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Uncertainty relations for characteristic functions
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We present the uncertainty relation for the characteristic functions (ChUR) of the quantum mechanical position
and momentum probability distributions. This inequality is more general than the Heisenberg uncertainty relation
and is saturated in two extreme cases for wave functions described by periodic Dirac combs. We further discuss a
broad spectrum of applications of the ChUR; in particular, we constrain quantum optical measurements involving
general detection apertures and provide the uncertainty relation that is relevant for loop quantum cosmology. A
method to measure the characteristic function directly using an auxiliary qubit is also briefly discussed.
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I. INTRODUCTION

One might think that everything important has already been
said about the quantum uncertainty of conjugate position and
momentum variables, discussed for the first time almost a
century ago [1–3] in terms of the Heisenberg uncertainty
relation (HUR). Even though the past few years have seen
considerable activity devoted to describing the uncertainty of
noncommuting observables in discrete (mainly in the direction
of the entropic formulation [4–12], with an emphasis on the
so-called “universal” approach [5,6,13]) or coarse-grained
[14–16] settings, the most fundamental continuous position-
momentum scenario appears to be more than well understood
and explored [17]. For instance, the optimal, state-independent
entropic counterpart of the HUR was demonstrated 40 years
ago [18], while canonically invariant uncertainty relations
(URs) for higher moments have also been derived [19]. In
atomic physics, where the angular momentum of electrons
in an effective central potential plays a major role, proper
modifications of the uncertainty relation for positions and
momenta include the relevant eigenvalue of the square of the
angular momentum operator [20] and, if the electronic state
in question is not the angular momentum eigenstate, also the
variance of L̂2 [21]. In the domain of quantum electrodynamics
the ultimate Heisenberg-like uncertainty relations have been
obtained for single-photon states and coherent states [22,23].
Even the seminal error-disturbance relation of Heisenberg,
while causing problems in terms of rigorous interpretation,
has been examined in various ways [24–27].

Studies devoted to uncertainty relations are often motivated
by a broad network of potential applications. In terms of
quantum information, for instance, uncertainty relations
have found themselves [28] to be important ingredients in
security proofs of quantum key distribution protocols [29,30].
In experimental studies within the field of quantum optics,
they have been used in identification of quantum correlations
such as entanglement [31–33] and Einstein-Podolsky-Rosen
steering [34–38]. Beyond quantum information, uncertainty
relations can play an important role in various tasks ranging
from down-to-earth estimation of Hamiltonians [39] to
pioneering experiments designed to simultaneously test
quantum mechanics and general relativity [40].

*rudnicki@cft.edu.pl

The present contribution aims to open a new chapter in the
long history of uncertainty relations in quantum mechanics.
The main subject of our investigation is the characteristic
function, a notion well known in classical probability theory.
The characteristic function �(λ) related to a probability
distribution ρ(x) is defined as the Fourier integral:

�(λ) =
∫
R
dx eiλxρ(x). (1)

The notion of the characteristic function acquires many
interesting features when considered on the ground of quantum
mechanics. Let us assume that the probability distribution in
(1) is related to the quantum mechanical position space. In this
case the characteristic function is equal to the average value
〈eiλx̂〉 of the momentum shift operator eiλx̂ . Since this operator
is unitary, though non-Hermitian, it is not an observable.
Thus, it might not be a natural choice when thinking about
uncertainty relations. Even when calculating the variance-like
quantity 〈A†A〉 with A = U − 〈U 〉, defined for any unitary
operator U , one finds that the quadratic term 〈U †U 〉 is trivially
equal to 1. The total uncertainty information is then completely
contained in the squared modulus |〈U 〉|2.

