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We present the amount of information, fidelity, and reversibility obtained by arbitrary quantum measurements
on completely unknown states. These quantities are expressed as functions of the singular values of a measurement
operator corresponding to the obtained outcome. As an example, we consider a class of quantum measurements
with highly degenerate singular values to discuss trade-offs among information, fidelity, and reversibility. The
trade-offs are at the level of a single outcome, in the sense that the quantities pertain to each single outcome
rather than the average over all possible outcomes.
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I. INTRODUCTION

In quantum theory, information about a physical system
cannot be obtained without affecting it because quantum
measurement inevitably changes the state of the system
via nonunitary state reduction. This property of quantum
measurement is profoundly interesting for the foundations of
quantum mechanics and is of practical importance in quantum
information processing and communication [1], such as in
quantum cryptography [2–5]. Therefore, the subject of a
trade-off between information gain and state change has been
discussed by many authors [6–18] over several years using
various formulations. For example, Banaszek [7] showed an
inequality between two fidelities quantifying information gain
and state change, and Ozawa [12] generalized Heisenberg’s
uncertainty relation for noise and disturbance in quantum
measurements.

On the other hand, state change due to quantum measure-
ment has been shown not to be necessarily irreversible [19–21]
if the measurement preserves all the information about the
system, although it was once widely believed to be irreversible
such that one could not recover the premeasurement state
from the postmeasurement state [22]. In fact, in a physically
reversible measurement [20,21], the premeasurement state can
be recovered from the postmeasurement state with a nonzero
probability of success via a second measurement, called a
reversing measurement. Reversible measurements have been
proposed for various physical systems [23–29] and have
been experimentally demonstrated by using a superconducting
phase qubit [30] and a photonic qubit [31].

Thus, it is natural to discuss not only the size of the state
change but also its reversibility while considering the costs
of information gain. Intuitively, as measurements provide
more information about a system, one would expect that
more information would result in more change of a system’s
state along with reduced reversibility. Moreover, whenever the
reversing measurement recovers the premeasurement state of
the first measurement, it erases all the information obtained
by the first measurement (see the Erratum of Ref. [24]).
In a different type of reversible measurement, known as
unitarily reversible measurement [32,33], the premeasure-
ment state can be recovered from the postmeasurement one
with unit probability via a unitary operation although the
measurement provides no information about the system.

Therefore, there are some trade-offs among information
gain, state change, and physical reversibility in quantum
measurement.

Such trade-offs have been studied in photodetection pro-
cesses [34] and in single-qubit measurements [35]. These
trade-offs are at the level of a single outcome, in contrast
to conventional ones [6,7,9,10,14,16]; that is to say that the
quantities affected are those pertaining to each single outcome,
rather than those averaged over all possible outcomes. This
characteristic is desirable for studying state recovery with
information erasure in a physically reversible measurement,
because it occurs not on average but only when the reversing
measurement yields a preferred single outcome. On the
other hand, using quantities averaged over outcomes, Cheong
and Lee [36] demonstrated that a trade-off exists between
information gain and physical reversibility, which has been
experimentally verified [37,38] using single photons.

In this paper, we present the general formulas for infor-
mation gain, state change, and physical reversibility for an
arbitrary quantum measurement on a d-level system in a
completely unknown state. These formulas are more general
versions of those for an arbitrary quantum measurement on a
two-level system [35] and those for a projective measurement
on a d-level system [39]. We present the evaluation of the
amount of information gain by the decrease in Shannon
entropy [11,40], the degree of state change by the fidelity
[41], and the degree of physical reversibility by the maximum
successful probability of the reversing measurement [42].
The formulas are written by using the singular values of a
measurement operator corresponding to the outcome of the
measurement. Unfortunately, when some singular values are
degenerate, the formula for information gain is not useful for
numerical calculations due to apparent divergences. Therefore,
for the information gain, we show another formula that is free
from apparent divergences, even when the singular values are
degenerate.

The rest of this paper is organized as follows: Section II
explains the procedure for quantifying information gain, state
change, and physical reversibility and shows their explicit
formulas. Section III deals with the degeneracy of singular
values. Section IV considers a class of quantum measurements
with highly degenerate singular values and discusses the
trade-offs among information gain, state change, and physical
reversibility. Section V summarizes our results.
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II. FORMULATION

A. Information gain

We first consider the amount of information provided by
a quantum measurement. To evaluate this amount, it is first
assumed that the premeasurement state of a system to be
measured is known to be one of a set of predefined pure states
{|ψ(a)〉}, a = 1, . . . ,N , each of which has an equal probability
of p(a) = 1/N , although the index a of the premeasurement
state is unknown. The lack of information about the state is
then given by

H0 = −
∑

a

p(a) log2 p(a) = log2 N (1)

prior to measurement, where the Shannon entropy has been
used as a measure of uncertainty rather than the von Neumann
entropy of the mixed state ρ̂ = ∑

a p(a)|ψ(a)〉〈ψ(a)| because
the uncertain information is the classical variable a rather than
the predefined quantum state |ψ(a)〉. Each state |ψ(a)〉 can be
expanded in an orthonormal basis {|i〉} as

|ψ(a)〉 =
∑

i

ci(a)|i〉, (2)

where i = 1,2, . . . ,d, and d is the dimension of the Hilbert
space associated with the system. For the state to be normal-
ized, the coefficients {ci(a)} must satisfy the normalization
condition ∑

i

|ci(a)|2 = 1. (3)

Since, in quantum measurements, the system to be measured
is usually in a completely unknown state, the predefined states
{|ψ(a)〉} are assumed to be all of the possible pure states of
the system with N → ∞.

