23) yields a good
estimate of t0 for values of R � 1, which is more accurate than
those given in Refs. [27,29].

III. MODELS

As pointed out in the Introduction, a relevant aspect of the
recent developments on the preparation of tunable few-body
quantum systems is the control of the quantum states in these
systems [1–3]. For tunneling decay, the resulting potential
corresponds to an impenetrable barrier on the left, a barrier
of finite height on the right and a well in between them; in
particular, it may be used to study tunneling decay of a single
atom located in the lowest energy level of the system [1].

Here we consider two potential profiles to study the
decaying regimes corresponding to different values of R for
single-6Li-atom decay. The first potential profile is the so-
called “bathtub” potential, which was considered in Ref. [10]
to study multiparticle tunneling decay, and the second potential
profile refers to the tunneling decay potential considered by
the Heidelberg group on tunable few-fermion systems, which
consists of the summation of the optical one-dimensional
confinement potential plus a linear magnetic term [1].

A. Bathtub potential

Let us first refer to the bathtub potential. Figure 1(a) exhibits
a profile for this potential (blue solid line), given by the formula

V (x) = 1

2
V1[tanh X1 − tanh X2]	

(
w

2
− x

)

+ 1

2
V2[tanh X1 − tanh X2]	

(
x − w

2

)
, (24)
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FIG. 1. (a) Trapping potential V (x) (blue solid line) obtained by
smoothing the squared barriers (green dashed line) using Eq. (24). (b)
Two potential profiles appropriate for the analysis of the transition
from exponential to postexponential decay. See parameters in the
Table I.

where 	(u) is the Heaviside step function, X1 =
(|x − w

2 | − w
2 )/σ , X2 = (x − L)/σ , and L = w + b is the

total width of the potential depicted in Fig. 1(a) (green dashed
line). The parameter σ determines the smoothness of the
potential. As required for single-atom decay, the potential
supports only one decaying state (n = 1), with the higher
states (n � 2) lying above the tunneling barrier height, i.e.,
En > V2 for n = 2,3,4,] . . . . The above may be accomplished
by choosing appropriately the parameters of the potential
shown in Fig. 1(a) and the value of σ . Here we fix for all
calculations a large value for V1, namely, V1/h = 241.8 kHz,
so that the decay process occurs, as pointed out above, by
tunneling through the second barrier V2. Figure 1(b) displays
two potential profiles which may be appropriate for the
analysis of the distinct decaying regimes.

Using an appropriate combination of the system parameters
may allow us to select the transition time at which the decay
changes from the exponential to the postexponential regime.
According to Eq. (23), this transition time is tunable through
variations of the ratio R = E1/�1, which may be manipulated
by realizing that the location of the poles on the complex wave
number or energy planes depends on the system parameters.
The equation for the complex poles follows by imposing
the outgoing boundary condition to Eq. (2). The poles may
be easily calculated for potentials with rectangular shapes
by well-known procedures [51,57] that may be implemented

FIG. 2. Example of the trajectories followed by a few poles
located on the complex energy plane as the tunneling barrier is
gradually reduced. We consider neV units, where 1 neV = 241.8
kHz. The poles in blue solid circles correspond to the potential profile
depicted with a blue dashed line in Fig. 1(b) (R = 13.02), whereas
the poles in red diamonds refer to the potential with the thin tunneling
barrier shown by the red solid line in Fig. 1(b) (R = 0.64).

in potentials of arbitrary shape by noticing that a given
potential profile can be described as a sequence of rectangles of
appropriate height and width. As an example, Fig. 2 shows that
the main effect of decreasing the barrier width is to increase the
values of the imaginary energies of the poles. One appreciates
in Fig. 2 the trajectories followed by some poles in the fourth
quadrant of the energy plane (dashed line).

