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General properties of the Foldy-Wouthuysen transformation which is widely used in quantum mechanics and
quantum chemistry are considered. Merits and demerits of the original Foldy-Wouthuysen transformation method
are analyzed. While this method does not satisfy the Eriksen condition of the Foldy-Wouthuysen transformation, it
can be corrected with the use of the Baker-Campbell-Hausdorff formula. We show a possibility of such a correction
and propose an appropriate algorithm of calculations. An applicability of the corrected Foldy-Wouthuysen method
is restricted by the condition of convergence of a series of relativistic corrections.
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I. INTRODUCTION

The Foldy-Wouthuysen (FW) transformation first proposed
in the seminal work [1] is now widely used not only in
physics but also in quantum chemistry. The FW representation
has unique properties. In this representation, the Hamiltonian
and all operators are even, i.e., block diagonal (diagonal in
two spinors). Relations between the operators in the FW
representation are similar to those between the respective
classical quantities. The form of quantum-mechanical oper-
ators for relativistic particles in external fields is the same
as in the nonrelativistic quantum theory. In particular, the
position (Newton-Wigner) operator [2] and the momentum one
are equal to r and p = −i�∇, respectively. The polarization
operator for spin-1/2 particles is defined by the Dirac matrix
� and is expressed by much more cumbersome formulas in
other representations (see [1,3]). A great advantage of the FW
representation is the simple form of operators corresponding
to classical observables. The passage to the classical limit
usually reduces to a replacement of the operators in quantum-
mechanical Hamiltonians and equations of motion with the
corresponding classical quantities. The possibility of such a
replacement, explicitly or implicitly used in practically all
works devoted to the FW transformation, was rigorously
proved in Ref. [4]. Thanks to these properties, the FW
representation provides the best possibility of obtaining a
meaningful classical limit of relativistic quantum mechan-
ics [1,5].

There are semirelativistic and relativistic methods of the
FW transformation. We use the term “semirelativistic” for
methods [1,6–8] using an expansion of a derived block-
diagonal Hamiltonian in even terms of ascending order in 1/c.
For the semirelativistic and relativistic methods, the zeroth
order Hamiltonian is the Schrödinger one and the FW Hamil-
tonian of a free particle, respectively. The first semirelativistic
method has been proposed by Foldy and Wouthuysen [1].
A FW Hamiltonian obtained by any semirelativistic method
contains a series in powers of the momentum and potential
[p/(mc) and V/(mc2)], while relativistic methods give a
compact relativistic expression for this Hamiltonian for any
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particle momentum. The first relativistic FW transformation
method has been presented in Ref. [9]. Some of the relativistic
methods developed in physics are based on unitary transforma-
tions [3,10–12] and a number of these methods uses different
approaches [13].

All FW transformation methods applied in quantum
chemistry are relativistic. The methods based on unitary
transformations follow the approach elaborated by Douglas,
Kroll, and Hess [14,15] but often use different transformation
operators [16–20]. They allow one to fulfill not only high
order [21] but also arbitrary order [17,18,22,23] Douglas-
Kroll-Hess (DKH) transformations. The DKH transformations
expand the FW Hamiltonian in a series in powers of the
parameter V/

√
m2c4 + c2 p2 which is the potential divided by

the total kinetic energy. We can also mention the infinite-order
two-component method of Barysz and collaborators [24]
which is the two-step exact-decoupling approach. Another suc-
cessful relativistic two-component method is the zeroth-order
regular approximation [25]. The exact FW transformation
can also be performed in one step [26]. We can refer to
the reviews [19,20,27–32] and to the books [33,34] for more
details.

Many transformation methods allowing one to derive a
block-diagonal Hamiltonian do not lead to the FW representa-
tion (see Refs. [35–37]). It has been proven in Refs. [35,36] that
the resulting exponential operator of the FW transformation
should be odd and Hermitian. Paradoxically, the original FW
method [1] explained in Sec. II does not satisfy this require-
ment and does not lead to the FW representation [36,38]. Main
distinctive features of the FW transformation are considered
in Sec. III. To perform the FW transformation, one can
use either the exact Eriksen method [36] or one of two
different approaches based on successive approximations.
These possibilities are analyzed in Sec. IV. The correction
of the original FW method is presented in Sec. V. We
demonstrate that the corrected original FW method leads to a
clear and straightforward calculation of the FW Hamiltonian
and can be rather convenient for practical use. To confirm this
statement, two examples are given in Sec. VI. For any correct
semirelativistic method, the series of relativistic corrections as
a whole may define the exact FW Hamiltonian. However, this
takes place only when this series converges. When p/(mc) > 1
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(this situation takes place for an electron near a nucleus), the
semirelativistic methods become inapplicable [17]. Restric-
tions caused by this circumstance are considered in Sec. VII
where the results presented are discussed and summarized.

