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The time-dependent fermionic Hartree-Fock equations can be stochastically extended in such a way as to
become the exact representation of quantum dynamics. This fact was first observed in the work of Juillet and
Chomaz [Phys. Rev. Lett. 88, 142503 (2002)]. During the past decade, this observation has led to the emergence
of a whole family of stochastic wave-function methods for fermions. The common feature of all these methods
is that they are based on the expansion of the density operator over the dyadic product of the two fermionic
Slater determinant states. In this work, we develop a unified and rigorous foundation for this family of methods.
We find a general form of stochastic equations and describe the sufficient conditions under which these methods
converge towards exact quantum dynamics. To achieve these goals, we employ the representation of quantum
dynamics in generalized phase space. In particular, we consider the quasiprobability distributions which emerge
in these stochastic methods and their master equations. It is shown that the convergence towards exact quantum
dynamics is controlled by the problem of boundary terms. We provide an example of stochastic Hartree-Fock
method which is well-defined and free from this problem.
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I. INTRODUCTION

The time-dependent Hartree-Fock (TDHF) method for
fermions is an indispensable tool in computational physics,
chemistry, and nuclear physics [1,2]. In the work of Juillet
and Chomaz [3], an important observation was made: One can
add such a stochastic term (noise) in TDHF that it becomes
exact representation of quantum dynamics. By solving TDHF
equations for different realizations of the noise, we obtain an
ensemble of random trajectories in the space of Slater deter-
minant states. The resulting method, the stochastic fermionic
Hartree-Fock, allows one to calculate the exact time evolution
of observables through the averaging over this ensemble of
trajectories [3].

During the past decade the stochastic fermionic TDHF
method of Juillet and Chomaz [3] has led to the emergence
of a whole family of stochastic wave-function methods [4–7].
The common feature of all these methods is that they are
derived by expanding the density operator over the dyadic
products (nondiagonal projection operators) of bra and ket
Slater determinant states. The coefficient in this expansion
can be chosen real positive. Therefore, this coefficient can
be interpreted as an (abstract) probability distribution, and the
density operator can be interpreted as the expected value of the
dyadic. Then the evolution in time (either real or imaginary)
is constructed by assuming that the constituent one-particle
orbitals (in the Slater determinant state) evolve according to
a certain system of stochastic partial differential equations.
The parameters of this system, the drift vectors and the noise
matrices, are found from the requirement that the density
operator, being represented as the expected value of the dyadic,
obeys the exact many-body quantum Liouville equation [8].

All these methods share the same problem. The stochastic
evolution in these methods is unconstrained diffusion in the
space of Slater determinants. Moreover, the trace of the
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diffusion matrix grows at least quadratically as the norm of the
one-particle orbitals is increased; as a consequence, the spread
of the stochastic trajectories grows at least exponentially
with time [3,8,9]. Therefore, when we simulate the quantum
dynamics using Monte Carlo algorithms based on these
methods, after a certain time tu (called the useful simulation
time [10]) the variance of the simulation results becomes
prohibitively large. The only exception is the norm-conserving
method of Tessieri et al. [5]; they have attempted to invent a
stochastic representation of quantum dynamics on a domain of
finite size in the space of Slater determinants. This way, they
would have solved the problem of unconstrained diffusion,
and hence the useful simulation time tu would be significantly
increased. However, according to the results presented in [5],
it appears that the norm-conserving method has a systematic
discrepancy with respect to the exact quantum dynamics.
Therefore, the status of this direction of development is
unclear.

Currently, all the stochastic TDHF methods are derived
from different considerations in the literature [3–7]. This leads
to a somewhat fragmented state of the research field, which
makes it difficult to make progress in the problem of increasing
the useful simulation time tu and to rigorously study the
problem of convergence towards the exact quantum dynamics.

In this work, we consider and rederive all the fermionic
stochastic TDHF methods [3,5,6] within a unified framework.
As such a framework, we have chosen the generalized phase-
space formulation [10–15]. We believe that the generalized
phase-space approach and the stochastic wave-function ap-
proach are complementary and equivalent pictures of the same
subject [9]. The relation between these two approaches is
analogous to the relation between the probability-distribution
master equations (MEs) and the corresponding stochastic dif-
ferential equations (SDEs) in the classical probability theory.
However, when dealing with a specific task, usually only one
of the two approaches is the most appropriate. As it turns
out, the task of characterization of all the possible stochastic
representations for a given stochastic operator ansatz (which is
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the Slater determinant dyadic in the case treated in our work)
is most conveniently performed in the master-equation picture
(i.e., within the generalized phase-space approach) [9].

In Sec. II, we review the conventional Hartree-Fock method
and discuss the ideas behind its stochastic extension. We
illustrate how this leads to the expansion of the density operator
over the Slater determinant dyadics. In Sec. III, we study
the properties of the nondiagonal Slater-determinant-state
projections. We show that they form an overcomplete basis
in the space of N -particle density operators. The expansion
coefficient of the density operator in this basis can be chosen
real positive. Therefore, we can interpret it as a probability
distribution in the double Slater space. Then we discuss the
action of normally ordered number-conserving products of
creation and annihilation operators on the Slater projection.
This helps us to compute the expected value of any observable
in the double Slater space. In Sec. IV, we consider the time
evolution of a quantum system with pairwise interactions.
The master equation for the quasiprobability distribution in
double Slater space, which corresponds to this time evolution,
is derived. The conditions for its correctness are described.
In Sec. IV G, we show how one can use the analyticity
of Slater projections in order to perform the stochastic
unraveling of the master equation. In Sec. V, we describe
the equivalent transformations of the master equations and
of the corresponding SDE. In Sec. VI, we illustrate how
all the currently known in literature stochastic Hartree-Fock
methods can be obtained by applying a suitable equivalent
transformation. In Sec. VII, we discuss the status of stochastic
TDHF methods with respect to the convergence towards the
exact quantum dynamics. In particular, we present a variant of
the stochastic TDHF method, for which we explicitly prove
that it correctly reproduces the exact dynamics. We conclude
in Sec. VIII.

II. THE STOCHASTIC TIME-DEPENDENT
HARTREE-FOCK METHOD

Suppose we are given a system of N particles with a general
Hamiltonian,

Ĥ =
N∑

r,s=1

Trs â
†
r âs − 1

4

N∑
r,s,u,v=1

Vrsuvâ
†
r â

†
s âuâv, (1)

containing a two-body interaction; here the matrix elements
of Hermitian operators Trs = 〈r|T̂ |s〉 and Vrsuv = (r,s|V̂ |u,v),
where by |r,s) and (u,v| we denote the two-particle wave func-
tions without antisymmetrization (distinguishable particles).
Note that we can always choose V̂ such that Vrsuv = Vsrvu. The
creation â†(xr ) ≡ â

†
r and annihilation â(xr ) ≡ âr operators

obey the standard anticommutation relations

[̂ar, â
†
s ]+ = δrs, (2)

where δrs is the Kronecker δ. The exact time evolution is
governed by the quantum Liouville equation

∂

∂t
ρ̂N (t) = 1

i�
[Ĥ , ρ̂N (t)], (3)

where the density operator ρ̂N (t) represents the state of the
quantum system.

A. The conventional Hartree-Fock method

In the conventional Hartree-Fock method, we approximate
the state of the system by the antisymmetrized product of
one-body orbitals,

ρ̂N (t) = |φ1 · · · φN 〉〈φ1 · · · φN |, (4)

where

|φ1 · · · φN 〉 =
N∏

l=1

[ N∑
r=1

φl(xr )̂a†(xr )

]
|0〉 (5)

is the Slater determinant state, in which each of the N orbitals
φl = [φl(x1), . . . ,φl(xN )], l = 1 . . . N , is occupied exactly
by one particle. The values of the orbitals φl(xr ) ≡ φlr are
defined on a certain lattice of sites xr , r = 1, . . . ,N , in the
n-dimensional coordinate space Rn; the orbitals φl belong to
the one-body Hilbert space H ≡ CN . Then we look for such
deterministic evolution,

φl = φl(t), (6)

that the exact quantum evolution (3) is approximated in the
most optimal way. The optimality criterion is given by a certain
action functional [2,16]. Minimizing the action functional with
respect to the trajectories (6), one can obtain the well-known
TDHF equations

i
∂

∂t
〈xr |φl〉

= 〈xr |̂h|φl〉 − 1

2

∑
m

(xr ,φm|V̂ {|φm,φl) − |φl ,φm)}, (7)

for the case when the orbitals φl are orthonormal.

B. The stochastic Hartree-Fock method

Now let us enlarge the optimization space: We consider
nondeterministic (stochastic) evolutions [3,8]

d|φl〉 = Âl|φl〉dt +
∑
m

B̂lm|dWm〉. (8)

Then the pure state |�(t)〉 is approximated as the expected
value,

|�(t)〉 = E[|φ1(t) · · ·φN (t)〉]. (9)

Because now we have more degrees of freedom, we expect
that the exact quantum evolution Eq. (3) can be approximated
better. In fact, it turns out that in the case of pairwise
interactions, the quantum evolution can be represented exactly
by Eqs. (8) and (9) [3,8].

To find the operator-valued coefficients Âl and B̂lm in
Eq. (8), one might apply a certain stochastic generalization
of the minimum action principle [6,17], in full analogy with
the conventional TDHF method. However, as experience
shows, the resulting stochastic equations are not guaranteed
to reproduce the exact quantum dynamics [5,6,8]. Moreover,
this way we obtain only one particular choice of Âl and B̂lm,
whereas we would like to describe the whole family of possible
choices of Âl and B̂lm in order to choose among them the
most appropriate for the problem at hand. Therefore, in this
work we choose another approach: We consider the probability
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distributions in the space of tuples (φ1, . . . ,φN ), which are
generated by the stochastic process (8), and the corresponding
master equations.

The representation (9) implies that we should be able to
expand the wave function as

|�(t)〉 =
∫

d
−→
φ d

−→
φ ∗P(

−→
φ ,

−→
φ ∗,t)|−→φ 〉, (10)

where, for brevity, we introduce the notation
−→
φ =

(φ1, . . . ,φN )T to denote the dependence on the whole
set of orbitals (this definition is inspired by the no-

tation used in [14,15]). The volume element is d
−→
φ =∏N

l=1

∏N
r=1 dφlr . Since the density operator of pure state

is ρ̂N (t) = |�(t)〉〈�(t)|, we conclude that the stochastic
evolution (8) leads to an expansion of general (nonpure)
density operator,

ρ̂N =
∫ 2∏

α=1

d
−→
φ (α)d

−→
φ (α)∗P(

−→
φ (1),

−→
φ (2)∗,

−→
φ (1)∗,

−→
φ (2))

× |−→φ (1)〉〈−→φ (2)|, (11)

over nondiagonal unnormalized Slater-determinant-state pro-
jections,

�̂(
−→
φ (1),

−→
φ (2)∗) = |−→φ (1)〉〈−→φ (2)|. (12)

We call operators �̂ the unnormalized projections because

of the property �̂2 = 〈−→φ (2)|−→φ (1)〉�̂. Here we must make
an important observation that in order to represent the exact
dynamical evolution of arbitrary density operator, we need to
propagate stochastically a pair of states, not just one state.
In fact, this conclusion applies to all the currently known
stochastic wave-function methods [3,8,13,18–20].