Another special feature of �(λ) is related to the momen-
tum representation. Consider a pure state, so that ρ(x) =
|ψ(x)|2, where ψ(x) is the position-space wave function.
The momentum wave function ψ̃(p) obtained by the Fourier
transformation,

ψ̃(p) = 1√
2π�

∫
R
dx e−ipx/�ψ(x), (2)

naturally provides the probability distribution in momentum
space, ρ̃(p) = |ψ̃(p)|2. Definition (1), rewritten in the mo-
mentum representation, gives

�(λ) =
∫
R
dp ψ̃∗(p)ψ̃(p − �λ), (3)

which is the autocorrelation function of the momentum wave
function. The variable �λ, with units of momentum, can thus
be interpreted as an autocorrelation parameter. Obviously,
when starting from the momentum distribution, an equivalent
autocorrelation expression can be obtained for the position.
To clearly state the distinction between the two quantum
mechanical representations, let us further label by λx and
�(λx) the argument and the function itself respectively in the
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case where the characteristic function is calculated for the
probability distribution ρ(x). The symbols λp and �̃(λp) have
the same meaning for the momentum density ρ̃(p).

II. UNCERTAINTY RELATION FOR
CHARACTERISTIC FUNCTIONS

Since the characteristic function �(λx) and �̃(λp) describe
the autocorrelation of the conjugate variables, and considering
intuitively that it should not be possible for a quantum system
to be arbitrarily well localized (or, more precisely, well
autocorrelated) in both position and momentum variables, one
would expect that there must exist some constraint on these
functions, in the form of a quantum mechanical uncertainty
relation.

By construction, the modulus of the characteristic function
is trivially upper-bounded by 1. In general, however, it is
hard to provide a nontrivial, λ-dependent upper bound. In
the mathematical literature one can find results relying on
the assumptions that the probability distribution has finite
support, has a given variance, or is bounded [41,42]. More
elaborate studies take into account higher moments or even
the entropy [43–45] (other relevant mathematical references
are given in [46] and [47]). A single restriction does not,
however, lead to an upper bound that is sharper than 1,
so one needs to assume more [41]. Unfortunately, both the
finite support and the upper-bounded value of ρ(x) do not
work well even for the most basic quantum mechanical wave
packets, such as the family of Gaussians. For example, the
variance-dependent upper bounds (with unbounded support of
the distribution) given in Ref. [41] are of the form |�(λx)| �
e−g2(σx )/A2

x with g(σx) = Cλx/(2σx |λx | + π ), where σx is the
standard deviation, Ax is the maximum of the distribution,
and C is a numerical constant. In principle, this upper bound
might be useful in the current context, provided that one
is able to apply also the HUR and bound σx � �/(2σp).
However, it is clear that the HUR cannot be utilized since
the upper bound is a monotonically increasing function of σx

and does not imply |�(λx)| � e−g2(�/2σp)/A2
x . In addition, the

optimized (with respect to σx and σp) sum of e−g2(σx )/A2
x and

its momentum counterpart gives only a trivial bound.
An easier scenario occurs when dealing with lower bounds

for the characteristic function, due to a well-known fact (cf.,
for example, Lemma 1 in [41]).

|�(λ)| � Re�(λ) � 1 − 1
2λ2σ 2. (4)

The above inequality holds for any λ, provided that the variance
σ 2 is finite. However, also in this case, the HUR cannot
be directly applied, as it would increase the lower bound
in (4). Let us mention that the characteristic function has
been considered in [48], mainly in the context of time-energy
uncertainty relations along the lines of relation (4).

In the current discussion we aim to go beyond moment
approximations (and related bounds) and take into account
the complete information content stored in eiλx . We thus
present the uncertainty relation for the position and momentum
characteristic functions (ChUR):

Theorem 1. The sum of squared moduli of the position and
momentum characteristic function is upper-bounded,

|�(λx)|2 + |�̃(λp)|2 � B(�λxλp), (5)
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FIG. 1. The upper bound B(�λxλp) (solid red line), with its upper
(dotted line; equal to 2) and lower (dashed line; equal to 1) values
emphasized. The dashed-dotted line represents the left-hand side of
(5) calculated for the Gaussian state discussed after Eq. (8).

by

B(γ ) = 2
√

2

√
2 − √

1 − cos (γ )

1 + cos (γ )
. (6)

The characteristic function is a linear functional of the
probability distribution, so its modulus squared is convex.
Since any quantum state can be written as a convex sum of
pure states, the ChUR, (5), is satisfied by all mixed states.
Moreover, the above result can be immediately generalized to
the multidimensional scenario in which (1) is defined as a dNx

integral with eiλ·x . In that case, Eq. (5) remains valid with λx

(λp) replaced by λx (λp) and, consequently, λxλp replaced by
the scalar product λx · λp.