II. ORIGINAL FOLDY-WOUTHUYSEN METHOD

In the general case, a transformation to a new representation
described by the wave function � ′ is performed with the
unitary operator U :

� ′ = U� = exp (iS)�, (1)

where S is an exponential operator.
This transformation involves not only the Hamiltonian

operator but also the −i ∂
∂t

one. As a result, the Hamiltonian
operator in the new representation takes the form

H′ = U

(
H − i�

∂

∂t

)
U−1 + i�

∂

∂t
(2)

or

H′ = UHU−1 − i�U
∂U−1

∂t
. (3)

The initial Hamiltonian operator can be split into even
and odd operators commuting and anticommuting with the
operator β, respectively:

H = βM + E + O, βM = Mβ,

βE = Eβ, βO = −Oβ. (4)

The even operators M and E and the odd operator O are
diagonal and off diagonal in two spinors, respectively. This
equation is applicable for a particle with any spin if the number
of components of a corresponding wave function is equal to
2(2s + 1), where s is the spin quantum number. For a Dirac
particle, the M operator usually reduces to the particle rest
energy mc2:

HD = βmc2 + E + O. (5)

The Hamiltonian H is Hermitian for fermions and pseudo-
Hermitian (more exactly, β-pseudo-Hermitian, H = H‡ ≡
βH†β) for bosons. We assume that the operators βM,E , and
O also possess this property. The transformation operator for
bosons is therefore β-pseudounitary (U † = βU−1β). We can
mention the existence of bosonic symmetries of the Dirac
equation [39].

Equation (2) can be written in the form

H′ − i�
∂

∂t
= U

(
H − i�

∂

∂t

)
U−1

= U

(
βM + E + O − i�

∂

∂t

)
U−1. (6)

This equation allows us to state a rather important property of
the FW transformation for a particle in nonstationary (time-
dependent) fields. Transformations of two even operators, E
and −i� ∂

∂t
, are very similar. As a result, the FW Hamilto-

nian (except for terms without commutators) contains these
operators only in the combination F = E − i� ∂

∂t
. Therefore,

a transition from a stationary to a nonstationary case can

be performed with a replacement of E with F in all terms
containing commutators.

In the present work, we focus our attention on Dirac
fermions.

The original FW method [1] belongs to iteration (step-
by-step) methods because a block diagonalization of the
Hamiltonian is a result of successive iterations. This method
allows one to obtain a series of corrections in powers of the
momentum and potential to a nonrelativistic Hamiltonian. For
the Dirac Hamiltonian written in the form (5), one deduces
a series in powers of O/(mc2) and E/(mc2) including mixed
terms. The first step of the FW transformation is performed
with the exponential operator [1]

S = − i

2mc2
βO. (7)

The transformed Hamiltonian can be written in the form

H′ = H + i[S,H] + i2

2!
[S,[S,H]] + i3

3!
[S,[S,[S,H]]] + · · ·

−�Ṡ − i�

2!
[S,Ṡ] − i2

�

3!
[S,[S,Ṡ]] − · · · , (8)

where [. . . , . . . ] means a commutator. As a result of this
transformation, we find

H′ = βmc2 + E ′ + O′, βE ′ = E ′β, βO′ = −O′β. (9)

The odd operator O′ is now O(1/m). The next step has been
made with the operator

S ′ = − i

2mc2
βO′. (10)

This procedure can be repeated to decrease an order of
magnitude of odd terms. It is important that the expression
of H′′ in terms of E ′,O′ is the same as that of H′ in terms of
E,O. This property remains valid at every step.

The original FW method can be simplified if one transforms
the operator F instead of performing separate transformations
of the operators E and −i ∂

∂t
.

After the third step, the resulting FW transformation
operator is given by

UFW = exp (iS ′′) exp (iS ′) exp (iS). (11)

The initial Dirac Hamiltonian describing a particle in an
electromagnetic field is defined by

HD = βmc2 + cα · π + e�, (12)

where π = p − e
c

A is the kinetic momentum operator, � and
A are scalar and vector potentials of the electromagnetic field,
respectively, and e is the charge of a particle. For the electron,
it is negative (e = −|e|).