C. General implications of stochastic representation

Let us discuss a few implications of the stochastic rep-
resentations (8)–(11). First of all, it should be possible

to choose the non-negative coefficients P(
−→
φ ,

−→
φ ∗,t) and

P(
−→
φ (1),

−→
φ (2)∗,

−→
φ (1)∗,

−→
φ (2)) in the expansions (10) and (11),

correspondingly. Otherwise, it would be impossible to repre-
sent the state of quantum system as a probability distribution.

Another important implication follows from the fact that
we are trying to represent the reversible quantum evolution
(3) by the irreversible stochastic process, Eq. (8). Indeed,
let us consider the following thought experiment. We start
from a certain initial state �(0) with the corresponding

probability distribution P(
−→
φ ,

−→
φ ∗,0) according to (10). Then

we propagate this state forward in time during a time interval
	t . According to (8), the resulting probability distribution

P(
−→
φ ,

−→
φ ∗,	t) will experience a drift and will be smeared out

due to diffusion. Now, we apply the complex conjugation to
the propagated wave function �(	t), which corresponds to

the mapping P(
−→
φ ,

−→
φ ∗,t) → P(

−→
φ ∗,

−→
φ ,t). If we propagate

�∗(	t) once more during a time interval 	t , we will return
to the original state �∗(0). Nevertheless, the probability
distribution after this propagation will not coincide with the

initial one, P(
−→
φ ∗,

−→
φ ,	t,	t) �= P(

−→
φ ∗,

−→
φ ,0), since it gets

irreversibly smeared out (however, the drift contributions may
cancel). Therefore, we conclude that the expansion coefficients
in Eq. (10) should be nonunique. This is possible only if

the states |−→φ 〉 form a basis whose elements are not linearly
independent. The basis which is complete but whose elements
are not linearly independent is called overcomplete. The
same observations apply to the representation (11): The basis

|−→φ (1)〉〈−→φ (2)| should be overcomplete.

III. THE SLATER-DETERMINANT-STATE PROJECTIONS

In accordance with the reasoning of previous section, the
derivation of the stochastic fermionic Hartree-Fock method
by Juillet and Chomaz [3] is centered on the nondiagonal
Slater-determinant-state projections (hereinafter, for brevity,
we call them the “Slater projections”). In this section, we
review the properties of these projections. We demonstrate that
they satisfy the discussed-above general necessary conditions
of stochastic representability. We also derive other useful
identities which will help us to construct the stochastic
representation.

A. Slater projections are an overcomplete operator basis

The Slater projections (12) form a complete basis in
the space of density operators. Indeed, we can select an
orthonormal basis ϕk in the one-body Hilbert space H . Then
the N -particle states |−→ϕ (k)〉 = |ϕk1 · · ·ϕkN

〉, labeled by the
integer vector index k = (k1, . . . , kN ), form a basis in the
N -particle Fock subspace [21], with a resolution of unity,

PN = 1

N !

∑
k

|−→ϕ (k)〉〈−→ϕ (k)|, (13)

where PN is the projection of the Fock space onto the
N -particle subspace. Now we consider the Slater projection

|−→φ (1)〉〈−→φ (2)| for a general set of orbitals
−→
φ (α). We employ the

resolution of unity (13):

|−→φ (1)〉〈−→φ (2)| = PN |−→φ (1)〉〈−→φ (2)|PN

=
∑
k,k′

Ck,k′ |−→ϕ (k)〉〈−→ϕ (k′)|. (14)

Therefore, the projections |−→φ (1)〉〈−→φ (2)| are not linearly inde-
pendent of each other, and the basis (12) is overcomplete.

B. Slater projections lead to the quasiprobability representation
in generalized phase space

The N -particle density operator ρ̂N can be expanded over
the basis (12) using the resolution of unity (13):

ρ̂N =PNρ̂NPN = 1

N !2

∑
k, k′

〈−→ϕ (k)|ρ̂N |−→ϕ (k′)〉|−→ϕ (k)〉〈−→ϕ (k′)|.

(15)

This means that we can always represent the density
operator ρ̂N as (11). The representation (11) is inter-
preted in the following way: The space of vector variables

(
−→
φ (1),

−→
φ (2)∗,

−→
φ (1)∗,

−→
φ (2)) is called the generalized phase

space, and the functional P is called the quasiprobability
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distribution functional in this generalized phase space. In the
following, we omit the adjective “generalized” whenever it
does not lead to ambiguity. The list of arguments of P is
too long in Eq. (11). Therefore, we introduce the vector z =
(
−→
φ (1),

−→
φ (2)∗) of dimension 2NN . We say that ρ̂N corresponds

to P in the phase-space representation,

ρ̂N ←→ P(z,z∗), (16)

whenever Eq. (11) holds. Hereinafter, for brevity we refer to
Eq. (11) as the “Slater-projection representation.”

C. Slater-projection quasiprobabilities
can be chosen real positive

We employ the overcompleteness property of (12) to choose
the expansion coefficient P to be real and positive. Having
done that, we can interpret P as a true probability distribution
in phase space. The standard trick to accomplish this is to
separate the phase of P [8,19,22]:

P(z,z∗) = |P(z,z∗)|eiξ (z,z∗). (17)

Then we can always absorb the phase ξ into |−→φ (1)〉〈−→φ (2)|,

ρ̂N =
∫

d zd z∗|P(z,z∗)|∣∣φ(1)′
1 · · ·φ(1)′

N

〉〈
φ

(2)′
1 · · · φ(2)′

N

∣∣, (18)

where φ
(1)′
l = φ

(1)
l eiξ (z,z∗)/2N and φ

(2)′
l = φ

(2)
l e−iξ (z,z∗)/2N . If

we change the variables as φ
(α)
l → φ

(α)′
l and compute the

Jacobian determinant, we can return to the form (11), where
the P is now real and positive. However, from the point of
view of the stochastic simulations one may stop at (18): We
sample the initial conditions φ

(α)
l with the quasiprobability

distribution |P(z,z∗)|, and each time we multiply the sampled
wave functions by the phase factor e±iξ (z,z∗)/2N . Note that
since, in general, ξ (z,z∗) depends on φ

(α)
l , we cannot omit

this phase factor.
All these features, the completeness property [Eq. (13)],

the representability of density operator [Eq. (11)], and the
existence of positive quasiprobabilities [Eq. (18)], make the
stochastic TDHF method (and in fact all the stochastic wave-
function methods [9]) similar to the generalized phase-space
representations [12,14,15]. This was already observed in [12],
and for the case of bosonic systems it was elaborated to
some extent in [9]. However, such observations were never
elaborated for the systems of fermions. In the following, we
fill this gap.

D. Action of number-conserving operators on the
Slater-projection basis

Suppose that we act on the Slater state by a normally-
ordered number-conserving operator,

L = â†
r1

· · · â†
rm

âsm
· · · âs1 |φ1 · · ·φN 〉, (19)

where m � N . For the purpose of the following, let us
represent L as action of differential operator upon the Slater
state. In order to accomplish this, we find the result of
sequential actions of âs1 ,̂as2 , . . . ,̂asm

upon the Slater state in
(19). Using the definition of the Slater state (5), we evaluate

the action of âs1 ,

L = â†
r1

· · · â†
rm

âsm
· · · âs2

N∑
l1=1

(−1)l1−1

⎧⎨⎩
l1−1∏
k=1

⎡⎣ N∑
q=1

φkq â
†
q

⎤⎦⎫⎬⎭
×φl1s1

⎧⎨⎩
N∏

k=l1+1

⎡⎣ N∑
q=1

φkq â
†
q

⎤⎦⎫⎬⎭|0〉, (20)

where the products are equal to unity if the lower limit is
greater that the higher limit. Now we denote

Qb
a =

{∏b
k=a

[∑N
q=1 φkq â

†
q

]
for a � b,

1 for a > b,
(21)

and evaluate the action of âs2 in (20),

L = â†
r1

· · · â†
rm

âsm
· · · âs3

×
[∑

l2<l1

(−1)l1−1+l2−1Q
l2−1
1 φl2s2Q

l1−1
l2+1φl1s1Q

N
l1+1|0〉

−
∑
l2>l1

(−1)l1−1+l2−1Q
l1−1
1 φl1s1Q

l2−1
l1+1φl2s2Q

N
l2+1|0〉

]
. (22)

If we inspect this expression, we observe that the action of
each subsequent âsj

introduces summation over a new index
lj , which runs in the range 1, . . . ,N . The value lj means that
âsj

has crossed the creation operators (lj − 1) times before

annihilating with â
†
sj

. Therefore, all the summands have the

common prefactor (−1)
∑m

j=1 lj −m. However, in this summation,
when lj crosses li with j > i, this corresponds to the situation
when âsj

crosses the factor φlisi
, and the corresponding â

†
si

is
absent (since it is already has been annihilated by âsi

). Due
to the anticommutation relations (2), this means that, when
lj crosses li with j > i, the corresponding summand acquires
the additional factor (−1). That is, the resulting additional
factor for each summand is (−1)|P |, where |P | is the number
of transpositions in the sequence l1, . . . ,lm, if we consider this
sequence as a permutation P of the sequence which is sorted
in descending order. Taking into account these considerations,
we can write the result of the action of all the âsj

:

L = â†
r1

· · · â†
rm

∑
l1>···>lm

(−1)
∑m

j=1 lj −m
∑
P

(−1)|P |

×Q
lm−1
1 φlmsPm

⎧⎨⎩
2∏

j=m

Q
lj−1−1
lj +1 φlj−1sPj−1

⎫⎬⎭QN
l1+1|0〉. (23)

Here, in the second line the multiplication in the product is
performed in the reverse order from m to 2. Now, we transform
this expression so as to restore the form of the Slater state on
the right of Eq. (23). We exchange the positions of the factors
â
†
rj

and φlj sPj
, starting from j = m and ending at j = 1. Such

reordering will cancel the common prefactor (−1)
∑m

j=1 lj −m,
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and we arrive at the relation

â†
r1

· · · â†
rm

âsm
· · · âs1 |φ1 · · · φN 〉

=
∑

l1>···>lm

∑
P

(−1)|P |φl1sP1
· · · φlmsPm

× ∂

∂φl1r1

· · · ∂

∂φlmrm

|φ1 · · ·φN 〉, (24)

where the Wirtinger derivatives with respect to complex
variables are defined as [23]

∂

∂φlr

= 1

2

(
∂

∂xlr

− i
∂

∂ylr

)
, (25)

∂

∂φ∗
lr

= 1

2

(
∂

∂xlr

+ i
∂

∂ylr

)
. (26)

Here xlr and ylr are the real and the imaginary parts of φlr .
By applying Hermitian conjugation and changing the variables
r ↔ s, we obtain a similar relation for the bra state:

〈φ1 · · ·φN |̂a†
r1

· · · â†
rm

âsm
· · · âs1

=
∑

l1>···>lm

∑
P

(−1)|P |φ∗
l1rP1

· · ·φ∗
lmrPm

× ∂

∂φ∗
l1s1

· · · ∂

∂φ∗
lmsm

〈φ1 · · · φN |. (27)

E. Expected values in Slater-projection representation

Let us discuss how the expected values of the observables
are represented in the Slater-projection representation. Given
a quantum observable Ô, its expected value for a quantum
system in state ρ̂N is

〈Ô〉 = TrÔρ̂N . (28)

Substituting here the expansion (11), we represent the quantum
average as a classical expectation of the c-number function
O(z) in the phase space,

〈Ô〉 =
∫

d zd z∗O(z)P(z,z∗), (29)

where the c-number function O is found to be

O(z) = TrÔ�̂(z). (30)

Taking into account Eqs. (29) and (30), we may say that the
observable Ô corresponds to the c-number function O in the
phase-space representation,

Ô ←→ O(z). (31)

Suppose that we are given a normally ordered number-
conserving observable

Ôr,s = â†
r1

· · · â†
rm

âsm
· · · âs1 . (32)

In this case, we can use the result (24) to evaluate the expression
for Ôr,s�̂ in the definition of O [Eq. (30)],

Or,s(z) = TrÔr,s�̂(z) =
∑

l1>···>lm

∑
P

(−1)|P |φ(1)
lP1 s1

· · ·φ(1)
lPm sm

× ∂

∂φ
(1)
l1r1

· · · ∂

∂φ
(1)
lmrm

det M, (33)

where we have reordered the terms φ
(1)
lj sPj

; M is the overlap
matrix

M =
⎡⎣〈

φ
(2)
1

∣∣φ(1)
1

〉 · · · 〈
φ

(2)
1

∣∣φ(1)
N

〉
· · · · · · · · ·〈

φ
(2)
N

∣∣φ(1)
1

〉 · · · 〈φ(2)
N

∣∣φ(1)
N

〉
⎤⎦. (34)

Note that the action of the derivative ∂/∂φ
(1)
lj rj

with the

subsequent multiplication by φ
(1)
lPj

sj
amounts to the replace-

ment of the lj th column (〈φ(2)
1 |φ(1)

lj
〉 · · · 〈φ(2)

N |φ(1)
lj

〉)T with

(φ(2)∗
1rj

φ
(1)
lPj

sj
· · · φ(2)∗

Nrj
φ

(1)
lPj

sj
)
T

in the determinant det M . To com-

pute this modified determinant, which is denoted as det M (1),
we introduce the collection of matrix column indices p =
(lm,lm−1, . . . ,l1). We also introduce the complementary collec-
tion p̄ = (p̄1 · · · p̄N−m), which is obtained from (1, . . . ,N) by
discarding all the indices entering into p. The modified matrix
M (1) is defined as M

(1)
ip̄j

= 〈φ(2)
i |φ(1)

p̄j
〉 and M

(1)
ipj

= φ
(2)∗
irσj

φ(1)
pσPσj

sσj
,

where σ is the inversion of order of the sequence (1, . . . ,m).
Note that since |σPσ | = |P | and the summation in Eq. (33)
is over the set of all the permutations, we redefine M

(1)
ipj

=
φ

(2)∗
irσj

φ(1)
pPj

sσj
. Equation (33) assumes the form

Or,s(z) =
∑

p1<···<pm

∑
P

(−1)|P | det M (1). (35)

Now we employ Laplace’s theorem on cofactor expansion of
determinant along the columns p [24],

det M (1) = (−1)
∑m

j=1 pj

∑
q1<···<qm

(−1)
∑m

j=1 qj

× det M (1)(q̄, p̄) det M (1)(q, p), (36)

for p1 < · · · < pm. Here we have introduced the collection
of rows q = (q1 · · · qm). The matrix M (1)(q, p) is defined as
[M (1)(q, p)]ij = M (1)

qipj
. Substituting (36) into Eq. (35), and

using the fact that M (1)(q̄, p̄) = M(q̄, p̄), we obtain the phase-
space correspondence for the observables:

â†
r1

· · · â†
rm

âsm
· · · âs1

←→
∑

p1<···<pm

∑
q1<···<qm

(−1)
∑m

j=1(pj +qj )

× det M(q̄, p̄)
∑
P,Q

(−1)|P |+|Q|

×φ(2)∗
qQ1 rσ1

· · ·φ(2)∗
qQm rσm

φ(1)
pP1 sσ1

· · · φ(1)
pPm sσm

. (37)

Using the theorem for the minor of the inverse [25],

det M−1(q, p) = (−1)
∑m

j=1(p̄j +q̄j ) det M(q̄, p̄)

det M
, (38)

for p1 < · · · < pm and for q1 < · · · < qm, we can simplify the
expression (37):

â†
r1

· · · â†
rm

âsm
· · · âs1

←→ det M
∑

p1···pm

∑
q1···qm

det M−1(q, p)

×φ(2)∗
q1rσ1

· · ·φ(2)∗
qmrσm

φ(1)
p1sσ1

· · · φ(1)
pmsσm

. (39)
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In fact, here we can eliminate σ ’s by renumbering pj and qj

and by simultaneously permuting the columns and the rows in
det M−1(q, p):

â†
r1

· · · â†
rm

âsm
· · · âs1

←→ det M
∑

p1···pm

∑
q1···qm

det M−1(q, p)

×φ(2)∗
q1r1

· · ·φ(2)∗
qmrm

φ(1)
p1s1

· · · φ(1)
pmsm

. (40)

For m = 1 and m = 2 our expression (40) coincides with the
results obtained earlier in [26].

IV. QUASIPROBABILITY MASTER EQUATION

A. Star-product operator correspondences

Our ultimate goal is to find the representation of the quan-
tum time evolution (3) in the phase space. At every time mo-
ment t , the density operator ρ̂N (t) can be represented by some
quasiprobability P(z,z∗,t). Thus, we may ask the following
question: What is the quasiprobability master equation (QME)
which governs the time evolution of P(z,z∗,t)? To answer this
question, we inspect the right-hand side of Eq. (3), and we see
that it is a sum of left-product terms â

†
k1

· · · â†
km

âk′
m
· · · âk′

1
ρ̂N

and of right-product terms ρ̂N â
†
k1

· · · â†
km

âk′
m
· · · âk′

1
. Therefore,

one possibility to construct the QME is to find the phase-space
correspondences for such products, and that is what we are
going to do now.

Using the expansion (11), we obtain for the left-product
term

â†
r1

· · · â†
rm

âsm
· · · âs1 ρ̂N

=
∫

d zd z∗P(z,z∗ )̂a†
r1

· · · â†
rm

âsm
· · · âs1 |

−→
φ (1)〉〈−→φ (2)|

=
∫

d zd z∗P(z,z∗)S[r1 · · · rm; sm · · · s1]|−→φ (1)〉〈−→φ (2)|,
(41)

where S[r1 · · · rm; sm · · · s1] is the differential operator acting
on the Slater state at the right-hand side of relation (24). Note
that in the first equality in Eq. (41) we exchange the operator
and the improper integral, which is allowed since in the case of
a finite-lattice system with finite number of particles, the action
of operator is a sum of a finite number of matrix elements. It is
seen that if we could integrate by parts without the boundary
terms, then we would immediately obtain the phase-space
correspondence:

â†
r1

· · · â†
rm

âsm
· · · âs1 ρ̂N ←→ (−1)m

∑
l1>···>lm

∑
P

(−1)|P |

× ∂

∂φ
(1)
l1r1

· · · ∂

∂φ
(1)
lmrm

{
φ

(1)
l1sP1

· · ·φ(1)
lmsPm

P
}
. (42)

Reiterating the same treatment for the right-product term, we
would get

ρ̂N â†
r1

· · · â†
rm

âsm
· · · âs1

←→ (−1)m
∑

l1>···>lm

∑
P

(−1)|P |

× ∂

∂φ
(2)∗
l1s1

· · · ∂

∂φ
(2)∗
lmsm

{
φ

(2)∗
l1rP1

· · ·φ(2)∗
lmrPm

P
}
. (43)

In the following, the phase-space correspondences (42) and
(43) will be called the “operator correspondences of the left-
star-product type” and “operator correspondences of the right-
star-product type” correspondingly [9], since they bear resem-
blance to the star product in the deformation quantization [27].

B. The space of admissible quasiprobability distributions

The derivation of these two phase-space correspondences,
Eqs. (42) and (43), imposes a requirement on the quasiproba-
bilities P: They should be such that the boundary term, which
arises during the integration by parts, is vanishing. Therefore,
we assume that we have chosen a certain space D of quasiprob-
ability distributions which satisfy this requirement. We call
D the “space of admissible quasiprobability distributions.”
To fulfill the requirement of vanishing boundary terms, it is
sufficient to define D as the space of all such quasiprobability
distributionsP that (i) there exists ρ̂N for which the correspon-
dence (16) is well defined and (ii) P is a rapidly decreasing
function. We say that the quasiprobability distribution P is
a rapidly decreasing function if the tails of P and of all its
derivatives eventually fall off faster than any inverse power law.
In mathematical formal terms, for P to be rapidly decreasing,
we require that for any (mixed) partial derivative

f =
a∏

i=1

∂

∂φ
(αi )
ki ri

b∏
j=1

∂

∂φ
(βj )∗
lj sj

P, (44)

for any monomial

g =
c∏

i=1

φ(γi )
piui

d∏
j=1

φ
(δj )∗
mj vj

, (45)

and for arbitrarily small fixed ε > 0, there exists such a

constant R that, for every
−→
φ (1),

−→
φ (2) with ‖−→φ (1)‖ � R and

‖−→φ (2)‖ � R, we have |fg| < ε.

C. Formal quasiprobability master equation

Now we are ready to derive our first QME in the Slater-
projection representation. We proceed by finding the phase-
space correspondence for each term of the quantum Liouville
equation (3).

To find the representation for the time-derivative term
∂t ρ̂N (t), we can write

∂

∂t
ρ̂N (t) =

∫
d zd z∗ ∂

∂t
P(z,z∗,t)|−→φ (1)〉〈−→φ (2)|. (46)

From this relation, it can be deduced that one possible
correspondence is

∂

∂t
ρ̂N ←→ ∂

∂t
P. (47)

Here care must be taken. In Eq. (46) we have exchanged the
time derivative and the improper integral. Therefore, as is
known from the calculus [28], for the correspondence (47) to
be valid at a time moment τ , there should exist a neighborhood
U (τ,ε) = [τ − ε,τ + ε] such that the improper integral at the
right-hand side of Eq. (46) is uniformly converging for all
t ∈ U (τ,ε). The sufficient condition for this is that there exists
a rapidly decreasing function g and a constant R such that
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|∂tP(t)| < g for all ‖−→φ (1)‖ � R and ‖−→φ (2)‖ � R and for all
t ∈ U (τ,ε). For brevity, we refer to this sufficient condition
as one where the function ∂tP(t) should have “uniformly
dominated tails.”

