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Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model

Zheng-Yang Zhou,1,2 Mi Chen,1,2 Ting Yu,2,3 and J. Q. You2,*

1Department of Physics, Fudan University, Shanghai 200433, China
2Beijing Computational Science Research Center, Beijing 100094, China

3Center for Controlled Quantum Systems and Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken,
New Jersey 07030, USA

(Received 21 September 2015; published 4 February 2016)

One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a
non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is
particularly important due to its crucial applications in quantum noise control and manipulation as well as its
central role in developing quantum theories of open systems. Here we solve this important model by developing
a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent
states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise
variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations
in numerical simulations. The physical significance and generality of our approach are briefly discussed.
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I. INTRODUCTION

The quantum Langevin equation (QLE) provides a direct
depiction of the temporal behaviors of physical observables
under the influence of a bath of quantum particles [1–6]. As
such, the QLE has many important applications in quantum op-
tics [2], the input-output theory [7], and the quantum dynamics
of dissipative atoms [8–11]. For deriving a generic Langevin
equation, however, Markovian approximation was usually
employed to arrive at a tractable equation of motion. The
QLE beyond Markovian approximation can be also formulated
to study the intriguing non-Markovian dynamics of damped
quantum systems and the Brownian motion systems [12–17].
A method [18–20] based on the Mori expansion [21] can solve
the Brownian-motion problem conveniently. The main idea of
this method is to expand the time-dependent operator of the
system using a set of time-independent basis operators. This
set of basis operators and the corresponding coefficients are
governed by two recurrence relations.

In the last decade, the so-called non-Markovian quantum
state diffusion (QSD) equation [25–27] has been formulated
nonperturbatively, so it can apply to the cases with strong
couplings between systems and environments (see, e.g.,
[28–30]). The non-Markovian QSD has provided a powerful
tool in numerically simulating many interesting physical
models [31,32]. In particular, high-order numerical methods
for the non-Markovian QSD [33–35] have been developed
very recently, making some previously intractable problems
become numerically tractable. In fact, the QSD equation is a
stochastic Schrödinger equation and it is solved by invoking
the noise realizations. For the important case of the spin-boson
model [36], however, matters are not as simple as the form of
this model, due to the fact that the spin-boson model does
not admit an analytical treatment and an efficient numerical
simulation is prohibited without including the higher-order
perturbations [33–35].

In this paper, we develop a stochastic quantum Langevin
approach to solving non-Markovian quantum dynamics of the
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spin-boson model. This model, which is the multimode case
of the quantum Rabi model [22–24], involves nonconserving
processes due to the counterrotating terms. Consequently,
it poses a longstanding difficult problem in studying non-
Markovian quantum dynamics [36]. By projecting the non-
Markovian QLE onto the coherent states of the bath, we
convert the operator QLE into a c-number stochastic QLE,
which is formally analogous to the non-Markovian QSD
equation. Therefore, the useful techniques developed for the
QSD can apply to the c-number stochastic QLE as well.
Remarkably, we find that the stochastic QLE can be further
reduced to a set of simple non-Markovian quantum Bloch
equations without involving any noise variables. This provides
a much more efficient method to solve the non-Markovian
quantum dynamics of the spin-boson model. As shown below,
the method developed here is quite general, so it may offer
significant numerical advantages for simulating open quantum
systems coupled to bosonic environments when higher-order
perturbation is unavoidable.

The paper is organized as follows. In Sec. II, we obtain a
stochastic QLE by projecting the non-Markovian QLE onto the
coherent states of the bosonic bath. Then, in Sec. III, we convert
the stochastic QLE into a c-number stochastic QLE, which is
formally analogous to the non-Markovian QSD equation. In
Sec. IV, we further reduce the c-number stochastic QLE to a
set of simple non-Markovian quantum Bloch equations. The
extensions to the cases of complex correlation function and
finite temperature are discussed in Sec. V and VI, respectively.
Finally, Sec. VII gives the conclusion of our work.