We provide an outline of the proof below. First, let us
discuss the function B(·) in inequality (5), which depends on
the dimensionless parameter �λxλp and is plotted in Fig. 1.
The upper bound is clearly periodic and varies between 1 and
2, the latter being the trivial value. When �λxλp = 2kπ for any
integer k we have B(2kπ ) = 2, and Eq. (5) gives no restriction
on the sum of characteristic function. This fact is a nontrivial
emanation [49] of the full commutativity of spectral position
and momentum projections [50]. In other words, the trivial
bound equal to 2 is saturated by a distribution ρ(x) that is a
(normalized) version of the Dirac comb (the wave function
being the proper limit of the sum of shifted Gaussians) with
period 2π/λx . The characteristic function �(λx) is equal to
1 in this case. At the same time, �̃(λp) is the autocorrelation
function of the comb with the related correlation parameter
�λp. In this case �λp = 2kπ/λx , so this parameter fits the
comb period, giving �̃(λp) = 1. In the “opposite” situation,
when �λxλp = (2k + 1)π , the upper bound reaches its mini-
mal value 1. This case captures the maximal noncompatibility
of the position-momentum couple since both wave functions,
ψ(x) and ψ̃(p), cannot be simultaneously well autocorrelated.

Before we prove Theorem 1 we would also like to show
that the UR, (5), is stronger than the HUR. To this end
we parametrize λx = √

a/b and λp = √
ab/�, where a is

a non-negative dimensionless parameter and b denotes a
parameter with units of position. By taking the square of
inequality (4) and neglecting the positive contributions of
order σ 4, one immediately arrives at |�(λx)|2 � 1 − λ2

xσ
2
x ,

and similarly for |�̃(λp)|2. This lower bound together with the

022109-2



UNCERTAINTY RELATIONS FOR CHARACTERISTIC . . . PHYSICAL REVIEW A 93, 022109 (2016)

above parametrization weakens inequality (5) to the form

2 − a
(
b−2σ 2

x + (b/�)2σ 2
p

)
� B(a). (7)

Since for a � 0, B(a) = 2 − a + O(a2), the above relation
divided by a implies in the limit a → 0 that

1 � b−2σ 2
x + (b/�)2σ 2

p. (8)

The minimum of the right-hand side occurs for b = √
�σx/σp

and gives the HUR. Thus, the ChUR, (5), is strictly stronger
than the HUR. By a straightforward calculation one can check
that the left-hand side of (5), in the case of ψ(x) being a
Gaussian state and with all the above assignments (for λx , λp,
and b), is equal to 2e−a/2. In the limit a → 0, the Gaussians
saturate the bound as shown in Fig. 1.

Proof. Let us now outline the proof of Theorem 1. We
start by taking three vectors, |ξ1〉 = |
〉, |ξ2〉 = eiλx x̂ |
〉, and
|ξ3〉 = eiλpp̂|
〉, with |
〉 being normalized. The positive
semidefinite, Hermitian Gram matrix of this set of vectors
is equal to

G =

⎛
⎜⎝

1 �(λx) �̃(λp)

�∗(λx) 1 �

�̃∗(λp) �∗ 1

⎞
⎟⎠, (9)

where � = 〈
|e−iλx x̂eiλpp̂|
〉. The condition of positive
semidefiniteness of G leads to a single nontrivial inequality,
det G � 0, which explicitly reads

1 − � − |�|2 +  + ∗ � 0, (10)

where (we omit here the λ arguments) � = |�|2 + |�̃|2 and
 = ���̃∗. Consider now the parity transformations λx �→
−λx and λp �→ −λp. A basic property of the characteristic
function is that �(−λ) = �∗(λ). Moreover, the well-known
Baker-Campbell-Hausdorff formula (equivalent to the Weyl
commutation relations),

eiλpp̂e−iλx x̂ = e−i�λxλpe−iλx x̂eiλpp̂, (11)

provides the transformation rule � �→ e−i�λxλp�∗. The terms
� and |�|2 present in (10) are thus invariant with respect to
the above transformation, while  �→ e−i�λxλp∗. Obviously,
Eq. (10) must also hold for the transformed quantities.