Now, referring to the definition of Ĥ [Eq. (1)] and applying
the rules (42) and (43) in the commutator [Ĥ , ρ̂N ]/i�, we find
the QME which is a phase-space counterpart of the quantum
Liouville equation (3):

∂

∂t
P = −

∑
lr

∂

∂φ
(1)
lr

{
1

i�
〈r|T̂ ∣∣φ(1)

l

〉
P
}

+ 1

4

∑
lr

∑
ms

∂2

∂φ
(1)
lr ∂φ

(1)
ms

{
1

i�

(
r,s|V̂ (A)|φ(1)

l ,φ(1)
m

)
P
}

+
[
−

∑
lr

∂

∂φ
(2)
lr

{
1

i�
〈r|T̂ |φ(2)

l 〉P
}

+ 1

4

∑
lr

∑
ms

∂2

∂φ
(2)
lr ∂φ

(2)
ms

{
1

i�

(
r,s|V̂ (A)|φ(2)

l ,φ(2)
m

)
P
}]∗

. (48)

Here V (A)
rsuv = (Vrsuv − Vrsvu)/2.

We call the QME (48) the formal quasiprobability master
equation, because it is obtained by the formal application
of the rules (42), (43), and (47). However, let us recall that
we can be sure that this QME is well-defined, and the time
dependence of the expected values is the same as that predicted
by the quantum Liouville equation (3), only if the following
condition is satisfied: Taking any P ∈ D as an initial condition
for Eq. (48), there exists a solution P(t) for all times t , and
this solution is such that at all times t , P(t) belongs to D,
and ∂tP(t) has uniformly dominated tails. We discuss these
conditions in Sec. VII. In the next section, we address the
question of the stochastic interpretation of the QME (48).

D. Fokker-Planck equation in complex variables

We observe that the QME (48) has the form similar to
that of Fokker-Planck equation, with the complication that
the variables and the coefficients are complex. To solve this
complication, we employ the general form of Fokker-Planck
equation in complex variables, which was derived in Appendix
B of Ref. [9]. Suppose that we have two real vectors x and y
of equal dimension M (in our case M = 2NN ). We combine
them into a complex vector z = x + i y and consider the pair
(z,z∗) as independent variables, which is possible due to the
following property of the Wirtinger derivatives: ∂zi/∂z∗

j =
∂z∗

i /∂zj = 0. We interpret the pair (z,z∗) as a single vector
z = (z,z∗) with components z

αj
= zj for α = 1 and z

αj
= z∗

j

for α = 2. Therefore, the vector z is indexed by a compound
index αj , where the first greek index designates whether to
choose z or its complex conjugate, and the second latin index
indicates the component of z (or z∗). The matrices M , which
act on such vectors, have the block structure

M =
[

P Q

Q∗ P ∗

]
, (49)

where P and Q are arbitrary complex M × M matrices.
The elements M

αβjk
of the matrix M are indexed by the two

compound indices αj and βk, where (α,β) refers to the block
submatrix, and (j,k) refers to the element within the selected
block submatrix. Now, suppose that we have a general complex
stochastic Ito process,

dzj = Ajdt +
2M∑
k=1

BjkdWk, (50)

where d z is an increment of the vector z; A is an arbitrary
complex drift vector; B is an arbitrary complex N × 2N noise
matrix; the real Wiener increments dWk obey the standard
conditions E[dWk] = 0 and E[dWkdWj ] = δkj dt . It is shown
in Appendix B of Ref. [9] that the joint probability distribution
P(z) ≡ P(z,z∗) ≡ P(x, y) evolves in time according to the
Fokker-Planck equation

∂

∂t
P = −

∑
αj

∂

∂z
αj

{AαjP} + 1

2

∑
αj

∑
βk

∂2

∂z
αj

∂z∗
βk

{
D

αβjk
P
}
,

(51)

where A = (A,A∗); D is a diffusion matrix,

D =
[

BB† BBT

(BBT )∗ (BB†)∗

]
=

[
B

B∗

]
[B† (B∗)†]. (52)

From this equation, we see that D is a Hermitian and positive-
(semi-)definite matrix.

Now, if we compare the formal QME (48) with the general
form of Fokker-Planck equation (51), we see that the QME
(48) has the following deficiencies: (i) The drift terms lack
their complex conjugates; (ii) the diffusion matrices are not
Hermitian. Therefore, the QME (48) cannot be interpreted
stochastically. In the following sections, we describe how
to fix these deficiencies using the nonuniqueness of the
quasiprobability distributions and their master equations.

E. Nonuniqueness of the quasiprobability distribution

As mentioned in Sec. III C, the quasiprobability P in the
phase-space correspondence (16) is not unique, since the
basis (12) is overcomplete. It is important to characterize
this nonuniqueness, since it implies that the phase-space
representation of the quantum evolution (3) is also not unique;
i.e., there exist different QMEs, and these QMEs may have
different efficiency with respect to Monte Carlo simulation.
To obtain the characterization of this nonuniqueness, in the
following we investigate the inner-product structure which is
generated by the expansion (11). A preliminary treatment of
this problem (in the context of a bosonic system) was given in
our preceding work [9]. Here we refine our treatment.

Let us select a certain orthonormal basis ϕr , r = 1, . . . ,N ,
in the one-body Hilbert space H . Consider the matrix elements

�k,k′(z) = 〈k|�̂(z)|k′〉, (53)
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where the N -particle states |k〉 = |ϕk1 · · · ϕkN
〉 and |k′〉 are

labeled by the integer vector indices k = (k1, . . . , kN ) and k′.
The matrix elements �k,k′(z) are polynomials of degree 2N

of the variables φ
(1)
lr and φ

(2)∗
lr , l = 1, . . . ,N , r = 1, . . . ,N .

Let us denote by S the space which is spanned by the
polynomials �k,k′(z). Comparing the definition of the phase-
space representation of observable Eq. (30) with the matrix
element Eq. (53), we see that actually the matrix element
�k,k′ is a phase-space representation of the (non-Hermitian)
observable |k′〉〈k|. Since any N -particle observable can be
expanded over the dyadics |k′〉〈k|, we conclude that S is the
space of all the c-number functions O(z) which correspond to
a certain (Hermitian or non-Hermitian) observable operator Ô.
Then the density-operator expansion (11) can be represented
as the inner product

〈k|ρ̂N |k′〉 = 〈�∗
k,k′ |P〉SD (54)

between the elements of the spaces S and D. Since the basis
�̂ [Eq. (12)] is overcomplete, there is a nontrivial subspace Z

of D such that every quasiprobability Z ∈ Z is orthogonal to
every O∗ ∈ S∗: 〈O∗|Z〉SD = 0. The quasiprobabilities P and
P + Z always correspond to the same ρ̂N , and vice versa: If
for some P the quasiprobabilities P and P + Z correspond
to the same ρ̂N , then Z ∈ Z. Therefore, we conclude that all
the nonuniqueness is contained in the space Z. The phase-
space correspondence (16) generates the equivalence relation
between the quasiprobability distributions,

P ∼ P + Z, (55)

and the equivalence classes are in one-to-one correspondence
with the elements R ∈ R of the quotient space R = D/Z. We
call Z the zero-representation space, since we have Z ∼ 0 for
every Z ∈ Z.

In principle, we can find the space Z for the basis �̂

[Eq. (12)], e.g., see Sec. III B of Ref. [9]. However, that is not
what we need. We need to fix the drift and the diffusion terms
of the formal QME (48). Therefore, we need the possibility
to add the terms of the form λTP to the right-hand side of
Eq. (48), where λT is a certain linear (differential) operator.
The necessary and sufficient condition for such a possibility
is that λTP ∈ Z. In other words, we need to characterize the
linear operators λT : D → Z.

According to the star-product correspondences (42) and
(43), the right-hand side of QME is always a differential
operator with polynomial coefficients. We denote the space
of such operators as L. In order to fix the drift and the
diffusion terms, the operators λT should belong to the space
L. We assume that the space of admissible quasiprobability
distributions D is chosen such that for each α ∈ L there exists
an adjoint operator α†. More precisely, we assume that (i)
there exists a space S ′ of functions in the phase space, with
a well-defined inner product 〈·|·〉S ′D between the elements of
S ′ and D; (ii) for any α ∈ L there exists a linear operator
α† : S → S ′ such that

〈O∗|αP〉SD = 〈(αTO)∗|P〉S ′D, (56)

where αT ≡ (α†)
∗
. This assumption greatly simplifies the

treatment. Indeed, consider the subspace AT of L, which is
defined to consists of operators λT : D → Z. Then, according

to the definition of adjoint operator (56), we have

〈(λO)∗|P〉S ′D = 〈O∗|λTP〉SD = 0 (57)

for every O ∈ S and for every P ∈ D. This means that the
image imλ∗ should be orthogonal to D. However, if the space
D is reach enough (as it is in our case), this means that imλ∗ =
0. In other words, S ⊂ ker λ, and λ�k,k′ = 0. We call such
operators λ the annihilators of the basis �̂. Now we have
attained the characterization of the nonuniqueness of the QME:
For any annihilator λ, formally we can add the term λTP to
the right-hand side of the QME (48) since λTP ∼ 0. Note that
for any linear operator d : D → D we also have

λT dP ∼ 0. (58)

The terms like (58) define the additive group of (formal)
automorphisms of the QME. In the literature on the generalized
phase-space methods [29], this group is called the group of
gauge transformations; the terms (58) are called gauge terms,
and d is called gauge parameter.

In order to fix the drift and diffusion terms, we are interested
in the annihilators which are the first- and the second-order
differential operators. For the Slater projections (12), we
describe such annihilators in the next section.

F. Annihilators of the Slater projections

In our case of the Slater projections (12), we can easily
identify the following types of annihilators. The annihilators
of the first type correspond to the analyticity of the basis �̂,

∂

∂φ
(1)∗
lr

�̂(
−→
φ (1),

−→
φ (2)∗) = 0, (59)

∂

∂φ
(2)
lr

�̂(
−→
φ (1),

−→
φ (2)∗) = 0, (60)

where l = 1, . . . ,N and r = 1, . . . ,N . We call them the “an-
alyticity annihilators.” To find the other types of annihilators,
we employ a differential property of the Slater determinant
states,

|φ1 · · · ψ l · · · φN 〉 =
∑

r

ψlr

∂

∂φlr

|−→φ 〉, (61)

where l = 1, . . . ,N . On the left-hand side of this equation, the
arbitrary orbital ψ l replaces the original orbital φl . Taking into
account this property, and also the facts that (i) the basis �̂ is a
homogeneous function of degree 1 in each orbital φl , and (ii)
the Slater determinant is zero if there are identical orbitals, we
obtain the annihilators of the second type,[∑

r

φ(1)
pr

∂

∂φ
(1)
lr

− δlp

]
�̂(

−→
φ (1),

−→
φ (2)∗) = 0, (62)[∑

r

φ(2)∗
pr

∂

∂φ
(2)∗
lr

− δlp

]
�̂(

−→
φ (1),

−→
φ (2)∗) = 0, (63)

where δlp is the Kronecker δ. We call them the “homogeneity
annihilators.” In the same way, we find the third type of
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annihilators,∑
rs

Jrs

∂2

∂φ
(1)
lr ∂φ

(1)
ms

�̂(
−→
φ (1),

−→
φ (2)∗) = 0, (64)

∑
rs

Jrs

∂2

∂φ
(2)∗
lr ∂φ

(2)∗
ms

�̂(
−→
φ (1),

−→
φ (2)∗) = 0, (65)

where l, m are arbitrary in the interval [1, N ] and J is a
complex symmetric N × N matrix: Jrs = Jsr , but otherwise
J is arbitrary. We call these annihilators the “antisymmetry
annihilators.”