A quantum measurement of the system can then be made
to obtain information about the state. In general, a quantum
measurement is described by a set of measurement operators
{M̂m} [1,43] that satisfy∑

m

M̂†
mM̂m = Î , (4)

where m denotes the outcome of the measurement and Î is
the identity operator. When the system is in a state |ψ〉, the
measurement {M̂m} yields an outcome m with probability

pm = 〈ψ |M̂†
mM̂m|ψ〉, (5)

changing the state into

|ψm〉 = 1√
pm

M̂m|ψ〉. (6)

Here it has been assumed that the quantum measurement is
efficient [8] or ideal [33] in the sense that the postmeasurement
state is pure if the premeasurement state is pure, in order to
focus on the quantum nature of measurement by ignoring
classical noise. Each measurement operator M̂m can be
decomposed by singular-value decomposition as

M̂m = ÛmD̂mV̂m, (7)

where Ûm and V̂m are unitary operators, and D̂m is a diagonal
operator in the orthonormal basis {|i〉}:

D̂m =
∑

i

λmi |i〉〈i|. (8)

The diagonal elements {λmi}, called the singular values of M̂m,
are not less than 0 by definition and are not greater than 1 on
the basis of Eq. (4); that is,

0 � λmi � 1 (9)

for i = 1,2, . . . ,d. In this situation, where the measurement
is performed on one of all possible pure states {|ψ(a)〉}, the
unitary operator V̂m can be removed from the measurement
operator given in Eq. (7) as

M̂m = ÛmD̂m (10)

by relabeling the index a as |ψ ′(a)〉 = V̂m|ψ(a)〉 without
loss of generality. Furthermore, the unitary operator Ûm is
irrelevant to information gain, since the probability given by
Eq. (5) is unaffected by Ûm. Although it changes the state of
the system as in Eq. (6), the state change caused by Ûm can be
recovered with unit probability and no information loss after
the measurement by applying Û

†
m to the system. Thus, to see

the inevitable state change and irreversibility caused by the
extraction of information, it suffices to set the measurement
operator of Eq. (7) equal to

M̂m = D̂m. (11)

By substituting Eqs. (2) and (11) into Eq. (5), it is evident
that the measurement yields outcome m with probability

p(m|a) =
∑

i

λ2
mi |ci(a)|2 ≡ qm(a) (12)

when the premeasurement state of the system is |ψ(a)〉. Since
the probability of |ψ(a)〉 is p(a) = 1/N , the total probability
of the outcome m is given by

p(m) =
∑

a

p(m|a)p(a) = 1

N

∑
a

qm(a) = qm, (13)

where the overline denotes the average over a:

f ≡ 1

N

∑
a

f (a). (14)

On the contrary, given the outcome m, the probability of the
premeasurement state |ψ(a)〉 can be calculated to be

p(a|m) = p(m|a)p(a)

p(m)
= qm(a)

Nqm

(15)

according to Bayes’ rule. Therefore, after the measurement
yields the outcome m, the lack of information about the
premeasurement state decreases to the Shannon entropy

H (m) = −
∑

a

p(a|m) log2 p(a|m). (16)

Using this decrease in Shannon entropy [11,40], the informa-
tion provided by the measurement with the outcome m can be
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expressed as

I (m) ≡ H0 − H (m) = qm log2 qm − qm log2 qm

qm

, (17)

which is always positive and evidently free from the divergent
term log2 N → ∞ in Eq. (1), due to the assumption that p(a) is
uniform. This quantity can be viewed as the relative entropy (or
the Kullback–Leibler divergence) [1] of p(a|m) to the uniform
distribution p(a) = 1/N ,

I (m) =
∑

a

p(a|m) log2
p(a|m)

p(a)
. (18)

To explicitly calculate the information in Eq. (17), it is
necessary to average qm(a) and qm(a) log2 qm(a) over all
possible pure states of the system, {|ψ(a)〉}. As shown in
Appendix A, a straightforward calculation gives

qm = 1

d
σ 2

m, (19)

where σm is the Hilbert–Schmidt norm of M̂m,

σm =
√

Tr(M̂†
mM̂m) =

√∑
i

λ2
mi. (20)

On the other hand, it would be difficult to directly calculate
the average of qm(a) log2 qm(a) by using the method described
in Appendix A. However, in different contexts, similar cal-
culations have been performed in various ways [44–46]. By
applying the integral formula derived in Ref. [45] to this case,
the following expression can be obtained:

qm log2 qm = 1

d

∑
i

λ2d
mi log2 λ2

mi∏
k 	=i

(
λ2

mi − λ2
mk

)
− 1

d ln 2
[η(d) − 1]σ 2

m, (21)

where η(n) is defined by

η(n) ≡
n∑

k=1

1

k
= 1 + 1

2
+ · · · + 1

n
. (22)

Note that in order to obtain the form of Eq. (21) from the
integral formula, it is necessary to use the identity

∑
i

λ2d
mi∏

k 	=i

(
λ2

mi − λ2
mk

) = σ 2
m (23)

and the recurrence formula of the digamma function ψ(z),
ψ(z + 1) = ψ(z) + 1/z. By substituting Eqs. (19) and (21)
into Eq. (17), the information can finally be expressed as

I (m) = log2 d − 1

ln 2
[η(d) − 1] − log2 σ 2

m

+ 1

σ 2
m

∑
i

λ2d
mi log2 λ2

mi∏
k 	=i

(
λ2

mi − λ2
mk

) . (24)