If we now take the arithmetic mean of (10) together with
its transformed counterpart, we obtain an inequality of almost
exactly the same form as (10), with the only difference that 

is now multiplied by a complex constant Z (i.e.,  �→ Z)
of the form Z = 1

2 (1 + ei�λxλp ). In the final steps we resort to
the fact that Z � |Z||| and the arithmetic-geometric mean
inequality || � 1

2 |�|�. The same procedure is applied to the
second, conjugated term Z∗∗. The above derivation leads
to an inequality, 1 − � − |�|2 + |Z||�|� � 0, which, after a
single rearrangement, is brought to the form

� � 1 − |�|2
1 − |Z||�| . (12)

Since the parameter 0 � |�| � 1 can, in principle, assume any
value, we maximize the right-hand side of the above inequality
with respect to it. The global maximum is found at |�| =
(1 −

√
1 − |Z|2)/|Z| and leads to the final result presented in

+|+

ρ̂ eiλp̂

FIG. 2. Quantum circuit to measure the characteristic function of
ρ(x) directly.

Theorem 1, where the identity |Z|2 = 1
2 [1 + cos(�λxλp)] has

been utilized. �
Let us mention that if one starts the proof with an alternative

choice, |ξ ′
2〉 = x̂|
〉 and |ξ ′

3〉 = p̂|
〉, the counterpart of
inequality (10) is equivalent to the Robertson-Schrödinger
uncertainty relation. Since in the current case we deal with non-
Hermitian displacement operators, this trivial correspondence
does not occur.

III. THE ChUR AND QUANTUM OPTICS

Though the displacement operator does not correspond
to an observable, its mean value can be measured directly in
a quantum optical experiment if an ancillary qubit is used.
Consider the quantum circuit shown in Fig. 2. The qubit is
initialized in the |+〉 state, where |±〉 = (|0〉 ± |1〉)/√2 are
the eigenstates of the Pauli operator σ̂x . The quantum system
of interest is in the arbitrary state ρ̂. The logic gate is a
controlled displacement operator, defined by

|0〉〈0|1̂ + |1〉〈1|eiλpp̂, (13)

where the displacement is along the x direction. Detecting the
qubit in the ± basis gives the probabilities

P± = 1
2 [1 ± 〈cos(λpp̂)〉ρ̂]. (14)

Detecting the qubit in the σ̂y basis, defined by eigenstates
|±i〉 = (|0〉 ± i|1〉)/√2, gives

P±i = 1
2 [1 ∓ 〈sin(λpp̂)〉ρ̂]. (15)

Then the characteristic function can be obtained by combining
the measurement results, since 〈eiλpp̂〉ρ̂ = P+ − P− − iP−i +
iP+i . This type of qubit-assisted measurement scheme can
be realized using existing technologies in several different
platforms [51,52].

As an application of Theorem 1 in quantum optics we
describe the mutual incompatibility of measurements made in
position and momentum space using detectors with arbitrary
apertures. In our analysis we discuss a very general model, in
which the detection aperture is described by an arbitrary trans-
mittance function, M(x). For single photons, for example, this
detection scheme is implemented by the propagation through
a general amplitude (and phase) spatial mask modeled by
A(x) = A(x)eiφ(x), followed by its subsequent measurement
with a full multimode detector [53]. The aperture function
0 � A(x) � 1 provides M(x) = |A(x)|2 ≡ A2(x), while the
mask-phase profile φ(x) does not affect the transmittance. The
probability Q(y) that the quantum particle is detected with this
mask function is then given by

Q(y) =
∫
R
dxM(x + y)ρ(x), (16)
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where y can be thought of as the location parameter that defines
the mask. For example, if the mask is an aperture of size δ

(in some experimentally relevant units), then M(x) might be
chosen to be equal to 1 for 0 � x � δ and to 0 otherwise. In
that case, (16) is simply the probability of finding a quantum
particle in the interval [−y,δ − y].