The FW transformation results in [1]

HFW = β

(
mc2 + π2

2m
− π4

8m3c2

)
+ e� − e�

2mc
� · B

+ e�

8m2c2
(� · [π × E] − � · [E × π ] − �∇ · E).

(13)

So, the seminal work by Foldy and Wouthuysen has
explained spin-magnetic field coupling previously presented

022108-2



GENERAL PROPERTIES OF THE FOLDY-WOUTHUYSEN . . . PHYSICAL REVIEW A 93, 022108 (2016)

by the Pauli equation, the contact (Darwin) interaction propor-
tional to ∇ · E, and the “Thomas half” in the terms describing
a spin interaction with the electric field.

Evidently, the original FW method is useless when the
series of relativistic corrections becomes divergent.

We can emphasize a simple cyclic form of the original
FW transformation. All successive iterations are based on the
general formulas (7) and (8).

III. MAIN DISTINCTIVE FEATURES OF
THE FOLDY-WOUTHUYSEN TRANSFORMATION

The main distinctive features of the FW transformation
have been stated in Refs. [35,36]. The even form of the final
Hamiltonian was the only condition of the transformation used
by Foldy and Wouthuysen. It can be easily shown that this
condition does not define the FW Hamiltonian unambiguously.
The result of successive iterations expressed by the equation

U = · · · exp (iS(n)) · · · exp (iS ′′′) exp (iS ′′) exp (iS ′) exp (iS)

(14)

can be presented in the exponential form:

U = exp (iS). (15)

The FW Hamiltonian obtained with this operator is even.
We can perform one more unitary transformation with the
operator U ′ = exp (iT), where the exponential operator T

is even. This transformation does not add odd terms to the
FW Hamiltonian HFW . As a result, the total transformation
operator U = U ′UFW also transforms the initial Hamiltonian
to the even form. Since U ′ is an arbitrary even Hermitian and
unitary (β-pseudo-Hermitian and β-pseudounitary for bosons)
operator, there is an infinity set of transformations leading the
initial Hamiltonian to a block-diagonal form.

The condition eliminating this ambiguity has been proposed
by Eriksen [35] and has been substantiated by Eriksen
and Kolsrud [36]. The transformation remains unique if the
operator S in Eq. (15) is odd,

βS = −Sβ, (16)

and Hermitian (β-pseudo-Hermitian for bosons). Our explana-
tion of the Eriksen method which is given below differs from
that presented in original works [35,36].

Expansion of the exponential operator (15) in series

exp (iS) = 1 + iS + (iS)2

2!
+ (iS)3

3!
+ · · · + (iS)n

n!
+ o((iS)n) (17)

shows that this condition is equivalent to [35,36]

βUFW = U
†
FWβ. (18)

We can ascertain that the arbitrary-order DKH transforma-
tion [17,18] satisfies the condition (18).

Thus, the FW transformation operator should satisfy
Eq. (18) and should perform the transformation in one step.
Eriksen [35] has found an operator possessing these properties.
To determine its explicit form, one can introduce the sign
operator λ = H/(H2)1/2 and can use the fact that the operator

1 + βλ cancels either lower or upper spinor for positive and
negative energy states, respectively. It is easy to see that [35]

λ2 = 1, [βλ,λβ] = 0, [β,(βλ + λβ)] = 0. (19)

Therefore, the operator of the exact FW transformation has the
form

UE = UFW = 1 + βλ√
2 + βλ + λβ

, λ = H
(H2)1/2

. (20)

The initial Hamiltonian operator H is arbitrary. The even
operator βλ + λβ acting on the wave function with a single
nonzero spinor cannot make another spinor be nonzero.

The equivalent form of the operator UE [37] shows that it
is properly unitary (β-pseudounitary for bosons):

UE = 1 + βλ√
(1 + βλ)†(1 + βλ)

. (21)

The Eriksen operator (20) can be used for a particle with any
spin. In this case, the initial Hamiltonian is given by Eq. (4).