This function is invariant under the interchange of any pair of
singular values,

λmi ←→ λmj for any (i,j ), (25)

as well as under the rescaling of all singular values by a
constant factor c,

(λm1,λm2, . . . ,λmd ) → (cλm1,cλm2, . . . ,cλmd ), (26)

because of Eq. (23). If the singular values are normalized by
the rescaling factor of Eq. (26) to σ 2

m = 1, the {λmi}-dependent
part of Eq. (24),

Q = log2 σ 2
m − 1

σ 2
m

∑
i

λ2d
mi log2 λ2

mi∏
k 	=i

(
λ2

mi − λ2
mk

) , (27)

resembles the subentropy discussed in Ref. [46]. However,
these quantities have different meanings, since the subentropy
is a function of the eigenvalues of the premeasurement density
operator ρ̂ = ∑

a p(a)|ψ(a)〉〈ψ(a)|, rather than a function of
the singular values of the measurement operator M̂m. For fixed
d, Eq. (27) satisfies the inequality [46]

0 � Q � log2 d − 1

ln 2
[η(d) − 1]. (28)

The lower bound is achieved when only one singular value is
nonzero, as in the projective measurement of rank 1, whereas
the upper bound is achieved when all singular values are equal,
as in the identity operation.

The information in Eq. (17) is at the level of a single
outcome in the sense that it has its value when a single outcome
m has been obtained. If I (m) is averaged over all outcomes
with probabilities given by Eq. (13), the mutual information
[1] of the random variables {a} and {m} is obtained:

I ≡
∑
m

p(m)I (m) =
∑
m,a

p(m,a) log2
p(m,a)

p(m)p(a)
, (29)

where p(m,a) = p(m|a)p(a). However, this is the amount
of information that is expected to be obtained on average
before the measurement, rather than the actual information
I (m). While the average information expressed by Eq. (29) is
not discussed further in this paper, the explicit form of I is
presented herein, since it cannot be found in the literature. It
becomes

I = log2 d − 1

ln 2
[η(d) − 1]

− 1

d

∑
m

[
σ 2

m log2 σ 2
m −

∑
i

λ2d
mi log2 λ2

mi∏
k 	=i

(
λ2

mi − λ2
mk

)
]

(30)

from Eqs. (13), (19), and (24), with an identity resulting from
the trace of Eq. (4), ∑

m

σ 2
m = d. (31)

B. State change

Now the degree of state change caused by the measurement
as a cost of the information gain is considered. When the
premeasurement state of the system is |ψ(a)〉, a measurement
with outcome m changes it to

|ψ(m,a)〉 = 1√
qm(a)

D̂m|ψ(a)〉 (32)

022104-3



HIROAKI TERASHIMA PHYSICAL REVIEW A 93, 022104 (2016)

according to Eq. (6) with Eqs. (11) and (12). This state change
can be evaluated using the fidelity [1,41] as

F (m,a) = |〈ψ(a)|ψ(m,a)〉| = 1√
qm(a)

∑
i

λmi |ci(a)|2

≡ fm(a)√
qm(a)

, (33)

which decreases as the measurement changes the state of
the system by a greater extent. By averaging over the
premeasurement states {|ψ(a)〉} with probabilities given by
Eq. (15), the fidelity after the measurement with the outcome
m can be expressed as

F (m) =
∑

a

p(a|m)[F (m,a)]2 = f 2
m

qm

, (34)

where the squared fidelity, rather than the fidelity, has been
averaged for simplicity.

To explicitly calculate the fidelity in Eq. (34), it is necessary
to average [fm(a)]2 over all possible pure states of the system,
{|ψ(a)〉}. As shown in Appendix A, the average is given by

f 2
m = 1

d(d + 1)

(
σ 2

m + τ 2
m

)
, (35)

where τm is the trace norm of M̂m:

τm = Tr
√

M̂
†
mM̂m =

∑
i

λmi . (36)

By substituting Eqs. (19) and (35) into Eq. (34), the fidelity
can be obtained as follows:

F (m) = 1

d + 1

(
σ 2

m + τ 2
m

σ 2
m

)
. (37)

This function is also invariant under the interchange of Eq. (25)
and the rescaling of Eq. (26).

The fidelity in Eq. (34) is also at the level of a single
outcome, in the sense that it has its value when a single outcome
m has been obtained. If F (m) is averaged over all outcomes
with probabilities given by Eq. (13), the mean operation fidelity
[7] is obtained:

F ≡
∑
m

p(m)F (m) =
∑
m

|〈ψ |M̂m|ψ〉|2, (38)

whose explicit form is given by [7]

F = 1

d(d + 1)

(
d +

∑
m

τ 2
m

)
(39)

from Eqs. (13), (19), and (31), although the average fidelity of
Eq. (38) is not discussed further in this paper.

C. Physical reversibility

Next, the degree of reversibility of the measurement is
considered. A quantum measurement is said to be physically
reversible [20,21] if the premeasurement state can be recovered
from the postmeasurement state with a nonzero probability
of success via a reversing measurement. The necessary
and sufficient condition for physical reversibility is that the

measurement operator M̂m has a bounded left inverse M̂−1
m .