The expressions for the annihilator operators λ are given
by the differential operators on the left-hand side of Eqs. (59)
and (60) and Eqs. (62)–(65).

G. Using the basis analyticity to perform the stochastic
unraveling of the quasiprobability master equation

As it is demonstrated in Sec. IV C, after application of
the star-product operator correspondences (42) and (43), the
quantum Liouville equation (3) is mapped onto the QME (48),
which has the following form:

∂

∂t
P = −

∑
j

∂

∂zj

{AjP} + 1

2

∑
jk

∂2

∂zj ∂zk

{DjkP}. (66)

Note that the matrix D can always be chosen symmetric due to
the symmetry property of the mixed partial derivatives. Here,

since the vector z = (
−→
φ (1),

−→
φ (2)∗) has a block structure, the

drift vector A and the diffusion matrix D can also be written
in the block form. For the drift vector we have

A = (
−→
A (1),

−→
A (2)∗), (67)

where
−→
A (α) = (A(α)

1 , . . . ,A(α)
N ), and, according to Eq. (48),∣∣A(α)

l

〉 = 1

i�
T̂
∣∣φ(α)

l

〉
. (68)

Therefore, the indices j and k in Eq. (66) are compound:
j = (αlr), where α = 1, . . . ,2 is a type of orbital (from bra
or from ket state), l = 1, . . . ,N is the index of orbital, and
r = 1, . . . ,N is the component index.

For the diffusion matrix we have the block structure

D =
[
D̄(11) D̄(12)

D̄(21) D̄(22)

]
. (69)

Here, according to Eq. (48), D̄(12) = D̄(21) = 0, and the
elements of the matrices D̄(αα) are

〈r|D̄(11)
lm |s〉 ≡ D̄

(11)
lmrs = 1

2i�

(
r,s|V̂ (A)|φ(1)

l ,φ(1)
m

)
, (70)

〈r|D̄(22)
lm |s〉 ≡ D̄

(22)
lmrs =

[
1

2i�

(
r,s|V̂ (A)|φ(2)

l ,φ(2)
m

)]∗
. (71)

Since D is symmetric, we have D̄
(αβ)
lmrs = D̄

(βα)
mlsr .

If we compare Eq. (66) with the general form of Fokker-
Planck equation (51), we see that this equation lacks the
complex conjugates of the drifts,

−
∑

j

∂

∂z∗
j

{A∗
jP}. (72)

Moreover, for the condition that the diffusion matrix be
Hermitian, the QME (66) lacks the second-order derivative
terms ∑

j,k

∂

∂z∗
j

[
∂

∂zk

{GjkP} + 1

2

∂

∂z∗
k

{D∗
jkP}

]
, (73)

where G is currently an arbitrary Hermitian matrix, which will
be found later from the requirement of positivity of diffusion.

Our operator basis is an analytic function due to the
annihilators (59) and (60), which in the notation of the current
section look like

∂

∂z∗
j

�̂(z) = 0. (74)

According to Eq. (58), we conclude that we can add the term

0 ∼ ∂

∂z∗
j

dP (75)

to the right-hand side of the QME (66). Now, inspecting
the lacking terms (72) and (73), we observe that they have
just the form of Eq. (75), and we can freely add them
at the right-hand side of the QME (66). Having added
them, the drift terms become correct, and the diffusion
matrix becomes Hermitian. The last problem is to make the
diffusion matrix positive-(semi-)definite. In order to solve it,
we inspect the block structure of the diffusion matrix (52) and,
upon comparison with the second-order derivative terms in
Eqs. (66) and (73), we observe that it is enough to find such a
matrix B that

D = BBT . (76)

Such a decomposition of D always exists for a symmetric
matrix, since we always can perform the Takagi factorization
[25], which is a special case of the decomposition (76).
Having found B, we just set G = (BB†)

∗
in Eq. (73), and

immediately obtain that the QME (66) is unraveled by the
complex stochastic Ito process (50).

In general, the noise matrix can be written in the block form

B =
[
B̄(11) B̄(12)

B̄(21) B̄(22)

]
, (77)

where the elements of B̄(αβ) are

〈r|B̄(αβ)
l |ω〉 = B̄

(αβ)
lr,ω , (78)

and |ω〉 is a certain basis in the space of Wiener increments.
Therefore, in Eq. (50) the index k is compound: k = (βω). The
decomposition (76) assumes the general block form

D̄
(αβ)
lm =

2∑
γ=1

B̄
(αγ )
l B̄(βγ )T

m . (79)

The explicit expression for the matrix B is found in the next
section.

H. Factorization of diffusion matrix

As it was said after Eq. (69), the matrix D is block diagonal

D =
[
D(11) 0

0 [D(22)]∗

]
, (80)
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where we have introduced the matrices D(αα) with components

〈r|D(αα)
lm |s〉 = D

(αα)
lrms = 1

2i�

(
r,s|V̂ (A)|φ(α)

l ,φ(α)
m

)
. (81)

Due to the block-diagonal structure, it is enough to factorize
D(αα) = B(αα)B(αα)T for each α individually. Whereas one
can attempt to perform the (probably numerical) Takagi
factorization [25] of D(αα) as it is given by Eq. (81), currently
in the literature another approach is used. First, the interaction
potential Vrsuv is factorized as [3,5]

Vrsuv =
∑

γ

�ωγ O(γ )
ru O(γ )

sv , (82)

where ωγ are real coefficients, and O
(γ )
ru are matrix elements

〈r|Ô(γ )|u〉 of a certain one-body Hermitian operators Ô(γ ).
Then, for the antisymmetrized interaction potential V (A)

rsuv we
have

V (A)
rsuv = 1

2

∑
γ

�ωγ

(
O(γ )

ru O(γ )
sv − O(γ )

rv O(γ )
su

)
. (83)

If we substitute this expression for V (A)
rsuv into Eq. (81), we

obtain

D
(αα)
lrms = 1

2

∑
γ

{
B

(αα)
lr,γ [B(αα)T ]γ,ms − B(αα)

mr,γ [B(αα)T ]γ,ls

}
,

(84)

where

B
(αα)
lr,γ =

√
ωγ

2i
〈r|Ô(γ )

∣∣φ(α)
l

〉
. (85)

In order to factorize the matrix D(αα), we need to get rid of
the antisymmetrization with respect to l, m in Eq. (84). This
is accomplished by employing the antisymmetry annihilators
(64) and (65): To the right-hand side of the QME (48) we add
the term

0 ∼ 1

2

∑
lm

∑
rs

∂2

∂φ
(1)
lr ∂φ

(1)
ms

{
J

(11)
lrmsP

}
+

[
1

2

∑
lm

∑
rs

∂2

∂φ
(2)
lr ∂φ

(2)
ms

{
J

(22)
lrmsP

}]∗
, (86)

where the symmetric matrix J (αα) is

J
(αα)
lrms = J

(αα)
lsmr = 1

2

∑
γ

{
B

(αα)
lr,γ [B(αα)T ]γ,ms+B(αα)

mr,γ [B(αα)T ]γ,ls

}
.

(87)

After performing this addition, we get a new QME, where the
diffusion matrix is now

D′ =
[
D(11)′ 0

0 [D(22)′]∗

]
, (88)

with

D
(αα)′
lrms =

∑
γ

B
(αα)
lr,γ [B(αα)T ]γ,ms

= 1

2i�

(
r,s|V̂ |φ(α)

l ,φ(α)
m

)
. (89)

Comparing this expression with the factorization condition
(76), we conclude that the stochastic unraveling is complete,
and the stochastic process is

d
∣∣φ(α)

l

〉 = 1

i�
T̂
∣∣φ(α)

l

〉
dt + 1√

2i

∑
γ

√
ωγ Ô(γ )

∣∣φ(α)
l

〉
dW (α)

γ ,

(90)

where l = 1, . . . ,N ; the real Wiener increments dW (α)
γ obey

the standard conditions: E[dW (α)
γ ] = 0, E[dW (α)

γ dW
(β)
γ ′ ] =

δαβδγ γ ′dt .

V. EQUIVALENT TRANSFORMATIONS OF
QUASIPROBABILITY MASTER EQUATIONS

In the previous sections, we have performed the (for-
mally) equivalent transformation of the QME (48) into a
Fokker-Planck equation. In order to accomplish this, we have
employed the analyticity (59) and (60) and the antisymmetry
(64) and (65) annihilators, whose parameters are uniquely
defined by the drift and the diffusion terms of the initial QME
(48). However, the existence of the homogeneity annihilators
(64) and (65) provides us with additional degrees of freedom,
and as a consequence the Fokker-Planck equation is not unique
[9]. This means that there are such transformations of the drift
and diffusion terms in Eq. (66),

A → A′ = A + A	, (91)

D → D′ = D + D	, (92)

that the QME (formally) remains equivalent to itself. In this
section, we describe the equivalent transformations of the
Fokker-Planck equations.

Note that the annihilators (59) and (60), (62) and (63),
and (64) and (65), assume the most symmetrical form in

terms of the variables (
−→
φ (1),

−→
φ (2)∗). On the other side, the

stochastic equations (90) assume the most symmetrical form

in terms of the variables (
−→
φ (1),

−→
φ (2)). Therefore, to maintain

the conciseness of the expressions for SDEs and for their
equivalent transformations, we introduce the overline notation
φ̄

(α)
l : φ̄

(1)
l = φ

(1)
l and φ̄

(2)
l = φ

(2)∗
l .

A. Homogeneity annihilators

Suppose that we have a table of linear operators d
(α)
lp :

D → D for l,p = 1, . . . ,N . Then if we act on d
(α)
lp P by

the transposes of homogeneity annihilators (62) and (63), we
conclude that we can add the term

0 ∼
∑
αl

d
(α)
ll P +

∑
αlr

∂

∂φ̄
(α)
lr

{∑
p

φ̄(α)
pr d

(α)
lp P

}
(93)

to the right-hand side of the QME (66). In the following, we
consider several specific forms of d

(α)
lp .