II. STOCHASTIC QLE

The spin-boson model is described by Htot = H0 + Hint,
with (setting � = 1)

H0 = ω

2
σz +

∑
k

ωka
†
kak,

(1)
Hint = σx

∑
k

(g∗
k a

†
k + gkak).
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Here H0 is the Hamiltonian of the uncoupled spin and
multimode bosonic bath, Hint models the interaction between
the spin and the bosonic bath, σx , σy , and σz are Pauli operators,
and a

†
k (ak) is the kth-mode bosonic creation (annihilation)

operator of the bath. We assume that the state of the total system
is initially factorized as |�0〉 = |ψ〉 ⊗ |0〉, where the bosonic
bath is in the vacuum state |0〉 (i.e., at zero temperature).

The interaction Hamiltonian Hint can be rewritten as the
sum of rotating and counterrotating terms,

Hint =
∑

k

(g∗
k a

†
kσ− + gkakσ+ + g∗

k a
†
kσ+ + gkakσ−),

with σx = σ+ + σ−. The counterrotating terms g∗
k a

†
kσ+ and

gkakσ− break the conservation of excitation number, giving
rise to high-order noise appearing in the stochastic equation of
quantum dynamics [25–27].

Starting from the Heisenberg equations of the Pauli opera-
tors and the bosonic operators of the bath, we have

d

dt
σx(t) = −ωσy(t),

d

dt
σy(t) = ωσx(t) − 2

∑
k

σz(t)[gkak(t) + g∗
k a

†
k(t)],

(2)
d

dt
σz(t) = 2

∑
k

σy(t)[gkak(t) + g∗
k a

†
k(t)],

d

dt
ak(t) = −iωkak(t) − ig∗

k σx(t),

where

σj (t) = eiHtott σj e
−iHtott , j = x,y,z,

are Pauli operators in the Heisenberg picture, and

ak(t) = eiHtott ake
−iHtott

is the kth-mode bosonic annihilation operator of the bath in
the Heisenberg picture. The bosonic operator ak(t) in Eq. (2)
can be formally solved as

ak(t) = e−iωkt ak − ig∗
k

∫ t

0
dse−iωk (t−s)σx(s). (3)

Substituting both ak(t) in Eq. (3) and its Hermitian conjugate
a
†
k(t) into Eq. (2), we obtain the following QLE:

d

dt
σx(t) = −ωσy(t),

d

dt
σy(t) = ωσx(t) − 2σz(t)[ξ (t) + ξ †(t)] + wz(t), (4)

d

dt
σz(t) = 2σy(t)[ξ (t) + ξ †(t)] − wy(t),

where

wj (t) ≡ 2iσj (t)
∫ t

0
ds[α(t,s) − α∗(t,s)]σx(s),

with j = y,z. Here α(t,s) ≡ ∑
k |gk|2e−iω(t−s) is the correla-

tion function of the bath and ξ (t) ≡ ∑
k gke

−iωkt ak defines a
noise operator. In this QLE, both ξ (t) and ξ †(t) act as random
noises acting on the spin.

Below we first consider the case of real correlation func-
tion α(t,s) = α∗(t,s), so that wy(t) = wz(t) = 0 in Eq. (4).
Note that the typical Ornstein-Uhlenbeck correlation function
α(t,s) = �γ

2 e−γ |t−s| is indeed a real function. We define
Bargmann coherent states for the bosonic bath,

|z〉 ≡
⊗

k

|zk〉 = e
∑

k zka
†
k |0〉, (5)

which satisfy

ak|z〉 = zk|z〉, a
†
k|z〉 = ∂

∂zk

|z〉. (6)

When projected onto the Bargmann coherent states, the QLE
in Eq. (4) is then converted to

∂

∂t
σx(t ; z) = −ωσy(t ; z),

∂

∂t
σy(t ; z) = ωσx(t ; z) − 2

[
zt +

∫ t

0
dsα(t,s)

δ

δzs

]
σz(t ; z),

∂

∂t
σz(t ; z) = 2

[
zt +

∫ t

0
dsα(t,s)

δ

δzs

]
σy(t ; z). (7)

This is a stochastic QLE with the noise zt = ∑
k gke

−iωkt zk .
In Eq. (7), σj (t ; z) ≡ σj (t)|z〉〈z|, with j = x,y,z, and the
functional chain rule,

∂

∂zk

=
∫

ds
∂zs

∂zk

δ

δzs

,

is used. Note that

σj (t) =
∫

d2z

π

∏
k

e−|zk |2σj (t ; z) ≡ M{σj (t ; z)}. (8)

When statistically averaging Eq. (7) over all noise variables
via Eq. (8), one can recover Eq. (7) back to the QLE in Eq. (4).