We model the initial state �(x,0) as the lowest-energy state
of a potential with infinite walls, namely,

�(x,0) =
(

2

w

)1/2

sin

[
π

w
x

]
. (25)

We choose the initial state (25), in addition to its mathematical
simplicity, because it has the essential physical ingredient that,
initially, there must be a large probability to find the particle
within the interaction region. The above initial state guarantees
that Re{C2

1} is the largest contribution to Eq. (8), which
is the condition that justifies the single-pole approximation in
the expansion of the decaying wave function, as discussed in
the previous section.

Using the initial state given by Eq. (25) and the set of
poles {κn} and decaying states {un(r)} corresponding to a
given set of potential parameters allows us to calculate the
nonescape probability given by Eq. (10). Figure 3 exhibits
a plot of the time evolution of the nonescape probability
as a function of time for different values of R in units of
the corresponding lifetime. One may clearly appreciate the
transitions from exponential to nonexponential behavior for
distinct values of R. The potential parameters that correspond
to the above systems for distinct values of R are given in the
Table I, which also displays the corresponding values of the
lifetimes τ and the expansion coefficients Re {C2

1}. Notice that
the barrier width b is a relevant parameter to decreasing the
values of R.

It is worth emphasizing a number of features exhibited by
Fig. 3. The first one is that the transition time is reduced as the
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FIG. 3. Plot of the natural logarithm of the nonescape probability
as a function of time (in units of the lifetime τ ) for different values
of the ratio R = E1/�1. The transition from the exponential to the
postexponential regime is clearly appreciated in each curve.

values of R decrease; the second one is that the frequency of
oscillations that arise from the interference between the purely
exponential and the long-time inverse power contributions
in (14) also diminishes as R decreases. The third one is
that for values of R � 1, the nonescape probability starts to
exhibit a departure from purely exponential decay before the
transition to the t−3 long-time behavior occurs, and finally, as
R decreases further, as exemplified by R = 0.30, the decay
becomes nonexponential at all times.

Previous studies involving distinct systems have shown that
the single-pole approximation for the nonescape probability,
given by Eq. (17), is an excellent approximation for R >

1 [55]. As mentioned before, for values of R much larger
than unity the exponential decay law holds for many life-
times, and hence the long-time nonexponential contribution is
very small.

On the other hand, it follows also from inspection of
Fig. 3 that for values of R ∼ 1, such as R = 0.96, or even
with R = 0.57, the nonescape probability exhibits a clear
departure from exponential decay just after a few lifetimes

TABLE I. Potential parameters for the distinct values of R shown
in Fig. 3. Ve/h (kHz) is the effective potential height that results from
the right-hand side of Eq. (24), where V2/h (kHz) is the potential
height, w (μm) is the well width, σ is the smoothness of the potential,
b (μm) is the barrier width, R = E1/�1, τ (ms) is the lifetime, and
Re {C2

1 } is the expansion the coefficient for n = 1. The mass of 6Li is
taken as 10,964.898me, with me being the electron mass. See text.

Ve/h V2/h w σ b R τ Re
{
C2

1

}
4.19 5.56 2.7 0.10 0.53 13.26 1.844 0.849
3.88 5.56 2.7 0.09 0.42 7.75 1.166 0.868
3.60 6.04 2.7 0.07 0.26 4.14 0.719 0.908
3.37 6.04 2.7 0.05 0.17 2.37 0.482 0.950
2.23 6.04 3.0 0.03 0.07 0.96 0.308 1.079
1.32 6.04 3.0 0.03 0.04 0.57 0.223 1.214
0.66 6.04 3.0 0.03 0.02 0.30 0.164 1.498

FIG. 4. Comparison of ln P (t) vs t/τ with R = 0.30 calculated
from the formal solution, Eq. (10), with N = 10 resonant terms
(solid line) and the values of the sum P e,ne + P pne (long-dashed
line) calculated from Eqs. (19) and (20), respectively. The purely
exponential contribution (short-dashed line) is included to help the
eye.

and then follows a nonexponential behavior as t−3, according
to Eq. (20). This suggests that in systems around these values
of R nonexponential decay could be amenable to experimental
verification.