1. Scalar gauge function

The first case is when the gauge operator d
(α)
lp is a scalar

function,

d
(α)
lp = ω̄

(α)
lp (z,z∗), (94)
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where ω
(α)
lp (z,z∗) is a table of 2 × N × N arbitrary complex

functions; the symbol ω̄
(α)
lp is interpreted as ω̄

(1)
lp = ω

(1)
lp and

ω̄
(2)
lp = ω

(2)∗
lp . Then, from Eq. (93) we conclude that we can add

the term

0 ∼
∑
αl

ω̄
(α)
ll P −

∑
αlr

∂

∂φ̄
(α)
lr

{
−

∑
p

φ̄(α)
pr ω̄

(α)
lp P

}
(95)

to the QME. This relation means that we can absorb (remove)
the part of the drift vector

−∣∣A	(α)
l

〉 =
∑

p

∣∣φ(α)
p

〉
ω

(α)
lp (z,z∗) (96)

into the potential,

V 	(z,z∗) =
∑
αl

ω̄
(α)
ll (z,z∗). (97)

In particular, if ω(α) are traceless matrices, then no po-
tential term will appear. If we unravel the QME into the
Fokker-Planck equation, then the appearance of the potential
term V 	(z,z∗)P means that our stochastic process becomes
weighted, and the QME should be interpreted according to the
Feynman-Kac formula [9,30].

2. First-order differential gauge operator

Now we consider the case when the gauge parameter d
(α)
lm

in (93) is a first-order differential operator,

d
(α)
lp = −

∑
βms

∂

∂φ̄
(β)
ms

ḡ
(β)
αlmp,s(z,z∗), (98)

where g
(β)
αlmp,s(z,z∗) is a table of 2 × 2 × N × N × N × N

arbitrary complex functions. Upon substituting this expression
for d

(α)
lp into Eq. (93), and after making a few algebraic

rearrangements, we obtain the gauge term

0 ∼ −
∑
αlr

∂

∂φ̄
(α)
lr

⎧⎨⎩∑
p

⎡⎣∑
β

ḡ
(α)
βplp,r − ḡ

(α)
αlpp,r

⎤⎦P

⎫⎬⎭
+ 1

2

∑
αlr

∑
βms

∂2

∂φ̄
(α)
lr ∂φ̄

(β)
ms

×
{

−
∑

p

[
φ̄(α)

pr ḡ
(β)
αlmp,s + ḡ

(α)
βmlp,r φ̄

(β)
ps

]
P
}

. (99)

This relation means that we can absorb (remove) the part of
the diffusion matrix

−D
	(αβ)
lm =

∑
p

[∣∣φ̄(α)
p

〉〈
ḡ(β)∗

αlmp

∣∣ + ∣∣ ḡ(α)
βmlp

〉〈
φ̄

(β)∗
p

∣∣] (100)

into the drift vector∣∣A	(α)
l

〉 =
∑
βp

∣∣g(α)
βplp

〉 − ∑
p

∣∣g(α)
αlpp

〉
. (101)

Here the bra-ket notation is defined as 〈r|g(β)
αlmp〉 = g

(β)
αlmp,r .

Note that when we pass from the QME terms (98)–(100) to
the SDE term (101), we remove the overlines.

B. Factorization of the modified diffusion matrix

Once we apply the gauge transformations (100) and (101),
we need to factorize the modified diffusion matrix

D′ = D + D	, (102)

where it is assumed that we start from some diffusion matrix
D (69), which is factorized according to (79) by a certain
known noise matrix (77). Here we describe one particular case
where the factorization can be carried out explicitly. This case
is important since all the currently known stochastic TDHF
methods in the literature are special instances of it. Suppose
that the gauge function g

(β)
αlmp,s has the form∣∣ ḡ(β)

αlmp

〉 =
∑

γ

B̄(βγ )
m

∣∣λ̄(γ )
αlp

〉 − 1

2

∑
q

∣∣φ̄(β)
q

〉∑
γ

〈
λ̄

(γ )∗
βmq

∣∣λ̄(γ )
αlp

〉
,

(103)

where λ
(γ )
αlp,ω(z,z∗) = 〈ω|λ̄(γ )

αlp〉 is a table of 2 × 2 × N × N ×
Nω arbitrary complex functions; Nω is a dimension of the
space of Wiener increments. Then, the modified diffusion
matrix (102) is factorized by the modified noise matrix

B̄
′(αβ)
l = B̄

(αβ)
l −

∑
p

∣∣φ̄(α)
p

〉〈
λ̄

(β)∗
αlp

∣∣. (104)

This fact can be verified by direct algebraic calculation. Now
let us evaluate the drift addition A	(α)

l by substituting into
Eq. (101) the expression for the gauge function (103):

∣∣ Ā	(α)
l

〉 =
∑
γp

⎧⎨⎩B̄
(αγ )
l

∑
β

∣∣λ̄(γ )
βpp

〉 − B̄(αγ )
p

∣∣λ̄(γ )
αlp

〉⎫⎬⎭
+ 1

2

∑
q

∣∣φ̄(α)
q

〉∑
γp

⎧⎨⎩−〈
λ̄

(γ )∗
αlq

∣∣∑
β

∣∣λ̄(γ )
βpp

〉

+ 〈
λ̄

(γ )∗
αpq

∣∣λ̄(γ )
αlp

〉⎫⎬⎭. (105)

Note that the second term on the right-hand side of this
equation has the form of scalar-gauge drift addition Eq. (96).
Therefore, after absorbing this term into the potential term
(97), we obtain that the gauge function (103) is equivalent to
the simultaneous transformation of the noise matrix (104) of
the drift vector

∣∣ Ā′(α)
l

〉 = ∣∣ Ā(α)
l

〉 + ∑
γp

⎧⎨⎩B̄
(αγ )
l

∑
β

∣∣λ̄(γ )
βpp

〉 − B̄(αγ )
p

∣∣λ̄(γ )
αlp

〉⎫⎬⎭
(106)

and of the potential term

V ′ = V + 1

2

∑
αγ lp

⎧⎨⎩−〈
λ̄

(γ )∗
αll

∣∣∑
β

∣∣λ̄(γ )
βpp

〉 + 〈
λ̄

(γ )∗
αpl

∣∣λ̄(γ )
αlp

〉⎫⎬⎭.

(107)

Now we interpret the potential term according to the Feynman-
Kac formula and introduce the expansion of the density
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operator ρ̂N ,

ρ̂N =
∫

d�d�∗d zd z∗P(�,�∗,z,z∗)�̂(�,z), (108)

over the weighted Slater projections,

�̂(�,z) = exp(�)|−→φ (1)〉〈−→φ (2)|. (109)

If we start from the QME with the diffusion matrix (89) [with
the noise matrix (85)] and apply the gauge (103), we obtain
the family of stochastic equations for the weighted Slater
projections,

∣∣φ(α)
l

〉 = 1

i�
T̂
∣∣φ(α)

l

〉
dt + 1√

2i

∑
γ

√
ωγ Ô(γ )

×
∑

p

⎧⎨⎩∣∣φ(α)
l

〉∑
β

λ
(α)
βpp,γ − ∣∣φ(α)

p

〉
λ

(α)
αlp,γ

⎫⎬⎭dt

+
∑

γ

(√
ωγ

2i
Ô(γ )

∣∣φ(α)
l

〉 − ∑
p

∣∣φ(α)
p

〉
λ

(α)
αlp,γ

)
dW (α)

γ

−
∑

p

∣∣φ(α)
p

〉∑
γ

λ
(ᾱ)∗
αlp,γ dW (ᾱ)

γ , (110)

d� = 1

2

∑
αγ lp

⎧⎨⎩−λ̄
(γ )
αll,γ

∑
β

λ̄
(γ )
βpp,γ + λ̄

(γ )
αpl,γ λ̄

(γ )
αlp,γ

⎫⎬⎭dt, (111)

where λ
(β)
αlp,γ (�,�∗,z,z∗) = 〈γ |λ̄(β)

αlp〉 is a table of 2 × 2 ×
N × N × Nω arbitrary functions in the weighted phase space;
the value of the index ᾱ is opposite to that of α: 1̄ = 2 and
2̄ = 1. The right-hand side of the equation for � (111) is equal
to the potential addition (107).

1. Projective transformations of the diffusion matrix

All the currently known-in-literature stochastic TDHF
methods [3–7] can be obtained within a specific form of λ̄

(γ )
αlp

in Eq. (103), ∣∣λ̄(γ )
αlp

〉 = δαγ B̄
(αα)T
l

∣∣κ̄ (α)
lp

〉
, (112)

where κ
(α)
lp,r (�,�∗,z,z∗) = 〈r|κ (α)

lp 〉 is a table of 2 × N × N ×
N arbitrary functions; B̄

(11)
l = B

(11)
l , B̄(22)

l = B
(22)∗
l , and B

(αα)
l

is defined according to Eq. (85). Substituting the expression
for λ̄

(γ )
αlp Eq. (112) into the gauge transformations (104)–(106)–

(107), we obtain that the modified diffusion matrix assumes
the form

D̄
′(αα)
lm = (

I − p̄
(α)
l

)
D̄

(αα)
lm

(
I − p̄(α)T

m

)
, (113)

where the projections pl are defined as

p
(α)
l =

∑
q

∣∣φ(α)
q

〉〈
κ

(α)∗
lq

∣∣. (114)

The modified diffusion matrix (113) is factorized by the
modified noise matrix

B̄
′(αα)
l = (

I − p̄
(α)
l

)
B̄

(αα)
l . (115)

The drift term is transformed as∣∣ Ā′(α)
l

〉 = ∣∣ Ā(α)
l

〉 + ∑
p

(
D̄

(αα)
lp

∣∣κ̄ (α)
pp

〉 − D̄
(αα)
pl

∣∣κ̄ (α)
lp

〉)
, (116)

and the potential term is transformed as

V ′ = V + 1

2

∑
αlp

(〈
κ̄

(α)∗
pl

∣∣D̄(αα)
pl

∣∣κ̄ (α)
lp

〉
− 〈

κ̄
(α)∗
ll

∣∣D̄(αα)
lp

∣∣κ̄ (α)
pp

〉)
. (117)

We obtain the following family of stochastic equations:〈
r
∣∣φ(α)

l

〉 = 1

i�
〈r|T̂ ∣∣φ(α)

l

〉
dt+ 1

2i�

∑
p �=l

{(
r,κ (α)∗

pp |V̂ |φ(α)
l ,φ(α)

p

)
− (

r,κ
(α)∗
lp |V̂ |φ(α)

p ,φ
(α)
l

)}
dt

+
∑

γ

√
ωγ

2i
〈r|

(
1 −

∑
p

∣∣φ(α)
p

〉〈
κ

(α)∗
lp

∣∣)

× Ô(γ )
∣∣φ(α)

l

〉
dW (α)

γ , (118)

V (α) = 1

4i�

∑
lp

{(
κ

(α)∗
pl ,κ

(α)∗
lp |V̂ |φ(α)

p ,φ
(α)
l

)
− (

κ
(α)∗
ll ,κ (α)∗

pp |V̂ |φ(α)
l ,φ(α)

p

)}
, (119)

d� = dt
∑

α

V̄ (α). (120)