III. C-NUMBER STOCHASTIC QLE

To convert the stochastic equation of operators [i.e., Eq. (7)]
into a c-number equation, we introduce the expectation value
of an operator σ as 〈σ 〉 ≡ 〈�0|σ |�0〉. Then, we have

∂

∂t
〈σx(t ; z)〉 = −ω〈σy(t ; z)〉,

∂

∂t
〈σy(t ; z)〉 = ω〈σx(t ; z)〉

− 2

[
zt +

∫ t

0
dsα(t,s)

δ

δzs

]
〈σz(t ; z)〉,

∂

∂t
〈σz(t ; z)〉 = 2

[
zt +

∫ t

0
dsα(t,s)

δ

δzs

]
〈σy(t ; z)〉. (9)

Define A(t,z) ≡ [〈σx(t ; z)〉,〈σy(t ; z)〉,〈σz(t ; z)〉]T , where T

denotes the transpose of a matrix. Equation (9) can be written
in a matrix form as

∂

∂t
A(t,z) = −iHA(t,z) + LztA(t,z)

+L
∫ t

0
dsα(t,s)

δ

δzs

A(t,z), (10)
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with

H =
⎛
⎝ 0 −iω 0

iω 0 0
0 0 0

⎞
⎠, L =

⎛
⎝0 0 0

0 0 −2
0 2 0

⎞
⎠. (11)

Formally, this c-number stochastic QLE is analogous to
the non-Markovian QSD equation governing non-Markovian
quantum trajectories [25]. The difference here is that the QSD
equation is a stochastic differential equation for quantum states
of the system (i.e., a stochastic Schrödinger equation), while
the c-number stochastic QLE in Eq. (10) corresponds to a
stochastic differential equation of physical variables.

Here we introduce O(t,s,z) operator by

δ

δzs

A(t,z) = O(t,s,z)A(t,z). (12)

Note that although we use the notation O(t,s,z), which is
similar to the O operator used in the QSD approach, their
meanings are different. HereO(t,s,z) is defined for an arbitrary
operator, rather than for a quantum state. Now we can write
the c-number stochastic QLE in a time-local form,

∂

∂t
A(t,z) = [−iH + Lzt + LŌ(t,z)]A(t,z), (13)

where

Ō(t,z) =
∫ t

0
dsα(t,s)O(t,s,z).

Also, using Eq. (13) and the relation

δ

δzs

∂

∂t
A(t,z) = ∂

∂t

δ

δzs

A(t,z),

we obtain the equation for O(t,s,z) operator,

∂

∂t
O(t,s,z) = [−iH + Lzt + LŌ(t,z),O(t,s,z)] + LδŌ(t,z)

δzs

.

(14)

As in Ref. [28], the initial condition of the O(t,s,z) operator
can be derived as O(t,t,z) = L.

IV. NON-MARKOVIAN QUANTUM BLOCH EQUATION

To obtain the desired quantity

A(t) = M{A(t,z)}
≡ [〈σx(t)〉,〈σy(t)〉,〈σz(t)〉]T , (15)

where 〈σj (t)〉 = 〈M{σj (t ; z)}〉, one can numerically solve
Eq. (13) for each realization of the noise zt and then implement
the statistical average, as in the case of numerically solving
QSD equation. However, when higher-order perturbation
is involved in the QSD, one must pay the price of long
computation time in order to achieve accurate results. Below
we show that with our QLE approach, this simulation process
can be significantly sped up.