We have found that for values of R < 1, the single-pole
approximation is still a good approximation. As pointed out
above, the case R = 0.30 is particularly interesting because it
exhibits nonexponential decay in the full time interval. Figure 4
provides a comparison of a calculation of the nonescape
probability (solid line) using Eq. (10), where ten poles are
sufficient to get convergence of the expansion, with the
single-pole approximate calculation P e,ne + P ne (long-dashed
line), using, respectively, Eqs. (19) and (20). One sees that the
interference term P e,ne, which goes as exp(−�1t/2�)t−3/2,
describes the decay for the first few lifetimes, whereas the
last term P ne, which goes as t−3, becomes the dominant
contribution from approximately 14 lifetimes onwards. The
above suggests that systems with R � 0.3 could also be
appropriate to verify experimentally nonexponential decay.

B. Heidelberg potential

Let us now refer to the second potential profile. This
consists of a cigar-shaped cylindrically symmetric optical
potential created by the sum of two terms, the first one being
a tightly focused laser beam which accounts for an optical
one-dimensional confinement of atoms and the second one
being a linear magnetic potential term that allows for tunneling
decay. The potential is given by the formula [1,3,14]

V (x) = pV0

[
1 − 1

1 + (x/xR)2

]
− μmB ′x, (26)

where V0 = 3.326 μK kB is the initial depth at the center of
the optical dipole trap, with kB being the Boltzmann constant;
p = 0.6338 is the optical trap depth as a fraction of the
initial depth; xR = πω2

0/λ stands for the Rayleigh range, with
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FIG. 5. Potential profiles V (x), given by Eq. (26), for three
distinct values of the parameter B ′, as indicated by each curve. Each
curve is shifted so that V/h = 0 at the trap bottom. The dashed lines
indicate the energies of the lowest decaying levels of each potential.
The level with the largest energy corresponds to the potential with the
highest barrier, and this pattern continues successively in descending
order. See text.

λ = 1064 nm, the wavelength of the trapping light; μm is the
Bohr magneton; and B ′ = 18.92 G/cm is the magnetic field
gradient [1,3,14]. The above parameters determine a value
for R. The analysis by Rontani on single-atom decay [14],
which is based on the experiments reported in Ref. [3], gives
a value of R ≈ 70, where E1 = 316.3 Hz h and �WKB

1 =
(γs0/2π ) = 4.516 Hz h, with h being the Planck constant and
γs0 = (1/35.24) ms [14]. The above value of R ≈ 70 yields,
using (23), an onset for nonexponential decay around t0 ≈ 35
lifetimes, which lies well beyond the range of 6 lifetimes that
was considered in these experiments. That analysis involves
a trap parametrization involving a Wentzel-Kramers-Brillouin
(WKB) analysis. In recent theoretical work, however, it is
argued that the trap calibration via a WKB analysis leads to
an inaccurate trap parametrization [16]. Our own analysis,
involving the complex pole for the above potential parameters,
gives R = 27.36 (see below), which gives an onset for
nonexponential decay around t0 ≈ 30 lifetimes, which still
lies beyond experimental verification.

It turns out that varying slightly the value of the magnetic
field gradient B ′ modifies the potential profile. This is
exemplified in Fig. 5, which exhibits three potential profiles
corresponding to B ′ = 18.92 G/cm, the case considered
above; B ′ = 19.49 G/cm; and B ′ = 19.77 G/cm, as indicated
for each curve in that figure. Notice that we have shifted the
origin of energy to the bottom of the potential for each case.
The lowest-energy decaying levels for each potential profile
are indicated by dashed lines in Fig. 5. The first level from
above corresponds to the potential profile with B ′ = 18.92,
and similarly for the other energy levels, as shown in Table II.