If this condition is satisfied, then the reversing measurement
can be constructed by another set of measurement operators
{R̂(m)

μ } that satisfy ∑
μ

R̂(m)†
μ R̂(m)

μ = Î (40)

and, in addition, for a particular μ = μ0,

R̂(m)
μ0

= κmM̂−1
m , (41)

where μ denotes the outcome of the reversing measure-
ment and κm is a complex constant. When the reversing
measurement {R̂(m)

μ } is performed on the postmeasurement
state given in Eq. (6) and the preferred outcome μ0 is
obtained, the state of the system successfully reverts to the
premeasurement state |ψ〉, except for an overall phase factor
via the second state reduction,∣∣ψmμ0

〉 = 1√
pmμ0

R̂(m)
μ0

|ψm〉 ∝ |ψ〉, (42)

where

pmμ0 = 〈ψm|R̂(m)†
μ0

R̂(m)
μ0

|ψm〉 = |κm|2
pm

(43)

is the probability for the second outcome μ0 given the first
outcome m and thus is the successful probability of the
reversing measurement. Then, the physical reversibility can be
evaluated by using the maximum successful probability of the
reversing measurement [26,36,42,47]. Since the completeness
condition given in Eq. (40) requires 〈ψ |R̂(m)†

μ0
R̂(m)

μ0
|ψ〉 � 1 for

any |ψ〉, the upper bound for |κm|2 is given by [42]

|κm|2 � inf
|ψ〉

〈ψ |M̂†
mM̂m|ψ〉 = λ2

m, min, (44)

where λm, min is the minimum singular value of M̂m:

λm, min ≡ min
j

λmj . (45)

Therefore, the maximum successful probability of the revers-
ing measurement is

max
κm

pmμ0 = λ2
m, min

pm

, (46)

which is regarded as a measure of the physical reversibility of
measurement.

In this situation, when the measurement on the premea-
surement state |ψ(a)〉 yields an outcome m, the reversibility
of Eq. (46) is given by

R(m,a) = λ2
m, min

p(m|a)
= λ2

m, min

qm(a)
(47)

on the basis of Eq. (12). By averaging over the premeasurement
states {|ψ(a)〉} with probabilities given by Eq. (15), the
reversibility of the measurement with the outcome m can be
expressed as

R(m) =
∑

a

p(a|m)R(m,a) = d

(
λ2

m, min

σ 2
m

)
(48)
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by using Eq. (19). This function is also invariant under the
interchange of Eq. (25) and the rescaling of Eq. (26). Again,
this reversibility is at the level of a single outcome in the sense
that it has its value when a single outcome m has been obtained.
If R(m) is averaged over all outcomes with probabilities
given by Eq. (13), the degree of physical reversibility of a
measurement that was discussed in Ref. [42] is obtained:

R ≡
∑
m

p(m)R(m) =
∑
m

inf
|ψ〉

〈ψ |M̂†
mM̂m|ψ〉, (49)

whose explicit form is given by [36]

R =
∑
m

λ2
m, min (50)

from Eqs. (13) and (19), although the average reversibility of
Eq. (49) is not discussed further in this paper.

D. State estimation

Finally, another measure of information gain called estima-
tion fidelity is introduced to show its general formula at the
level of a single outcome, although this paper will mainly use
I (m) given in Eq. (17). Suppose that, when the measurement
yields an outcome m, the premeasurement state is estimated
by a state |ϕ(m)〉. If the actual premeasurement state is |ψ(a)〉,
the quality of the estimation can be evaluated by the overlap
|〈ϕ(m)|ψ(a)〉|2. By averaging over the premeasurement states
{|ψ(a)〉} with probabilities given by Eq. (15), the estimation
fidelity after the measurement with the outcome m can be
expressed as

G(m) =
∑

a

p(a|m)|〈ϕ(m)|ψ(a)〉|2, (51)

which depends on the strategy of selecting |ϕ(m)〉. In the
optimal case [7], the estimation |ϕ(m)〉 is assigned to the eigen-
vector of M̂

†
mM̂m corresponding to its maximum eigenvalue.

Since M̂
†
mM̂m = D̂2

m from Eq. (11), |ϕ(m)〉 is one of the states
in the basis {|i〉}; namely, |ϕ(m)〉 = |l〉, with l being one of
1,2, . . . ,d that satisfies

λml = max
j

λmj ≡ λm, max. (52)

Using this strategy, the estimation fidelity can be written as

G(m) = 1

qm

∑
i

λ2
mi

1

N

∑
a

|ci(a)|2|cl(a)|2, (53)

which is explicitly calculated to be

G(m) = 1

d + 1

(
σ 2

m + λ2
m, max

σ 2
m

)
(54)

by using the calculations in Appendix A. This function is also
invariant under the interchange of Eq. (25) and the rescaling
of Eq. (26).

This estimation fidelity is at the level of a single outcome.
If G(m) is averaged over all outcomes with probabilities given
by Eq. (13), the mean estimation fidelity [7] is obtained:

G ≡
∑
m

p(m)G(m) =
∑
m

〈ψ |M̂†
mM̂m|ψ〉|〈ϕ(m)|ψ〉|2,

(55)

whose explicit form is given by [7]

G = 1

d(d + 1)

(
d +

∑
m

λ2
m, max

)
(56)

from Eqs. (13), (19), and (31).

III. DEGENERACY

When some singular values are degenerate, Eq. (24) for
information gain is not useful for numerical calculations due
to the apparent divergences of

J ≡
∑

i

λ2d
mi log2 λ2

mi∏
k 	=i

(
λ2

mi − λ2
mk

) . (57)

Of course, J is finite, because it arises from the integral of a
bounded function over a bounded region as in Eq. (21). Even if
λmi = λmk , a finite result can be obtained by taking the limit as
λmi → λmk . However, this limit operation is quite complicated
if singular values are highly degenerate. Therefore, another
formula will be presented for the information gain that requires
no limit operations even when singular values are degenerate.