VI. EXAMPLES

In this section, we illustrate how to use the equivalent
transformations of QMEs in order to satisfy various con-
straints. We begin this section by rederiving all the currently
known-in-literature stochastic Hartree-Fock methods, and we
conclude this section by presenting one method which is a
Fermi counterpart of the simple scheme of Carusotto et al. [8]
for bosons. The validity of these methods, their convergence
towards exact quantum dynamics, is discussed in Sec. VII

A. Stochastic mean-field method of Juillet and Chomaz [3]

As it was discussed in [8,9], the magnitude of the diffusion
matrix determines the growth rate of the spread of stochastic
trajectories in the phase space. The more is the spread of
the trajectories, the more is the variance of the simulation
results. Therefore, we want to minimize the magnitude of the
diffusion matrix. We look for such a gauge function g

(β)
αlmp,r in

the transform (100) and (101) that the Hilbert-Schmidt norm
of the modified diffusion matrix (100) is minimal,

g
(β)
αlmp,r = arg min TrD′D′†, (121)

where

TrD′D′† =
∑

αβlmrs

∣∣D′(αβ)
lmrs

∣∣2
. (122)

In order to find g
(β)
αlmp,r , we need to solve the equation

∂

∂ḡ
(β)
αlmp,r

TrD′D′† = 0. (123)
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If we insert into this equation the definition of D′ [Eqs. (92)
and (100)] and perform the differentiation, we obtain〈

φ̄(α)
p

∣∣D̄′(αβ)
lm = 0 (124)

for any p, l, and m in the range 1, . . . ,N . For α �= β, we have
a homogeneous equation on g

(β)
αlmp,r . Therefore, in this case we

can set g
(β)
αlmp,r = 0. To satisfy Eq. (124) in the case α = β, it

is enough to apply the projective transform (113), in which the
projection p̄

(α)
l ≡ p̄(α) is chosen such that〈

φ̄(α)
p

∣∣(I − p̄(α)) = 0. (125)

That is, p̄(α)† should be chosen as a projection onto the
subspace which is spanned by all φ̄(α)

p for p = 1, . . . ,N ,

p̄(α) =
∑

q

∣∣φ̄(α)
q

〉〈
ψ̄ (α)

q

∣∣, (126)

where ψ (α)
q is a biorthogonal basis for φ(α)

q ,〈
ψ (α)

p

∣∣φ(α)
q

〉 = δpq. (127)

If we substitute the expression for the projection (126) into the
transforms for drift (116) and for potential (117), we obtain
the stochastic equations∣∣φ(α)

l

〉 = 1

i�
{T̂ + Tr2(V̂ (A)p(α))}∣∣φ(α)

l

〉
dt

+ 1√
2i

∑
γ

√
ωγ (I − p(α))Ô(γ )

∣∣φ(α)
l

〉
dW (α)

γ , (128)

d� = − 1

i�

1

2
Tr[p(1)Tr2(V̂ (A)p(1))]

−
{

1

i�

1

2
Tr[p(2)Tr2(V̂ (A)p(2))]

}∗
. (129)

Here the one-body operator 〈r|Tr2(V̂ (A)p(α))|u〉 =∑
sv V (A)

rsuv〈v|p(α)|s〉. We observe that these equations
are exactly the same as that obtained in [3] (with the minor
difference that in [3] the potential term (117) is not isolated
from the drift).

B. Optimal observable evolution method of Lacroix [6]

As another example, we consider the problem of con-
structing the trace-conserving stochastic representation. The
conventional approach is to require the conservation of trace
of the operator basis (12) along each random trajectory. That
is, we require

Tr�̂ = det M = const, (130)

where M is the overlap matrix (34). Therefore, it is enough to
satisfy the constraints〈

φ(2)
p

∣∣φ(1)
q

〉 = const (131)

for all p and q in the range 1, . . . ,N .
Before we proceed further, let us recall that the constraint

f (�,�∗,z,z∗) ≡ f (�,z) = const, (132)

of which (131) is a special case, means that we require that
the differential df (�,z) = 0 along each stochastic trajectory.

Therefore, we employ the complex Ito lemma [9] to find
df (�,z),

df (�,z) =
⎧⎨⎩∑

α

V ′
α

∂

∂�α

+
∑
αj

A′
αj

∂

∂z
αj

+ 1

2

∑
αβ

∑
jk

D′
αβjk

∂

∂z
αj

∂

∂z∗
βk

⎫⎬⎭f (�,z)dt

+
∑

α

∑
jp

B ′
αjp

∂f (�,z)

∂z
αj

dWp, (133)

where we suppose that the modified (transformed) and stochas-
tically unraveled QME is written in the compound index
notation (51). The compound indices are j and k = (βlr),
p = (βω); here β is a type of orbital, l is a orbital index, r is
a orbital component, and ω is a Wiener increment component;
� = (�,�∗) and V ′ = (V ′,V ′∗), where V ′ is a potential term
[which is the drift of the variable �, as it is stated by
Eq. (111)]. The noise matrix B ′

αjp is defined as B ′
1jp ≡ B ′

jp

and B ′
2jp ≡ B∗

jp. To satisfy the constraint (132), we have to
equal to zero the coefficients before dt and dWk in Eq. (133).

Let us compute the gradient vectors for the case when
f (�,z) = 〈φ(2)

p |φ(1)
q 〉:
∂f

∂�
=

(
∂f

∂�
,

∂f

∂�∗

)
= 0, (134)

∂f

∂z
αj

≡ ∂f

∂z
αβlr

=
⎧⎨⎩

φ(2)∗
pr for α = 1, β = 1, l = q,

φ(1)
qr for α = 2, β = 2, l = p,

0 otherwise.

(135)

If we substitute ∂f/∂z in the noise part of the Ito lemma (133),
we obtain the sufficient constraints,

B ′(12)
p = B ′(21)

p = 0, (136)〈
φ(1)

q

∣∣B ′(22)
p = 0, (137)

and 〈
φ(2)

p

∣∣B ′(11)
q = 0, (138)

for any p and q. Suppose that we start from the initial state
with 〈φ(2)

p |φ(1)
q 〉 = δpq . Then, we can satisfy the constraints

(137) and (138) by employing the projective transform (115)
with the projections

p
(α)
l ≡ p(α) =

∑
q

∣∣φ(α)
q

〉〈
φ(ᾱ)

q

∣∣. (139)

The resulting stochastic equations coincide with (128) and
(129), with the only difference that p(α) is now given by (139).
As the last step, we need to verify that the deterministic part of
the Ito lemma (133) is zero. We inspect the contribution from
the term with drift vector A and find that it is vanishing for the
gradient vector (135). To evaluate the contribution from the
term with diffusion matrix D, we calculate the Hessian matrix

∂2f

∂z
αj

∂z∗
βk

≡ ∂2f

∂z
αγ lr

∂z∗
βδms

= 0 if γ = δ, (140)

022116-13



EVGENY A. POLYAKOV PHYSICAL REVIEW A 93, 022116 (2016)

and we find that this contribution is vanishing, since the
modified diffusion matrix has the block-diagonal form (136).
Therefore, formally we have completed the construction of
the trace-conserving representation. We note that the terms
on the right-hand side of Eq. (129) cancel each other, and
our stochastic equations coincide with the equations obtained
in [6], where they were derived from entirely different
considerations.

C. Norm-preserving stochastic time-dependent
Hartree-Fock [5]

Currently, all the stochastic wave-function methods share
a common problem. The generalized phase space, in which
the diffusion happens, is infinite. As a consequence, the
quasiprobability distribution is continuously being smeared
out, and the variance of the Monte Carlo simulation results
grows with simulation time. Moreover, for the quantum
systems with pairwise interactions, the diffusion matrix de-
pends quadratically on the phase-space variables. This fact
leads to at least exponential growth of the variance [3,8,9].
Therefore, the simulation time, which is reachable within
the reasonable computational effort, is limited. It is called
the useful simulation time [10]. Tessieri et al. [5] have made
an attempt to solve this problem by restricting the available
phase space to a manifold of finite volume. In this section, we
reformulate their reasoning in terms of gauge transformations.

Let us consider the unit sphere in the one-body Hilbert
space H , which is defined by the equation

f
(α)
l (z) = exp

(
1

N
Re�

)〈
φ

(α)
l

∣∣φ(α)
l

〉 = 1 (141)

for α = 1, . . . ,2 and l = 1, . . . ,N . Actually, we have 2N

spheres: one sphere for each type of orbital. Now, suppose that
the initial density matrix ρ̂N is represented by a quasiprob-
ability distribution P(z,z∗) which is concentrated on these
spheres. If we find such a gauge transformation of the QME
that the constraints (141) are satisfied, then (formally) we have
the phase-space representation on a finite manifold, and the
useful simulation time should be significantly increased. Let
us construct this gauge transformation.

We again consider the Ito lemma (133). We calculate the
gradients and the Hessian matrices of the constraint functions
(141) and substitute them into the Ito lemma. Then the noise
part of the lemma gives us the condition on the noise matrix

Re
〈
φ

(α)
l

∣∣B ′(αβ)
l = 0 (142)

for all β. The deterministic part of the lemma gives us the
condition on the potential and on the drift

1

N
exp

(
1

N
Re�

)∥∥φ
(α)
l

∥∥2
ReV ′ + 2Re

〈
φ

(α)
l

∣∣A′(α)
l

〉
= −

∑
rβγ

∣∣B ′(αβ)
lr,γ

∣∣2
. (143)

To satisfy the condition on the noise matrix (142), it is sufficient
to set B

′(12)
l = B

′(21)
l = 0 and to find such an equivalent

transformation that 〈
φ

(α)
l

∣∣B ′(αα)
l = 0. (144)

This equation can be satisfied by the projective transform of
the noise matrix (115), with the projection

p̄
(α)
l =

∣∣φ(α)
l

〉〈
φ

(α)
l

∣∣∥∥φ
(α)
l

∥∥2 . (145)

We calculate the modified drift vector according to (91), (101),

(103), and (112) with κ
(α)
lq = δlqφ

(α)∗
l /‖φ(α)

l ‖2
:

A′(α)
l = 1

2i

∑
γ

ωγ

∑
p �=l

1∥∥φ
(α)
p

∥∥2

〈
φ(α)

p

∣∣Ô(γ )
∣∣φ(α)

p

〉
×
{

Ô(γ )
∣∣φ(α)

l

〉 − 1

2
∥∥φ

(α)
l

∥∥2

∣∣φ(α)
l

〉〈
φ

(α)
l

∣∣Ô(γ )
∣∣φ(α)

l

〉}
.