Figure 6 displays the natural logarithm of the nonescape
probability as a function of time in lifetime units for the above
potential profiles corresponding, as indicated in the figure, to
values of R = 1.09, 2.85, and 27.36. In these calculations the
box model initial state given by (25) is chosen to yield, as

TABLE II. Values of the magnetic field gradient B ′ (G/cm),
w (μm), R = E1/�1, the energy of the decaying state E1/h (kHz),
the lifetime τ (ms), and the expansion coefficient for n = 1, Re {C2

1 },
corresponding to Figs. 5 and 6. See text.

B ′ w R E1/h τ Re
{
C2

1

}
18.92 4.51 27.36 0.300 14.48 0.831
19.49 4.80 2.85 0.246 1.848 0.978
19.77 4.80 1.09 0.214 0.817 1.206

expected on physical grounds, values of Re {C2
1} around unity.

The largest value of R, namely, R = 27.36, corresponds to
the potential profile with the smallest value of B ′ in Fig. 5,
that is, B ′ = 18.92, and correspondingly for the other cases,
as indicated in Table II. One sees, therefore, that varying
slightly the values of the magnetic field gradient allows for the
design of potential profiles with distinct values of R, including
values of R < 1. Presumably, one might also vary some other
parameters of the potential, such as the optical trap depth p,
in order to look for values of R which might be adequate for
the experimental verification of nonexponential decay. Table II
also gives some other relevant parameters for the calculations
shown in Figs. 5 and 6.

There is a feature that is worth pointing out here that
results from our treatment concerning the potential given
by Eq. (26). It occurs for values of R � 2.5 and may be
exemplified by the case with R = 1.09 appearing in Fig. 6
and refers to the fact that the lowest-energy decaying level
has an energy that lies above the top of the corresponding
potential barrier (B ′ = 19.77), as exhibited in Fig. 5. The
reason that the nonescape probability for this decaying level
behaves in a fashion similar to the decaying levels that are
located below the potential height, for example, for R = 0.96
in Fig. 3, follows from the fact that both cases have a large
value of the coefficient Re {C2

1}, as shown in Tables I and II.
This follows from the notion that the initial state overlaps
strongly with the lowest decaying level. In these calculations

FIG. 6. Plot of the natural logarithm of the nonescape probability
P (t) as a function of time in lifetime units τ for three different values
of the R = E1/�1, as indicated by each curve. See text.
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the values of w for the initial states are given in Table II,
and the maxima of the corresponding probability densities
are centered at the maxima of the corresponding probability
decaying densities. Hence it does not seem to matter if the
lowest decaying level is located above or below the potential
barrier height. The higher-energy decaying levels, which also
decay much faster, have very small values of the coefficients
Re {C2

n}, with n = 2,3, . . . , as follows from Eq. (8), and hence
do not play a relevant role in the decay process except at very
small times. Clearly, the above considerations lie beyond the
WKB framework.

It is worth stressing that the behavior with time of the
nonescape probability for the potentials considered here is
quite similar, as follows from a comparison between Figs. 3
and 6. This suggests that what matters is the value of R

independent of the specific shape of the potential profile.

IV. CONCLUDING REMARKS

The approach discussed in this work provides a consistent
analytical framework to discuss exponential and nonexponen-
tial contributions to quantum decay. We have exemplified the
above for two model calculations for the decay of ultracold
atoms out of a trap having a barrier, with realistic parameters.

We have pointed out the relevance of the ratio of the energy
of the decaying fragment to the decaying width, R = E1/�1,
to determine the decaying regime as a function of time, in
particular values of R < 1 or R ∼ 1 to obtain a nonexponential
behavior of the decaying system within a few lifetimes. Here
it is important to stress the result that different combinations
of potential parameters may lead to similar values of R. It is
not crucial to know the precise analytical form of the potential.
Essentially, the barrier height controls the number of decaying
states within the well; the well width controls the energy value
of the decaying state, and the barrier width controls the value
of the decaying width. From an experimental point of view
fixing a value of R requires us to acquire control over these
parameters.

We hope that the analysis presented here will stimulate
experimentalists interested in fundamental issues to look for
the verification of the nonexponential contributions to quantum
decay of ultracold atoms in these systems.
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