Since the ordering of singular values is insignificant due to
the invariance under the interchange of Eq. (25), they can first
be divided into groups on the basis of their values:

{λmi} −→ {(λ̄ms,ns)}, (58)

where group s contains ns singular values of λ̄ms , and thus∑
s ns = d. For example, if the singular values are

λm1 = λm2 = 1
4 , λm3 = λm4 = λm5 = 1

2 , λm6 = 3
4 , (59)

they are divided into three groups as

(λ̄m1,n1) = (
1
4 ,2

)
, (λ̄m2,n2) = (

1
2 ,3

)
,

(λ̄m3,n3) = (
3
4 ,1

)
. (60)

In accordance with this grouping, the summation over i in
Eq. (57) can be expressed as a summation over the groups

J =
∑

s

Js, (61)

where Js is the sum within the sth group (λ̄ms,ns) defined as a
limit of λ1,λ2, . . . ,λns

→ λ̄ms :

Js = lim
λ1,λ2 ,...,λns

→λ̄ms

ns∑
i=1

⎛
⎝ ns∏

k 	=i

1

λ2
i − λ2

k

⎞
⎠ λ2d

i log2 λ2
i∏

r 	=s

(
λ2

i − λ̄2
mr

)nr
. (62)

This limit can be calculated as follows: First, substitute λ̄2
ms for

λ2
1 and λ̄2

ms + ε for λ2
2, and then take the limit as ε → 0. Next,

substitute λ̄2
ms + ε for λ2

3 and take the limit as ε → 0. Repeat
similarly one by one for λ2

4,λ
2
5, . . . ,λ

2
ns

. As a consequence of
these procedures, one finds that at the last step Js should be of
the form

Js = lim
ε→0

[
1

εns−1

(
λ̄2

ms + ε
)d

log2

(
λ̄2

ms + ε
)

∏
r 	=s

(
λ̄2

ms + ε − λ̄2
mr

)nr
+

ns−1∑
n=1

w(s)
n

εn

]
,

(63)
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where {w(s)
n } are finite coefficients. Therefore, by using the

coefficients {z(s)
n } defined by Taylor series(

λ̄2
ms + ε

)d
log2

(
λ̄2

ms + ε
)

∏
r 	=s

(
λ̄2

ms + ε − λ̄2
mr

)nr
≡

∞∑
n=0

z(s)
n εn, (64)

Js can be written with no limit operations as

Js = z
(s)
ns−1. (65)

Note that, when Eq. (64) is substituted into Eq. (63), the
divergent terms containing {w(s)

n } with n = 1,2, . . . ,ns − 1
should be canceled by the divergent terms containing {z(s)

n }
with n = ns − 2, ns − 3, . . . ,0, since Js is finite.

A more explicit form of Js can be found by separating
the left-hand side of Eq. (64) into two parts that can then be
expanded as Taylor series. The first part is

(λ2 + ε)d log2(λ2 + ε) ≡
d−1∑
n=0

c(d)
n (λ)εn + O(εd ), (66)

which corresponds to the numerator of Eq. (64). As shown in
Appendix B, the coefficients {c(d)

n (λ)} for n = 0,1, . . . ,d − 1
are given by

c(d)
n (λ) = λ2(d−n)

[(
d

n

)
log2 λ2 + a(d)

n

]
, (67)

where the coefficients {a(d)
n } are

a(d)
n = 1

ln 2

(
d

n

)
[η(d) − η(d − n)]. (68)

The explicit forms of {a(d)
n } are

a
(d)
0 = 0, a

(d)
1 = 1

ln 2
, a

(d)
2 = 1

ln 2

(
d − 1

2

)
, . . . ,

a
(d)
d−1 = d

ln 2

(
1

2
+ · · · + 1

d

)
. (69)

It is clear that

c(d)
n (0) = 0, c(d)

n (1) = a(d)
n . (70)

On the other hand, the second part is

1∏
r 	=s

(
λ̄2

ms + ε − λ̄2
mr

)nr
≡ 1∏

r 	=s

(
λ̄2

ms − λ̄2
mr

)nr

∞∑
n=0

b(s)
n εn.

(71)

The coefficients {b(s)
n } are complicated in general, but they can

be described in a compact form with the help of complete Bell
polynomials:

Bn(x1,x2, . . . ,xn)

=
∑
{jr }

n!

j1!j2! · · · jn!

(
x1

1!

)j1
(

x2

2!

)j2

· · ·
(

xn

n!

)jn

, (72)

where the summation is taken over all possible sets of non-
negative integers {jr} such that

n∑
r=1

rjr = n. (73)

The explicit forms for n = 0, 1, 2, and 3 are

B0 = 1,

B1(x1) = x1,

B2(x1,x2) = x2
1 + x2,

B3(x1,x2,x3) = x3
1 + 3x1x2 + x3. (74)

With these complete Bell polynomials, the coefficients {b(s)
n }

are given by

b(s)
n = 1

n!
Bn

(
h

(s)
1 ,h

(s)
2 , . . . ,h(s)

n

)
, (75)

where the coefficients {h(s)
n } are

h(s)
n = (−1)n(n − 1)!

∑
r 	=s

nr(
λ̄2

ms − λ̄2
mr

)n , (76)

as shown in Appendix B. By substituting the Taylor series of
Eqs. (66) and (71) into Eq. (64), Eq. (65) can be expressed as

Js = 1∏
r 	=s

(
λ̄2

ms − λ̄2
mr

)nr

ns−1∑
n=0

c(d)
n (λ̄ms)b

(s)
ns−1−n. (77)

Performing the summation of Eq. (61) over all groups then
yields

J =
∑

s

1∏
r 	=s

(
λ̄2

ms − λ̄2
mr

)nr

ns−1∑
n=0

c(d)
n (λ̄ms)b

(s)
ns−1−n. (78)

Since λ̄ms 	= λ̄mr if s 	= r due to the grouping of Eq. (58),
this expression is clearly free from apparent divergences,
thus eliminating the need for limit operations even when the
singular values are degenerate. In particular, Eq. (78) is more
useful than Eq. (57) for numerical calculations, by which the
author has verified the consistency of Eq. (24) with Eq. (17)
by using the Monte Carlo method for integration.