A similar construction can be done in the momentum
picture. One only needs a parameter κ mapping the momentum
variable into the position space, so that κp is a position-like
variable. To have the readout function depending on the
position-like variable we define the counterpart of (16) as
follows:

P(y) =
∫
R
dpM(κp + y)ρ̃(p). (17)

By calculating the ordinary Fourier transform [as in Eq. (2),
but with � = 1 and the conjugate parameter λ in units of
inverted position] of both detection probability functions we
obtain Q̃(λ) = M̃(λ)�(λ) and P̃(λ) = M̃(λ)�̃(κλ). We are
thus in a position to propose a general uncertainty relation for
detection masks:∫

R
dy(|Q(y)|2 + |P(y)|2) �

∫
R
dλ|M̃(λ)|2B(�κλ2). (18)

The above result should prove useful in studies devoted
to quantum aspects of EPR-based ghost imaging [54] and
security protocols for compressive quantum imaging [55,56].
A “periodic” variant of Eq. (18) [when M(x) is a periodic
function] has been applied in experimental entanglement
detection with periodic amplitude masks [49].

The derivation of (18) is very simple. Due to Parseval’s
theorem from Fourier analysis, the left-hand side translates
directly to the λ domain. To obtain the right-hand side we
apply the UR for characteristic function from Theorem 1, with
λx = λ and λp = κλ. It is worth mentioning that Eq. (18)
remains valid for any complex-valued function M(x).

IV. THE ChUR AND VARIOUS THEORIES IN PHYSICS

Besides its fundamental interest, the ChUR derived in this
paper is related to several issues across various fields of
physics. First, our approach remains valid with �(λx) and
�̃(λp) substituted by 〈
|U |
〉 and 〈
|W |
〉, whenever the
unitary matrices U and W satisfy the Weyl-type commutation
relations UW =eiφWU . A prominent example provided by
Schwinger [57] and given by φ = 2π/d, where d is the
dimension of the Hilbert space, is a sort of prerequisite for
the fruitful theory of mutually unbiased bases.

Moreover, since Theorem 1 involves operators of the
form eiλÔ it becomes valuable when the operator Ô does
not exist itself (consequences of the so-called Stone–von
Neumann theorem). A particularly interesting example of the
number-phase uncertainty [58–60] (phase operators are not
well defined) has just been described [61] along the lines of
Theorem 1. Here we would like to briefly touch upon the broad
theory of loop quantum gravity [62], in which the so-called
Ashtekar connection [63] Ai

a(x) [64] plays the role of the
canonical “position” variable in a field-theoretical sense [65].
When moving to a quantum description, the problem appears
because there is no local operator Âi

a(x), and one must resort
to unitary holonomies. The standard approach to quantum

uncertainty relations thus cannot be directly applied, however,
one can involve the Weyl algebra [66] and use Theorem 1.

To explain better the idea behind the above prescription, we
would like to discuss a very simple case from the field of loop
quantum cosmology. To this end we start with the well-known
FLRW metric,

ds2 = −c2dt2 + a2(t)d�2, (19)

where a(t) denotes the dimensionless scale factor and � refers
to the three-dimensional space. We further recall two time-
dependent variables [67], b = ȧ/a and V = V0a

3, denoting the
Hubble parameter and the physical volume of the expanding
Universe, respectively (V0 is the coordinate volume). These
variables satisfy the Poisson bracket relation [67]