By directly implementing statistical average on Eq. (13),
we have

∂

∂t
A(t) = −iHA(t) + LM{ztA(t,z)}

+LM{Ō(t,z)A(t,z)}. (16)

In Eq. (16), M{ztA(t,z)} can be written as

M{ztA(t,z)} =
∫

d2z

π

∏
k

e−|zk |2zt 〈�0|B(t)|z〉〈z|�0〉,

where B(t) ≡ [σx(t),σy(t),σz(t)]T . Because zt |z〉 = ξ (t)|z〉,
we have

M{ztA(t,z)} = 〈�0|B(t)ξ (t)
∫

d2z

π

∏
k

e−|zk |2 |z〉〈z|�0〉

= 〈�0|B(t)ξ (t)|�0〉
= 0, (17)

where we have used the relation ξ (t)|�0〉 = ∑
k gk

e−iωkt ak|ψ〉 ⊗ |0〉 = 0.
It is known that the O(t,s,z) operator can be expanded

as [27]

O(t,s,z) = O0(t,s) +
∑
n(�1)

∫ t

0
On(t,s,v1, . . . ,vn)

×zv1 . . . zvn
dv1 . . . dvn. (18)

Because

M{Ōn(t,v1, . . . ,vn)zv1 . . . zvn
〈�0|B(t)|z〉〈z|�0〉}

= M{Ōn(t,v1, . . . ,vn)〈�0|B(t)ξ (v1) . . . ξ (vn)|z〉〈z|�0〉}
= Ōn(t,v1, . . . ,vn)〈�0|B(t)ξ (v1) . . . ξ (vn)M{|z〉〈z|}�0〉
= Ōn(t,v1, . . . ,vn)〈�0|B(t)ξ (v1) . . . ξ (vn)|�0〉
= 0, (19)

where

Ōn(t,v1, . . . ,vn) =
∫ t

0
dsα(t,s)On(t,s,v1, . . . ,vn),

Eq. (16) is finally reduced to our central result

∂

∂t
A(t) = −iHA(t) + LŌ0(t)A(t). (20)

Here we call it a non-Markovian quantum Bloch equation, in
which no noise variables are involved. Now note that only
the noiseless term of the functional expansion in Eq. (18) is
important in solving the non-Markovian quantum dynamics of
the system. Because no noise variables are involved, Eq. (20)
can be numerically solved very efficiently.

Figure 1 shows the time evolution of 〈σz〉 for a bath with the
Ornstein-Uhlenbeck correlation function. It can be seen from
Fig. 1(a) that when increasing γ , the environmental memory
time 1/γ decreases and 〈σz〉 exhibits a clear transition from
an oscillation to an exponential decay. Physically, this is to
some extent connected to the overdamped oscillator, where
increasing the friction on the velocity of the oscillator has the
effect of turning an oscillation into an exponential decay.

The results in Fig. 1 are obtained by solving the
non-Markovian quantum Bloch equation (20), with Ō0(t)
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  3 
  0 

FIG. 1. Time evolution of 〈σz〉 for a bath with Ornstein-
Uhlenbeck correlation function α(t,s) = �γ

2 e−γ |t−s|. (a) N = 100,
and the inverse of the correlation time is chosen to be γ = 0.2, 0.4,
and 0.8, respectively. (b) γ = 0.2, and the hierarchical order is chosen
to be N = 0, 3, 10, and 100, respectively. Also, the coupling strength
is chosen to be γ� = 0.2 in both (a) and (b).

determined by (see Appendix)

∂

∂t
Ō0(t) = −i[H,Ō0(t)] + [LŌ0(t),Ō0(t)] − γ Ō0(t)

+�γ

2
L + LQ1,

∂

∂t
Qn = −i[H,Qn] +

n∑
k=0

[LQk,Qn−k] − (n + 1)γQn

+�γ

2
[L,Qn−1] + (n + 1)LQn+1,n � 1, (21)