Evidently, the Eriksen method gives the right relativistic
FW Hamiltonian for a free Dirac particle. In this case

E = 0, λ = βmc2 + O
ε

, O = cα · p,
√

2 + βλ + λβ

= 2

(
1 + mc2

ε

)
,

with ε = √
m2c4 + O2. The resulting FW Hamiltonian reads

HFW = βε (22)

and coincides with the Hamiltonian derived by Foldy and
Wouthuysen [1]. A substantiation of the Eriksen method in the
more general case of E �= 0 and [O,E] = 0 has been fulfilled
in Ref. [40].

Evidently, the Eriksen operator satisfies Eq. (18). Any
additional unitary transformation violates this accordance. For
the transformation operator U = U ′UE , where U ′ = exp (iT)
and the operator T is even, block-diagonal Hamiltonians are
connected by the even exponential transformation operator:

U †β = βUE(U ′)† �= βU ′UE.

An extra transformation with the odd operator T is also
inadmissible because its action on the even Hamiltonian HFW

leads to an appearance of odd terms. Therefore, two block-
diagonal Hamiltonians are connected by the even exponential
transformation operator.

IV. APPROACHES TO THE FOLDY-WOUTHUYSEN
TRANSFORMATION

The transformation to the FW representation can be carried
out by a lot of different methods. The Eriksen method [35] is
not iterative and allows one to perform the direct FW trans-
formation. Equations (20) and (21) are convenient to express
the FW Hamiltonian as a series of relativistic corrections on
powers of O/m and E/m. One can use the formula

√
H2 = βmc2

√
1 + H2 − m2c4

m2c4

= βmc2

√
1 + 2βmc2E + O2 + E2 + {O,E}

m2c4
(23)
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and expand (H2)−1/2 entering Eq. (20) in a Taylor se-
ries [35,41]. While needed calculations are cumbersome,
they can be made analytically with a computer [41].
We present below the exact FW Hamiltonian calcu-
lated by de Vries and Jonker up to terms of the or-
der of (v/c)8. They supposed that O/(mc2) ∼ (v/c) and

E/(mc2) ∼ (v/c)2. The result of calculations [41] can be
presented in a more convenient form [42] via multiple
commutators. While the Eriksen method is unapplicable in
the nonstationary case, we can use the property formulated
below Eq. (6) and rewrite the equation obtained in Ref. [42]
as follows:

HFW = β

(
mc2 + O2

2mc2
− O4

8m3c6
+ O6

16m5c10
− 5O8

128m7c14

)
+ E − 1

128m6c12
{(8m4c8 − 6m2c4O2 + 5O4),[O,[O,F]]}

+ 1

512m6c12
{(2m2c4 − O2),[O2,[O2,F]]} + 1

16m3c6
β{O,[[O,F],F]} − 1

32m4c8
[O,[[[O,F],F],F]]

+ 11

1024m6c12
[O2,[O2,O,[O,F]]]] + A24, (24)

where

A24 = 1

256m5c10
β

(
24{O2,([O,F])2} − 20([O2,F])2 − 14{O2,[[O2,F],F]}

− 4[O,[O,[[O2,F],F]]] + 9

2
[[O,[O,[O2,F]]],F] − 9

2
[[O,[O,F]],[O2,F]] + 5

2
[O2,[O,[[O,F],F]]]

)
. (25)

In A24, the first and second subscripts indicate the respective
numbers of F and O operators in the product. A mistake in the
calculation of this term made in Ref. [42] has been corrected
in Ref. [11].

Terms of higher orders up to (v/c)12 have also been
calculated many years ago (see Ref. [41] and references
therein). However, the Eriksen method is not practically
used in specific calculations. Since the exact equations (19)
and (20) contain the square roots of Dirac matrices, they
exclude a possibility to obtain a series of relativistic terms
with the relativistic FW Hamiltonian of a free particle [1]
as the zero-order approximation. This possibility can be
realized with the relativistic methods mentioned in Sec. I.
Moreover, Eqs. (19) and (20) do not seem to be convenient
even for deriving a semirelativistic FW Hamiltonian. While
this possibility has been realized (see Ref. [41] and refer-
ences therein), a necessity to ensure a commutativity of the
numerators and denominators in the expression for λ and
in Eq. (20) hinders a practical application of the Eriksen
method. The FW method [1] and some other semirelativistic
methods are more straightforward. We can note that the
use of all semirelativistic methods in atomic physics and
quantum chemistry meet some difficulties caused by their
inapplicability at p/(mc) > 1 [17] (see Sec. VII for more
details).