{b,V } = ±4πG/c2 ≡ Q, (20)

where the ± sign depends on the orientation and is irrelevant
in our considerations. If the operator b̂ existed, then (20)
would lead us to the UR, σbσV � 4π�G/c2, as stated [68]
in Eq. 11.21 of [69]. Since the Ashtekar connection of this
well-studied model is given by Ai

a = βȧδi
a [70], it becomes

obvious that b cannot be promoted to a quantum mechanical
operator. As this limitation is not shared by the holonomy
Ub(λb) = eiλbb, one can use Ub together with eiλV V̂ and apply
Theorem 1. In particular, if we set λV = π/(�Qλb), so that the
bound B is equal to 1, and use (4) to extract the variance σ 2

V ,
the ChUR provides the uncertainty relation of the form:

4�G

c2
λb|〈Ub(λb)〉| � σV . (21)

The above UR is a formally correct way of bounding the
fluctuations of the volume of the Universe in terms of the
volume shift operator Ub, relevant for an understanding of
the big-bang singularity [71]. Note also that this example
actually represents quantum mechanics subject to the Bohr
compactification. In other words, Theorem 1 is the only path
towards URs in theories (such as loop quantum cosmology
[72]) with the Bohr compactification involved.

Looking to the future, further development of the discrete
counterpart of the presented theory might bring useful results,
for instance, in compressed sensing, as the Dirac comb state
has no counterpart in various discrete systems. Generalizations
of URs for the electromagnetic field (as discussed in [73])
might provide better physical insight into the role played by
Gauss linking numbers or contribute to a better understanding
of quantum effects for the gravitational field in a hot universe
[74]. We also believe that our approach will be influential in the
theory of quantum optical characteristic function. Questions
about nonclassicality of light are being asked and studied [75]
in terms of the characteristic P function reconstructed from the
data accessible in experiments [76], with a relevant filtering
procedure based on autocorrelations [77].

ACKNOWLEDGMENTS

We would like to thank Alfredo Luis for fruitful discussions
and correspondence. Ł.R. acknowledges financial support
from the National Science Center, Poland, under Grant No.
2014/13/D/ST2/01886. Research in Freiburg was supported
by the Excellence Initiative of the German Federal and State

022109-4



UNCERTAINTY RELATIONS FOR CHARACTERISTIC . . . PHYSICAL REVIEW A 93, 022109 (2016)

Governments (Grant ZUK 43), the Research Innovation Fund
of the University of Freiburg, the ARO under Contracts No.
W911NF-14-1-0098 and No. W911NF-14-1-0133 (Quantum
Characterization, Verification, and Validation), and the DFG

(Grant No. GR 4334/1-1). D.S.T. and S.P.W. acknowledge
financial support from the Brazilian agencies CNPq, CAPES,
FAPERJ, and Instituto Nacional de Ciência e Tecnologia—
Informação Quântica.
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052115 (2014).
[9] G. M. Bosyk, S. Zozor, M. Portesi, T. M. Osán, and P. W.

Lamberti, Phys. Rev. A 90, 052114 (2014).
[10] S. Zozor, G. M. Bosyk, and M. Portesi, J. Phys. A: Math. Theor.

47, 495302 (2014).
[11] J. Kaniewski, M. Tomamichel, and S. Wehner, Phys. Rev. A 90,

012332 (2014).
[12] F. Buscemi, M. J. W. Hall, M. Ozawa, and M. M. Wilde,

Phys. Rev. Lett. 112, 050401 (2014).
[13] V. Narasimhachar, A. Poostindouz, and G. Gour,

arXiv:1505.02223.
[14] Ł. Rudnicki, S. P. Walborn, and F. Toscano, Europhys. Lett. 97,

38003 (2012).
[15] Ł. Rudnicki, S. P. Walborn, and F. Toscano, Phys. Rev. A 85,

042115 (2012).
[16] Ł. Rudnicki, Phys. Rev. A 91, 032123 (2015).
[17] P. Busch, T. Heinonen, and P. Lahti, Phys. Rep. 452, 155 (2007).
[18] I. Białynicki-Birula and J. Mycielski, Commun. Math. Phys. 44,

129 (1975).
[19] J. Solomon Ivan, N. Mukunda, and R. Simon, J. Phys. A: Math.

Theor. 45, 195305 (2012).
[20] P. Sánchez-Moreno, R. González-Férez, and J. S. Dehesa,
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