with initial condition Q0 = Ō0(t). These hierarchical equa-
tions do not contain any explicit noise variables. In numerical
calculations, one can truncate Eq. (21) at a given hierarchical
order N by choosing QN+1 = 0. The results in Fig. 1(a)
are very similar to those in Ref. [33] obtained using the
QSD method, showing apparent non-Markovian behaviors
at small values of γ . In Ref. [33], the simulations for the
curve with γ = 0.2 took about 36 days to execute on an
Intel core-i7 CPU core, but only a few seconds here by
solving the non-Markovian quantum Bloch equation (20)
via the noiseless hierarchical equations in Eq. (21). This is
because of the numerical efficiency of our method without
invoking any noise realizations. While 〈σz〉 at N = 0 and
3 deviate from those at N = 10 and 100, 〈σz〉 at N = 10
and 100 look nearly identical [see Fig. 1(b)], revealing fast
convergence of our results with the hierarchical order N . In
contrast, the results of 〈σz〉 obtained using the QSD method
have considerable differences between the N = 10 and 100

orders of the hierarchical equation (see Fig. 2 in Ref. [33]),
indicating much slower convergence with N there.

Many years ago, a proposal was made to convert a QLE with
correlated fluctuations into a set of coupled equations [18–20].
It was originally developed to study the QLE with an additive
noise (e.g., the quantum Brownian motion is such a case)
and then extended to the multiplicative-noise case [19]. Here
we study quantum dynamics of the spin-boson model. This
model involves a multiplicative noise in the QLE and is a
more complex, open problem of quantum statistical physics.
The central point of our approach is to reduce the QLE to a
simple differential equation with no noise variables, i.e., the
quantum Bloch equation in Eq. (20). Moreover, we obtain a
set of coupled equations, as in Refs. [18–20], and then use it
to efficiently calculate Ō0(t) in Eq. (20) without invoking any
noise realizations. This is the key reason our approach has a
high numerical efficiency.

V. EXTENSION TO THE CASE OF COMPLEX
CORRELATION FUNCTION

When the correlation function is complex,
i.e., α(t,s) �= α∗(t,z), an extra term W(t,z) ≡
[0,〈wz(t)|z〉〈z|〉,〈wy(t)|z〉〈z|〉]T is added to Eq. (13):

∂

∂t
A(t,z) = [−iH + Lzt + LŌ(t,z)]A(t,z) + W(t,z).

(22)
As the simplest approximation, one can apply a Markovian
approximation only to the term W(t,z) in Eq. (22) by taking
α(t,s) in wj (t) as α(t,s) = δ(t − s). Then, W(t,z) = 0, and
both the same c-number stochastic QLE (13) and the same non-
Markovian quantum Bloch equation (20) are thus obtained.

Also, we can replace σx(s) in wj (t) by σx(t). Then,
wz(t) ≈ −iv(t)σy(t), and wy(t) ≈ iv(t)σz(t), with v(t) ≡
4
∫ t

0 dsIm{α(t,s)}. This approximation can give very accurate
results at the early stage of quantum evolution. The term
W(t,z) in Eq. (22) can be written as

W(t,z) = −iV(t)A(t,z), (23)

with

V(t) =
⎛
⎝0 0 0

0 v(t) 0
0 0 −v(t)

⎞
⎠. (24)

Thus, Eq. (22) is reduced to

∂

∂t
A(t,z) = [−iH(t) + Lzt + LŌ(t,z)]A(t,z), (25)

which has the same form as Eq. (13), with only H replaced
by H(t) = H + V(t). Also, we can derive the equation for
O(t,s,z) operator and the non-Markovian quantum Bloch
equation, which have the same forms as Eqs. (13) and (20),
respectively, but with H replaced by H(t) = H + V(t) as well.

VI. FINITE-TEMPERATURE EXTENSION

With the thermofield method [25,37,38], we can map the
finite-temperature bath onto a larger zero-temperature bath,
where a fictitious bath with Hamiltonian Hb = ∑

k(−ωk)b†kbk
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is introduced. The corresponding Hamiltonian of the total
system then reads

H̃ = ω

2
σz +

∑
k

σx(g∗
k a

†
k + gkak) +

∑
k

ωk(a†
kak − b

†
kbk).