Nevertheless, the calculation of the FW Hamiltonian by the
Eriksen method as a series of relativistic corrections to the zero
approximation (Schrödinger Hamiltonian) is very important
for checking results obtained by other semirelativistic and
relativistic methods.

The mostly applied approach is characterized by subsequent
iterations allowing a determination of both the exponential
operator of the FW transformation and the FW Hamiltonian.
Intermediate exponential operators obtained at each iteration
satisfy the Eriksen condition and are odd and Hermitian. This
approach can be realized by many methods [7,8,16–18,33,34].
Another approach also brings the initial Hamiltonian to a

block-diagonal form after subsequent iterations but a resulting
exponential transformation operator is not odd. Since all
subsequent transformation operators are known, the resulting
exponential transformation operator can be corrected by an
elimination of even terms in the exponent. The elimination
can be made with the use of the Baker-Campbell-Hausdorff
(BCH) formula [43]. This formula [43] defines the product of
two exponential operators:

exp(A) exp(B)

= exp
(
A + B + 1

2 [A,B] + 1
12 [A,[A,B]] − 1

12 [B,[A,B]]

− 1
24 [A,[B,[A,B]]] + higher order commutators

)
. (26)

The product of two exponential operators can be calculated
with any needed accuracy [44].

When A = iS,B = iS ′ and the operators S and S ′ are odd
and Hermitian, the commutators [A,B] and [A,[B,[A,B]]] are
even. Therefore, the resulting transformation operator defined
by Eq. (14) can be presented in the form U = exp (iR) where
the operator R is not odd and does not satisfy the Eriksen
condition (16). Expansion of the operator U in a power series
[see Eq. (17)] shows that the equivalent Eriksen condition (18)
is also violated.

Thus, the original FW method and other iteration methods
do not lead to the FW representation and give only approximate
FW Hamiltonians. This fact has been proven by Eriksen and
Kolsrud [36] and later by Neznamov [10,45].

However, there exist possibilities to correct these methods.
One can perform one more unitary transformation with the
transformation operator Ucorr satisfying the relation

UcorrU = UE, (27)

where U = exp (iR) is the resulting transformation operator
before the correction and UE is the Eriksen operator (20). The
solution of Eq. (27) reduces to an elimination of the even part
of the operator R. In the next section, we will consider this
problem in more detail with respect to the original FW method.
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V. CORRECTION OF HAMILTONIANS OBTAINED BY
THE FOLDY-WOUTHUYSEN METHOD

In the classical FW method, any subsequent exponential
operator is of a smaller order of magnitude than a preceding
one. Therefore, the BCH formula allows one to determine and
eliminate an error given by this method. Such a possibility
has been first noticed by Eriksen and Kolsrud [36]. If
one can neglect [S,[S,S ′]], [S ′,[S,S ′]], and commutators of
higher orders as compared with [S,S ′], Eq. (26) brings the
approximate relation

exp(iS ′) exp(iS) = exp
(

1
2 [S,S ′]

)
exp [i(S ′ + S)]. (28)

Since the operator i(S ′ + S) is odd and the corrected Hamilto-
nian is even (with a needed accuracy), the left multiplication
of the FW transformation operator by the even operator

Ucorr = exp
(− 1

2 [S,S ′]
)

(29)

does not add any odd terms to the Hamiltonian and allows one
to cancel the error of the FW method in the leading order. We
can obtain from Eqs. (7) and (10) that the commutator of the
two first exponential operators is approximately equal to [38]

[S,S ′] = − β

8m3c6
[O2,F]. (30)

Therefore,

Ucorr = exp

(
β

16m3c6
[O2,F]

)
. (31)

This additional transformation eliminates the difference
between the results obtained by the original FW method [1]

and the Eriksen one [35] in the leading order. For the stationary
case, it has been shown in Ref. [36].

In the general case, the corrected transformation operator
has the form

UE = UcorrU ≡ Ucorr · · · exp (iS(n)) · · · exp (iS ′′′) exp (iS ′′)

× exp (iS ′) exp (iS), (32)

and it must be equal to the Eriksen operator. Since the trans-
formation with the operator U results in the FW Hamiltonian
obtained by the original method [1], H(orig)

FW , the corrected
(right) FW Hamiltonian is given by

HFW = Ucorr

(
H(orig)

FW − i�
∂

∂t

)
U−1

corr + i�
∂

∂t
. (33)

Since the operators HFW and H(orig)
FW are even, the operator

Ucorr is also even.