To outline the calculation of Eq. (78), a simple case is
presented wherein the singular values in d = 6 are divided
into three groups:

(λ̄m1,n1) = (λ,3), (λ̄m2,n2) = (
√

2λ,2),

(λ̄m3,n3) = (
√

3λ,1). (79)

The first group s = 1 can be used to obtain J1. Since n1 = 3, it
is necessary to calculate b

(1)
0 , b(1)

1 , and b
(1)
2 from Eq. (77), which

themselves require h
(1)
1 and h

(1)
2 , as in Eq. (75). According to

Eq. (76),

h
(1)
1 = 5

2λ2
, h

(1)
2 = 9

4λ4
, (80)

which gives

b
(1)
0 = 1, b

(1)
1 = 5

2λ2
, b

(1)
2 = 17

4λ4
. (81)

By combining these coefficients with c
(6)
0 (λ), c

(6)
1 (λ), and

c
(6)
2 (λ), the following equation can be obtained:

J1 = −λ2

(
137

8
log2 λ2 + 4

ln 2

)
. (82)

022104-6



INFORMATION, FIDELITY, AND REVERSIBILITY IN . . . PHYSICAL REVIEW A 93, 022104 (2016)

Similar calculations should be done for the second and third
groups, s = 2 and s = 3, to obtain J2 and J3. Then, J can
be obtained by adding J1, J2, and J3, although the result is
omitted here.

IV. EXAMPLE

As an example, a class of quantum measurements with
highly degenerate singular values is considered next to discuss
trade-offs among the information, fidelity, and reversibility
that are given by Eqs. (24), (37), and (48), respectively. The
measurement considered here is described by a measurement
operator whose singular values are

λm1 = λm2 = · · · = λmk = 1,

λm(k+1) = λm(k+2) = · · · = λm(k+l) = λ, (83)

λm(k+l+1) = λm(k+l+2) = · · · = λmd = 0,

when it yields an outcome m. The singular values are sorted
in descending order by the interchange of Eq. (25), and the
maximum singular values are normalized to 1 by the rescaling
of Eq. (26). Note that, if k = 0, l = 0, λ = 0, or λ = 1,
this measurement becomes a projective measurement, as was
discussed in Ref. [39]. Therefore, it is assumed that

k = 1,2, . . . ,d − 1, l = 1,2, . . . ,d − k, 0 < λ < 1.

(84)

First, the calculation of the information given by Eq. (24)
is presented with dividing the singular values into groups as in
Eq. (58) to handle their degeneracies:

(λ̄m1,n1) = (1,k), (λ̄m2,n2) = (λ,l),

(λ̄m3,n3) = (0,d − k − l). (85)

In this case, Eq. (65) should be used rather than Eq. (77) to
calculate the dangerous term of Eq. (57), because it is easy to
expand the left-hand side of Eq. (64) as a Taylor series. In fact,
for the first group s = 1, Eq. (64) becomes

(1 + ε)k+l log2(1 + ε)

(1 + ε − λ2)l
=

∞∑
n=0

z(1)
n εn. (86)

The numerator is expanded as in Eq. (66), with coefficients
c(k+l)
n (1) = a(k+l)

n , while the remaining part can be expanded
by the generalized binomial theorem as

1

(1 + ε − λ2)l
= (−1)l

∞∑
n=0

(
l + n − 1

l − 1

)
1

(λ2 − 1)l+n
εn.

(87)

Using these Taylor series, for the first group s = 1, J1 can be
found to be

J1 = (−1)l
k−1∑
n=0

(
k + l − n − 2

l − 1

)
a(k+l)

n

(λ2 − 1)k+l−n−1
(88)

and, similarly, for the second group s = 2,

J2 = (−1)k
l−1∑
n=0

(
k + l − n − 2

k − 1

)
c(k+l)
n (λ)

(1 − λ2)k+l−n−1
. (89)
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FIG. 1. Information I (m) as a function of singular value λ in d =
4 for (k,l) = (1,1), (1,2), (1,3), (2,1), (2,2), and (3,1). The symbols
{Pr}(r = 1,2,3,4) denote projective measurements of rank r .

On the other hand, for the third group s = 3, J3 = 0 can be
obtained from Eq. (77) because c(d)

n (0) = 0. The dangerous
term in Eq. (57) is then given by J = J1 + J2, as in Eq. (61).
From the resultant J , the information of Eq. (24) can be
calculated as

I (m) = log2 d − 1

ln 2
[η(d) − 1] − log2(k + lλ2)

+ 1

k + lλ2

[
(−1)l

k−1∑
n=0

(
k + l− n− 2

l − 1

)
a(k+l)

n

(λ2−1)k+l−n−1

+(−1)k
l−1∑
n=0

(
k + l − n − 2

k − 1

)
c(k+l)
n (λ)

(1 − λ2)k+l−n−1

]
,

(90)

since the Hilbert–Schmidt norm of Eq. (20) is σ 2
m = k + lλ2 in

this case. Figure 1 shows this information I (m) as a function
of λ in d = 4 for various (k,l). In the figure, the symbols
{Pr}(r = 1,2,3,4) denote projective measurements of rank r ,
even though P4 in d = 4 is nothing more than the identity
operation. The information for Pr is given by [39]

I (m) = log2
d

r
− 1

ln 2
[η(d) − η(r)]. (91)

As shown in Fig. 1, the information of Eq. (90) for (k,l) is equal
to that for Pk when λ = 0 and is equal to that for Pk+l when λ =
1, as expected; these facts can be confirmed mathematically
from Eq. (90) as shown in Appendix C. The estimation fidelity
G(m) given in Eq. (54) also changes in a way similar to I (m)
between 1/4 and 2/5.