(26)
When applying a Bogoliubov transformation [38] to the
system,

ak =
√

n̄k + 1ck+
√

n̄kd
†
k , bk =

√
n̄k + 1dk+

√
n̄kc

†
k, (27)

where n̄k = [eωk/kBT − 1]−1, the composite bath of bosonic
operators ak and bk initially prepared in a thermal state is
equivalently converted to a virtual composite bath of bosonic
operators ck and dk in the vacuum state |0〉 = |0〉c ⊗ |0〉d , with
ck|0〉c = 0 and dk|0〉d = 0. Now, the Hamiltonian of the total
system is transformed to

H̃ = ω

2
σz +

∑
k

√
n̄k + 1σx(g∗

k c
†
k + gkck) +

∑
k

ωkc
†
kck

+
∑

k

√
n̄kσx(g∗

k dk + gkd
†
k ) −

∑
k

ωkd
†
kdk. (28)

Similar to Eq. (4), the Pauli operators obeys the QLE
d

dt
σx(t) = −ωσy(t),

d

dt
σy(t) = ωσx(t) − 2σz(t)[ξT (t) + ξ

†
T (t)] + wT z(t), (29)

d

dt
σz(t) = 2σy(t)[ξT (t) + ξ

†
T (t)] − wTy(t),

with the temperature-dependent noise operator

ξT (t) =
∑

k

[
√

n̄k + 1gke
−iωkt ck(0) + √

n̄kg
∗
k e

iωkt dk(0)],

and

wTj (t) = 2iσj (t)
∫ t

0
ds[αT (t,s) − α∗

T (t,s)]σx(s),

where j = y,z, and

αT (t,s) =
∑

k

|gk|2[(n̄k + 1)e−iωk (t−s) + n̄ke
iωk(t−s)]

is the finite-temperature bath correlation function.
Using a similar procedures above, we can derive the c-

number stochastic QLE at a finite temperature as

∂

∂t
A(t,χ ) = [−iH + Lχt + LŌ(t,χ )]A(t,χ ) + WT (t,χ ),

(30)
where

χt =
∑

k

[
√

n̄k + 1gke
−iωkt zk + √

n̄kg
∗
k e

iωktwk]

is the temperature-dependent noise, and

Ō(t,χ ) =
∫ t

0
dsαT (t,s)O(t,s,χ ).

The term WT in Eq. (30) is
WT (t,χ ) = [0,〈wT z(t)|zw〉〈zw|〉,〈wTy(t)|zw〉〈zw|〉]T ,

where |zw〉 ≡ |z〉⊗ |w〉, with the Bargmann coherent states
defined by

|z〉 ≡
⊗

k

|zk〉 = e
∑

k zkc
†
k |0〉c,

(31)
|w〉 ≡

⊗
k

|wk〉 = e
∑

k wkd
†
k |0〉d ,

which satisfy ck|z〉 = zk|z〉 and dk|w〉 = wk|w〉, respectively.
Note that Eq. (30) is formally similar to Eqs. (13) and (22).
Therefore, we can solve the finite-temperature problem in an
analogous way.

VII. CONCLUSION

We have developed a quantum Langevin approach to
solving non-Markovian quantum dynamics of the spin-boson
model. Instead of directly attacking the spin-boson model
with our non-Markovian QLE, we arrive at a c-number
stochastic QLE through projecting the operator QLE onto
the coherent states of the bath. Furthermore, we have shown
that the stochastic QLE can be reduced to a non-Markovian
quantum Bloch equation. With the noiseless quantum Bloch
equation, we can efficiently solve the non-Markovian quantum
dynamics of the spin-boson model. In addition, we show
that our approach is general enough to include the finite-
temperature bath. Since the spin-boson model does not admit
a non-Markovian master equation, therefore, generally, one
cannot arrive at a set of useful Bloch equations desirable from
our experience in dealing with Markov systems. We show in
this paper that QLE paves an avenue to bypass the stringent
difficulty in deriving the non-Markovian master equations. We
expect our stochastic quantum Langevin approach can play an
important role for many other open quantum systems.
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APPENDIX: DERIVATION OF THE HIERARCHICAL EQUATIONS IN EQ. (21)

From the equation of O(t,s,z) operator in Eq. (14), it was obtained [27] that the On(t,s,v1, . . . ,vn) operators in Eq. (18) obey
the following hierarchical equation:

∂

∂t
On(t,s,v1, . . . ,vn) = −[iH,On(t,s,v1, . . . ,vn)] + (n + 1)LŌn+1(t,s,v1, . . . ,vn) + 1

n!