VI. EXAMPLES OF THE APPLICATION OF THE
CORRECTED ORIGINAL METHOD

In this section, we will consider two examples of the
application of the corrected original FW method and will show
the importance of the corrections made.

A. Foldy-Wouthuysen transformation with a calculation of all
terms up to the order of (v/c)6

Let us derive the FW Hamiltonian and calculate all terms
up to the order of (v/c)6 on condition that E/(mc2) ∼
(v/c)2,O/(mc2) ∼ v/c. The successive steps are given by

S = − i

2mc2
βO, H′ = βmc2 + E + β

( O2

2mc2
− O4

8m3c6
+ O6

144m5c10

)
− 1

8m2c4
[O,[O,F]]

+ 1

384m4c8
[O,[O,[O,[O,F]]]] + β

2mc2
[O,F] − O3

3m2c4
+ O5

30m4c8
− β

48m3c6
[O,[O,[O,F]]],

S ′ = − i

4m2c4
[O,F] + iβ

( O3

6m3c6
− O5

60m5c10

)
+ i

96m4c8
[O,[O,[O,F]]],

H′′ = βmc2 + E + β

( O2

2mc2
− O4

8m3c6
+ O6

16m5c10

)
− 1

8m2c4
[O,[O,F]] − β

8m3c6
([O,F])2 + 3

64m4c8
{O2,[O,[O,F]]}

+ 5

128m4c8
[O2,[O2,F]] + 1

4m2c4
[[O,F],F] − β

6m3c6
[O3,F] − β

8m3c6
{O2,[O,F]},

S ′′ = − iβ

8m3c6
[[O,F],F] + i

12m4c8
[O3,F] + i

16m4c8
{O2,[O,F]}. (34)

After the transformation with the operator S ′′, the final Hamiltonian obtained by the original FW method takes the form

H(orig)
FW = βmc2 + E + β

( O2

2mc2
− O4

8m3c6
+ O6

16m5c10

)
− 1

8m2c4
[O,[O,F]] − β

8m3c6
([O,F])2

+ 3

64m4c8
{O2,[O,[O,F]]} + 5

128m4c8
[O2,[O2,F]]. (35)

It should be corrected according to Eq. (33). In this case, the needed accuracy can be achieved with the single commutator:

HFW = H(orig)
FW −

[
1

2
[S,S ′],

(
H(orig)

FW − i�
∂

∂t

)]
. (36)
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With the use of Eqs. (34) and (35), we obtain

HFW = H(orig)
FW +

[
β

16m3c6
[O2,F],

(
F + β

O2

2mc2

)]
. (37)

As a result,

HFW = βmc2 + E + β

( O2

2mc2
− O4

8m3c6
+ O6

16m5c10

)

− 1

8m2c4
[O,[O,F]] + β

16m3c6
{O,[[O,F],F]}

+ 3

64m4c8
{O2,[O,[O,F]]}+ 1

128m4c8
[O2,[O2,F]].

(38)

This equation agrees with the result obtained by the Eriksen
method and expressed by Eq. (24).

B. Foldy-Wouthuysen transformation with a calculation of all
terms up to the order of m−4

It is also instructive to calculate all terms up to the order of
m−4 on the condition that E ∼ O. In this case, the successive
exponential transformation operators are given by

S = − i

2mc2
βO,

S ′ = − i

4m2c4
[O,F] + i

6m3c6
βO3

+ i

96m4c8
[O,[O,[O,F]]],

S ′′ = − iβ

8m3c6
[[O,F],F] + i

12m4c8
[O3,F]

+ i

16m4c8
{O2,[O,F]},

S ′′′ = − i

16m4c8
[[[O,F],F],F]. (39)

The Hamiltonian has the form

H(orig)
FW = βmc2 + E + β

( O2

2mc2
− O4

8m3c6

)

− 1

8m2c4
[O,[O,F]] − β

8m3c6
([O,F])2

+ 3

64m4c8
{O2,[O,[O,F]]}+ 5

128m4c8
[O2,[O2,F]]

+ 1

32m4c8
[[O,F],[[O,F],F]]. (40)

To calculate all terms up to the order of m−4, one needs take
into account commutators with the exponential transformation
operators S ′ and S ′′:

HFW = H(orig)
FW −

[
1

2
[S,(S ′ + S ′′)],

(
H(orig)

FW − i�
∂

∂t

)]
.