At the same time, the fidelity of Eq. (37) and reversibility
of Eq. (48) can be calculated to be

F (m) = 1

d + 1

[
k(k + 1) + 2klλ + l(l + 1)λ2

k + lλ2

]
(92)

and

R(m) = d

(
λ2

k + lλ2

)
δd,(k+l), (93)
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FIG. 2. Fidelity F (m) as a function of singular value λ in d = 4
for (k,l) = (1,1), (1,2), (1,3), (2,1), (2,2), and (3,1). The symbols
{Pr}(r = 1,2,3,4) denote projective measurements of rank r .

respectively, since the trace norm of Eq. (36) is τm = k + lλ

and the minimum singular value of Eq. (45) is λm, min =
λδd,(k+l). Figures 2 and 3 show this fidelity F (m) and
reversibility R(m) as functions of λ in d = 4 for various (k,l),
while those for Pr are given by [39]

F (m) = r + 1

d + 1
(94)

and

R(m) = δd,r . (95)

The reversibility of Eq. (93) is 0 for each of (k,l) = (1,1),
(1,2), and (2,1) since λm, min = 0, as shown in Fig. 3.

Now the trade-offs among information gain, state change,
and physical reversibility can be discussed for this class of
measurements, since the three quantities have been expressed
as functions of the same single parameter λ. As the param-
eter λ increases, the information of Eq. (90) monotonically
decreases, as in Fig. 1, whereas the fidelity of Eq. (92) and
reversibility of Eq. (93) monotonically increase, as in Figs. 2
and 3. Thus, as a measurement provides more information
about the state of the system, it changes the state less reversibly
and to a greater extent. Therefore, loss of fidelity and loss of
reversibility are both regarded as costs of information gain.
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FIG. 3. Reversibility R(m) as a function of singular value λ in d =
4 for (k,l) = (1,1), (1,2), (1,3), (2,1), (2,2), and (3,1). The symbols
{Pr}(r = 1,2,3,4) denote projective measurements of rank r .
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FIG. 4. Efficiency with respect to fidelity, EF (m), as a function
of singular value λ in d = 4 for (k,l) = (1,1), (1,2), (1,3), (2,1),
(2,2), and (3,1). The symbols {Pr}(r = 1,2,3,4) denote projective
measurements of rank r .

To explore the balance between costs and gains, two kinds
of measurement efficiencies can be defined: one is the ratio of
information gain to fidelity loss,

EF (m) ≡ I (m)

1 − F (m)
, (96)

and the other is the ratio of information gain to reversibility
loss,

ER(m) ≡ I (m)

1 − R(m)
. (97)

Figures 4 and 5 show these efficiencies, EF (m) and ER(m),
as functions of λ in d = 4 for various (k,l). As shown in
Fig. 4, the efficiency EF (m) is not always a monotonic
function, although it is difficult to analytically find its extreme
value. In contrast, as shown in Fig. 5, the efficiency ER(m)
is a monotonic function like the information function I (m).
In fact, for (k,l) = (1,1), (1,2), and (2,1), the efficiency
ER(m) is identical to the information I (m) because of the
irreversibility, R(m) = 0. The efficiencies EF (m) and ER(m)
for Pr can also be calculated from Eqs. (91), (94), and (95)
when r = 1, 2, or 3. However, it is not straightforward
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FIG. 5. Efficiency with respect to reversibility, ER(m), as a
function of singular value λ in d = 4 for (k,l) = (1,1), (1,2),
(1,3), (2,1), (2,2), and (3,1). The symbols {Pr}(r = 1,2,3,4) denote
projective measurements of rank r .
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to calculate the efficiencies for the identity operation P4,
since I (m) = 0 and F (m) = R(m) = 1. The limit values at
P4 can be calculated by considering the measurement of
Eq. (83) with (k,l) = (d − 1,1) and λ2 = 1 − ε. In this case,
the information, fidelity, and reversibility given by Eqs. (90),
(92), and (93), respectively, can be expanded as

I (m) = 1

2d2 ln 2

(
d − 1

d + 1

)
ε2 + O(ε3), (98)

F (m) = 1 − 1

4d

(
d − 1

d + 1

)
ε2 + O(ε3), (99)

R(m) = 1 − d − 1

d
ε − d − 1

d2
ε2 + O(ε3). (100)

By taking the limit as ε → 0, the limits of the efficiencies
EF (m) and ER(m) at P4 are found to be

EF (m) → 2

d ln 2
, ER(m) → 0. (101)

V. CONCLUSION

The information, fidelity, and reversibility of an arbitrary
quantum measurement have been shown in a d-level system
whose premeasurement state is assumed to be completely
unknown. These quantities have been expressed as functions
of the singular values {λmi} of the measurement operator M̂m

corresponding to the outcome m of the measurement, as shown
in Eqs. (24), (37), and (48). Unfortunately, when some singular
values are degenerate, Eq. (24) for the information gain is
not useful due to the apparent divergence of the dangerous
term shown in Eq. (57). Therefore, another expression for
the dangerous term was presented in Eq. (78), which is free
of any apparent divergence even when singular values are
degenerate. As an example, a class of quantum measurements
was considered whose singular values, as shown in Eq. (83),
are highly degenerate. According to the general formulas,
the information, fidelity, and reversibility were calculated as
shown in Eqs. (90), (92), and (93), respectively. For d = 4,
these quantities are shown in Figs. 1–3, which indicate the
trade-offs among the information, fidelity, and reversibility.
That is, as a measurement provides more information about
the state of the system, it changes the state by a greater degree
and more irreversibly. Two measurement efficiencies were also
defined, as shown in Eqs. (96) and (97), to show their different
behavior.