∑
Pn∈Sn

n∑
k=0

[LŌk(t,vPn(1), . . . ,vPn(k)),

On−k(t,s,vPn(k+1), . . . ,vPn(n)], (A1)
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with O0(t,t) = L, On(t,t,v1, . . . ,vn) = 0, and On(t,s,t,v1, . . . ,vn−1) = 1
n

[L,On−1(t,s,v1, . . . ,vn−1)] for n � 1. Here Sn denotes
the permutation of all Pn(k)’s and Ōn(t,v1, . . . ,vn) = ∫ t

0 dsα(t,s)On(t,s,v1, . . . ,vn).
Let us define an operator

Qn(t) =
∫ t

0
ds

∫ t

0
dv1 . . .

∫ t

0
dvnOn(t,s,v1, . . . ,vn)α(t,s)α(t,v1) . . . α(t,vn), (A2)

with Q0(t) = Ō0(t), and consider a noise characterized by the Ornstein-Uhlenbeck correlation function α(t,s) = �γ

2 e−γ |t−s|. It
can be derived that

∂

∂t
Ō0(t) = ∂

∂t

∫ t

0
dsO0(t,s)α(t,s)

=
∫ t

0
ds

[
∂

∂t
O0(t,s)

]
α(t,s) + O0(t,t)α(t,t) − γ

∫ t

0
dsO0(t,s)α(t,s)

=
∫ t

0
ds

[
∂

∂t
O0(t,s)

]
α(t,s) + �γ

2
L − γ Ō0(t). (A3)

From Eq. (A1), it follows that ∂
∂t
O0(t,s) = −[iH,O0(t,s)] + LŌ1(t,s) + [LŌ0(t),O0(t,s)]. Substituting it into Eq. (A3), we

have
∂

∂t
Ō0(t) = −[iH,Ō0(t)] + [LŌ0(t),Ō0(t)] − γ Ō0(t) + �γ

2
L + LQ1(t). (A4)

This is the first equation in Eq. (21).
For n � 1, it can be derived that

∂

∂t
Qn = ∂

∂t

∫ t

0
ds

∫ t

0
dv1 . . .

∫ t

0
dvnOn(t,s,v1, . . . ,vn)α(t,s)α(t,v1) . . . α(t,vn)

=
∫ t

0
ds

∫ t

0
dv1 . . .

∫ t

0
dvn

[
∂

∂t
On(t,s,v1, . . . ,vn)

]
α(t,s)α(t,v1) . . . α(t,vn)

+α(t,t)
∫ t

0
dv1 . . .

∫ t

0
dvn−1On(t,t,v1, . . . ,vn−1)α(t,v1) . . . α(t,vn−1)

+ nα(t,t)
∫ t

0
ds

∫ t

0
dv1 . . .

∫ t

0
dvn−1On(t,s,t,v1, . . . ,vn−1)α(t,s)α(t,v1) . . . α(t,vn−1)

+
∫ t

0
ds

∫ t

0
dv1 . . .

∫ t

0
dvnOn(t,s,v1, . . . ,vn)

[
∂

∂t
α(t,s)α(t,v1) . . . α(t,vn)

]

=
∫ t

0
ds

∫ t

0
dv1 . . .

∫ t

0
dvn

[
∂

∂t
On(t,s,v1, . . . ,vn)

]
α(t,s)α(t,v1) . . . α(t,vn) + �γ

2
[L,Qn−1] − (n + 1)γQn, (A5)

where we have used the relationsOn(t,t,v1, . . . ,vn) = 0, andOn(t,s,t,v1, . . . ,vn−1) = 1
n

[L,On−1(t,s,v1, . . . ,vn−1)]. Substituting
∂
∂t
On(t,s,v1, . . . ,vn) in Eq. (A1) into Eq. (A5), we then obtain

∂

∂t
Qn = −i[H,Qn] +

n∑
k=0

[LQk,Qn−k] − (n + 1)γQn + �γ

2
[L,Qn−1] + (n + 1)LQn+1, (A6)

which is the second equation in Eq. (21).
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