(41)

The implication of the operator S ′′ into the correction proce-
dure distinguishes this example from the precedent one.

Equations (39)–(41) result in

HFW = H(orig)
FW +

[
β

16m3c6
[O2,F],

(
F + β

O2

2mc2

)]

− 1

32m4c8
[[O,[[O,F],F]],F]. (42)

Since [[O,F],[[O,F],F]] − [[O,[[O,F],F]],F] =
−[O,[[[O,F],F],F]], the corrected FW Hamiltonian
has the form

HFW = βmc2 + E + β

( O2

2mc2
− O4

8m3c6

)

− 1

8m2c4
[O,[O,F]] + β

16m3c6
{O,[[O,F],F]}

+ 3

64m4c8
{O2,[O,[O,F]]} + 1

128m4c8
[O2,[O2,F]]

− 1

32m4c8
[O,[[[O,F],F],F]]. (43)

This expression also agrees with Eq. (24).
We can conclude that the corrected original FW

method ensures a straightforward derivation of the FW
Hamiltonian.

VII. DISCUSSION AND SUMMARY

The wonderful achievements of Eriksen are the formulation
and the substantiation of conditions of transformation to
the FW representation, the derivation of the exact FW
transformation operator, the proof of an approximateness of
the original FW method, and the discovery of the possibility
of its correction. The Eriksen method gives the correct FW
Hamiltonian for a free particle and also in the more general
case [40] of E �= 0 and [O,E] = 0. In the general nonrelativis-
tic case, the Eriksen formula (20) allows one to present the
FW Hamiltonian as a series of relativistic corrections to the
Schrödinger Hamiltonian (see Ref. [41]). However, this series
(as well as a series given by any nonrelativistic method) is
divergent when p/(mc) > 1.

It has been shown in Ref. [17] that the use of all
semirelativistic methods in quantum chemistry is restricted
due to their divergence at p/(mc) > 1. Evidently, this takes
place in a small region near a nucleus. In the classical theory,
the energy of the electron is given by

E =
√

m2c4 + c2 p2 − Ze2

r
,

where Z is the atomic number. The small region of the series
divergence is defined by the approximate condition

r � Zr0, (44)

where r0 = e2/(mc2) = 2.818 × 10−13 cm is the classical
electron radius. In this small region, FW wave eigenfunctions
are undefined. When this is not admissible, one should use
appropriate relativistic methods. For example, the method
developed in Ref. [17] gives a convergent series because
the expansion parameter contains the kinetic energy in the
denominator and is always less than 1.
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Inside of the region of the series convergence, semirel-
ativistic and relativistic methods of the FW transformation
should give equivalent results. However, an existence of the
series divergence restricts an application of all semirelativistic
methods in quantum chemistry. The corrected FW method
is perfect in all cases when the series divergence does not
appear (for example, for a description of a particle in a
trap). The derivation of the Hamiltonian H(orig)

FW reproduced
in Sec. II represents a straightforward computer cycle based
on the general formulas (7) and (8). The next computer cycle
is the calculation of the resulting exponential transformation
operator with the BCH formula (26). The product of two
exponential operators defined by this formula can be obtained
with any needed accuracy. Then, one needs to find the operator
Ucorr satisfying the relation (27) and eliminating the even
part of the exponential operator R. The FW Hamiltonian
can by finally obtained by the transformation of the operator
H(orig)

FW with the operator Ucorr. This transformation is given
by Eq. (33). An applicability of the corrected FW method is
demonstrated by the two examples presented in Sec. VI.

We can conclude that the correction of iterative methods
with the BCH formula allows one to use these methods for a
derivation of the FW Hamiltonians with a needed accuracy but
their applicability is restricted by the condition of the series
convergence.

Let us also consider the electron density at the position rA

of a specific nucleus A. In Refs. [34,46], the corresponding
Dirac operator has been found to be

Ô =
N∑
i

Ô(r i) with Ô(r i) = δ(3)(r i − rA)

= δ(xi − xA)δ(yi − yA)δ(zi − zA).

In the FW representation, this operator takes the form
UFWÔU

†
FW . The expectation value for the electron density

then reads [34,46]

ρii(r) = 〈UFWψi |UFWÔU
†
FW |UFWψi〉. (45)

This formula has been used for specific calculations [46].
The charge distribution obtained with the FW transformation
can significantly differ from the corresponding nonrelativistic
charge distribution.
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