(146)

Note that this expression is essentially the same as (116) and
(117), with the only difference being that the potential term is
not isolated, i.e., V ′ = 0. If we substitute this expression into
(143), we find that Re〈φ(α)

l |A′(α)
l 〉 = 0. Therefore, the condition

on drift (143) is not satisfied by (146). To rectify the situation,
we apply the scalar homogeneity transform (96) with traceless
matrix ω

(α)
lp (so that no potential term appears). By adding

A	(α)
l [Eq. (96)] to the left-hand side of Eq. (143), we obtain

the condition on ω
(α)
lp :

−Re
∑

p

ω
(α)
lp

〈
φ

(α)
l

∣∣φ(α)
p

〉 = − 1

4

∑
γ

|ωγ |
{〈

φ
(α)
l

∣∣Ô(γ )2
∣∣φ(α)

l

〉
− 1

‖φ(α)
l ‖2

〈
φ

(α)
l

∣∣Ô(γ )
∣∣φ(α)

l

〉2}
.

(147)

The trivial solution to this system is obtained by choosing ω
(α)
lp

to be a table of real functions such that ω
(α)
lp 〈φ(α)

l |φ(α)
p 〉 does

not depend on p. This gives us one possible solution,

ωlp =1

4

∑
γ

|ωγ |

〈
φ

(α)
l

∣∣Ô(γ )2
∣∣φ(α)

l

〉 − 1∥∥φ
(α)
l

∥∥2

〈
φ

(α)
l

∣∣Ô(γ )
∣∣φ(α)

l

〉2
(N − 1)Re

〈
φ

(α)
l

∣∣φ(α)
p

〉 ,

(148)

for l �= p, and

ωll = 0. (149)

Now, formally the phase-space representation on a finite
manifold is constructed. Bringing together all the ingredients,
we obtain the stochastic equations of [5]:

∣∣φ(α)
l

〉 = 1

i�

{
T̂
∣∣φ(α)

l

〉 + A′(α)
q −

∑
p

∣∣φ(α)
p

〉
ω

(α)
pl

}
dt

+ 1√
2i

∑
γ

√
ωγ

(
I −

∣∣φ(α)
l

〉〈
φ

(α)
l

∣∣∥∥φ
(α)
l

∥∥2

)
×Ô(γ )

∣∣φ(α)
l

〉
dW (α)

γ . (150)
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D. “Simple scheme” for fermions

Here we present an additional stochastic method. The
purpose of doing this is to demonstrate that the stochastic
Hartree-Fock methods, which converge towards exact quan-
tum dynamics, do exist. We call it the “simple scheme” for
fermions because its structure and convergence properties are
similar to that of the simple scheme for bosons, which was
invented in the work of Carusotto et al. [8] and which was
proven to be free from systematic errors in [9].

We start from the general projectively transformed family of
SDEs (118), (119), and (120) and employ the same parameter
κ

(α)
lq as in the method of Tessieri et al. [5]:

κ
(α)
lq = δlqφ

(α)∗
l

/∥∥φ
(α)
l

∥∥2
. (151)

We obtain the stochastic equations

〈
r
∣∣φ(α)

l

〉 = 1

i�
〈r|T̂ ∣∣φ(α)

l

〉
dt + 1

2i�

∑
p �=l

1∥∥φ
(α)
p

∥∥2

× (
r,φ(α)

p |V̂ |φ(α)
l ,φ(α)

p

)
dt

+
∑

γ

√
ωγ

2i

(
1 − 1∥∥φ

(α)
l

∥∥2

∣∣φ(α)
l

〉〈
φ

(α)
l

∣∣)
× Ô(γ )

∣∣φ(α)
l

〉
dW (α)

γ , (152)

V (α) = − 1

4i�

∑
l �=p

1∥∥φ
(α)
l

∥∥2∥∥φ
(α)
p

∥∥2

(
φ

(α)
l ,φ(α)

p

∣∣V̂ ∣∣φ(α)
l ,φ(α)

p

)
,

(153)

d� = dt
∑

α

V̄ (α). (154)

VII. CONVERGENCE TOWARDS EXACT
QUANTUM DYNAMICS

In this section we discuss the conditions where a stochastic
Hartree-Fock method is guaranteed to reproduce the exact
quantum dynamics (in terms of expected values of the
observables).

First of all, we need to ensure that the SDE of a stochastic
Hartree-Fock method satisfy the conditions of the existence
of a solution. We recall that the SDE of a general form (50)
possesses a solution z(t) which is valid at all times t ∈ [0,∞)
(nonexploding), if the following restriction on the growth order
is satisfied [31],

‖A(z,z∗)‖2 + ‖B(z,z∗)‖2 � K(1 + ‖z‖2), (155)

where K is some positive constant. The SDE which violates
this restriction can exhibit exploding trajectories (the so-called
spikes [32]). It is known from the experience with phase-space
methods that the appearance of the spiking solutions is usually
accompanied with the emergence of slowly decaying power-
law tails of P(z,z∗,t) [32]; thus, the stochastic method does
not reproduce the exact quantum dynamics (as it is discussed
in Secs. IV B and IV C). However, we note that Eq. (155)
is a sufficient condition. It does not mean automatically that
the SDE which violates this condition will exhibit the spiking
trajectories. Moreover, according to the current developments

in mathematics [33,34], we can expect the emergence of more
general and flexible conditions than Eq. (155) in the near
future. Nevertheless, currently, any method violating Eq. (155)
should be considered as having unclear status and as requiring
a special investigation.

The next point to be checked is the uniqueness of the
solution. The sufficient condition for this is the generalized
Lipshitz condition [31]: For every p > 0 there should exist
such a constant Kp that

‖A(z,z∗) − A(z′,z′∗)‖ + ‖B(z,z∗)

−B(z′,z′∗)‖ � Kp‖z − z′‖ (156)

for all times and for all z such that ‖z‖ � p. The violation
of this condition jeopardizes the numerical computations:
The latter rely on the discretized approximations of the
continuous stochastic process. However, if the generalized
Lipshitz condition is violated, the discretized process is not
guaranteed to converge towards the continuous one as we
decrease the time step. Another difficulty is that the initial-
value problem may become ill defined.

The last, and usually the most difficult, task is to prove
that the quasiprobabilities P(z,z∗,t), which correspond to
the solutions of the SDE, and all the spatial derivatives of
P(z,z∗,t) do not have the power-law tails and that their
tails are uniformly dominated. In fact, currently there is no
well-established mathematical tool for doing that. We refer
the interested reader to [33,34] for (we believe) the relevant
current developments in mathematics.

In the following, we check these conditions for each of the
stochastic Hartree-Fock methods mentioned in Sec. VI.

A. Method of Juillet and Chomaz [3]

Since the projections (126) have unit norm, ‖p̄(α)‖ = 1, the
growth restriction (155) is satisfied by the stochastic equations
of Juillet and Chomaz (128) and (129). However, we have
problems with the generalized Lipshitz condition Eq. (156).
The problems come from the projections p̄(α): The dimension
of the image dim im p̄(α) equals to the number of linearly
independent orbitals in the set (φ(α)

1 , . . . ,φ
(α)
N ). Therefore,

when these orbitals continuously evolve, the number of
independent orbitals can suddenly change. This means that the
derivatives ∂p̄(α)/∂ z become singular, which is incompatible
with the generalized Lipshitz condition (156). Moreover, it
can be argued that in the vicinity of the locus, where the
change of the dim im p̄(α) happens, the derivative diverges
as ‖∂p̄(α)/∂ z‖ ∼ 1/s, where s is the distance to the locus.
Whereas the test calculations for an exactly solvable model
system in the work [3] do not show systematic discrepancies,
in the absence of the detailed studies of the singularities of
∂p̄(α)/∂ z and their influence on the solutions and numerical
methods, we should consider the status of this method as
uncertain.

B. Optimal observable evolution method of Lacroix [6]

The stochastic equations of this method coincide with
that of Juillet and Chomaz (128) and (129), except that the
projections p(α) are now given by Eq. (139). From the form
of p(α) we obtain that the drift vector and the noise matrix
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are cubic in the components of φ
(α)
lr . Therefore, the growth

restriction (155) is violated, and we expect that the method
can exhibit systematic discrepancies with the exact quantum
dynamics. This conclusion is supported by the numerical tests
in the work [6].

C. Norm-preserving stochastic time-dependent
Hartree-Fock [5]

The method of Tessieri et al. [5] violates both the growth
and the generalized Lipshitz conditions: The matrix ωlp (148),
which enters the drift term in the Eq. (150), contains the inner
product 〈φ(α)

l |φ(α)
p 〉 in the denominator. If any two orbitals

become nearly orthogonal, the drift coefficient will diverge.
Therefore, we should consider the status of this method as
uncertain.

D. “Simple scheme” for fermions

Finally, we consider the stochastic equations (152), (153),
and (154). If we assume that the norms ‖Ô(γ )‖ and ‖V̂ ‖
are finite, then we obtain that the growth restriction (155) is
satisfied. Moreover, the generalized Lipshitz condition (156) is
also satisfied. Therefore, these equations satisfy the conditions
for the existence and uniqueness of the solution.

Now we prove that in this method there are no power-law
tails. We proceed in the same way as in Sec. V of Ref. [9]. We
consider the evolution of the function

f =
N∑

l=1

〈
φ

(α)
l

∣∣φ(α)
l

〉
. (157)

We substitute this function into the Ito lemma (133). We find
that the noise term vanishes due to the choice of κ

(α)
lq Eq. (151);

in the deterministic part the drift contribution also vanishes.
Therefore, we obtain

df =
∑
lrγ

∣∣B ′(αα)
lr,γ

∣∣2
dt � const × max

γ
‖Ô(γ )‖2f dt. (158)

Integrating this inequality, we get

f (t) � f (0) exp(const × max
γ

‖Ô(γ )‖2t). (159)

This means that if the initial quasiprobability P is vanishing
outside the ball of radius R, then at any later time t it will be
also vanishing outside the ball of a finite radius (although the
radius is increasing exponentially). This concludes our proof
that the simple scheme for fermions is a correct stochastic
representation of the exact quantum dynamics.

Here it should be noted that we do not argue that this method
is efficient, or that it should be used for simulations. We provide
it here as a proof of concept, that a correct, well-defined,
stochastic Hartree-Fock method is possible. Now the actual
problem is to find the most efficient scheme possible, using the
equivalent transformations described in the previous sections.

VIII. CONCLUSION

In this work, we have developed a rigorous and unified
approach to the stochastic TDHF methods. Our approach is
to explicitly consider the quasiprobability distributions which
emerge in these methods. In the case of a quantum system
with pairwise interactions, this approach has allowed us to
completely describe the QMEs, the corresponding stochastic
differential equations, and their equivalent transformations.
Sufficient conditions, where the stochastic TDHF method is
guaranteed to reproduce the exact quantum dynamics, are
presented. It is shown that all the currently known methods
reported in the literature have unclear status with respect
to these conditions. Nevertheless, we explicitly construct an
example method, which we call the “simple scheme for
fermions,” and prove that it is well defined and satisfies all
the conditions.

We believe that the general forms of stochastic equations
presented here will be useful in the development of efficient
real and imaginary time Monte Carlo methods based on the
Slater states (including the auxiliary field and other related
methods [35–42]).
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