The formulas shown in this paper are applicable to any
efficient quantum measurement in systems with a finite-
dimensional Hilbert space, such as multiple qubits or a
qudit in quantum information theory. When an outcome is
obtained by measurements, it is possible to calculate how
much information is provided and how greatly and reversibly
the state of the system is changed directly from the singular
values of the measurement operator corresponding to the
obtained outcome with no optimization problems [7,9,14].
The three quantities are for each single outcome rather than
those averaged over all possible outcomes with probabilities
given by Eq. (13), as shown in Eqs. (29), (38), and (49).
It is not necessary to know the measurement operators

corresponding to other outcomes. Therefore, the trade-offs
at the level of a single outcome are more fundamental in
quantum measurement. Although the trade-offs were shown
only in a specific class of measurements in this paper, a general
theory for such trade-offs will be presented in future studies.
For general measurements, increasing information does not
necessarily result in decreasing fidelity or reversibility. This is
because the three quantities are functions of d − 1 parameters
and hence their relations are expressed by regions of finite size
rather than lines. However, the boundaries of the regions show
trade-offs among information, fidelity, and reversibility.

APPENDIX A: AVERAGES OVER STATES

Herein, the averages of qm(a) and [fm(a)]2 over all possible
pure states of a d-level system are shown to prove Eqs. (19)
and (35). They are given by

qm = 1

N

∑
a

∑
i

λ2
mi |ci(a)|2, (A1)

f 2
m = 1

N

∑
a

∑
i,j

λmiλmj |ci(a)|2∣∣cj (a)
∣∣2

, (A2)

from Eqs. (12) and (33), together with Eq. (14). First, the
constants C, D, and E can be defined as

1

N

∑
a

|ci(a)|2 ≡ C (A3)

and

1

N

∑
a

|ci(a)|2|cj (a)|2 ≡
{
D (if i = j )
E (if i 	= j ). (A4)

Note that these constants do not depend on i or j , because
there is no preferred state |i〉 when the index a runs over all
pure states of the system. Using these constants, Eqs. (A1) and
(A2) can be written as

qm = C
∑

i

λ2
mi = Cσ 2

m, (A5)

f 2
m = D

∑
i

λ2
mi + E

∑
i 	=j

λmiλmj = (D − E)σ 2
m + Eτ 2

m,

(A6)

where σm and τm are defined by Eqs. (20) and (36), respec-
tively.

To calculate the constants C, D, and E, a parametrization
of the coefficients {ci(a)} can be introduced. If αi(a) and βi(a)
are the real and imaginary parts of ci(a), respectively, then the
normalization condition of Eq. (3) becomes∑

i

[αi(a)2 + βi(a)2] = 1, (A7)

which is the condition for a point to be on the unit sphere in 2d

dimensions. Thus, {αi(a)} and {βi(a)} should be parametrized
by the hyperspherical coordinates (θ1,θ2, . . . ,θ2d−2,φ) as

α1(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 sin θ2 sin θ1 cos φ,

β1(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 sin θ2 sin θ1 sin φ,
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α2(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 sin θ2 cos θ1,

β2(a) = sin θ2d−2 sin θ2d−3 · · · sin θ3 cos θ2,

...

αd (a) = sin θ2d−2 cos θ2d−3,

βd (a) = cos θ2d−2, (A8)

where 0 � φ < 2π and 0 � θp � π for p = 1,2, . . . ,2d −
2. The index a can be replaced with the angles
(θ1,θ2, . . . ,θ2d−2,φ), and the summation over a can be replaced
with the integral over the angles:

1

N

∑
a

−→ (d − 1)!

2πd

∫ 2π

0
dφ

2d−2∏
p=1

∫ π

0
dθp sinp θp. (A9)

Then, if i = 1 and j = d,

C = 1

N

∑
a

|c1(a)|2 = (d − 1)!

πd−1

2d−2∏
p=1

∫ π

0
dθp sinp+2 θp,

(A10)

D = 1

N

∑
a

|c1(a)|4 = (d − 1)!

πd−1

2d−2∏
p=1

∫ π

0
dθp sinp+4 θp,

(A11)

E = 1

N

∑
a

|c1(a)|2|cd (a)|2

= C − (d − 1)!

πd−1

2d−2∏
p=2d−3

∫ π

0
dθp sinp+4 θp

×
2d−4∏
p=1

∫ π

0
dθp sinp+2 θp. (A12)

These integrals can easily be calculated to be

C = 1

d
, D = 2

d(d + 1)
, E = 1

d(d + 1)
(A13)

by using the integral formula∫ π

0
dθ sinn θ = √

π
�

(
n+1

2

)
�

(
n+2

2

) (A14)

for n > −1 with the Gamma function �(n). Therefore,
Eqs. (19) and (35) can be proven by substituting Eq. (A13)
into Eqs. (A5) and (A6).

APPENDIX B: COEFFICIENTS OF SERIES

Herein, the coefficients of the Taylor series in Eqs. (66) and
(71) are presented. To find the coefficients {c(d)

n (λ)} in Eq. (66),
the following Taylor series is first considered:

(1 + ε)d log2(1 + ε) ≡
d−1∑
n=0

a(d)
n εn + O(εd ). (B1)

By expanding (1 + ε)d and log2(1 + ε) in the Taylor series, the
coefficients {a(d)

n } can be determined to be a
(d)
0 = 0 for n = 0

and

a(d)
n = 1

ln 2

n∑
k=1

(−1)k+1

k

(
d

n − k

)
(B2)

for n = 1,2, . . . ,d − 1.
Next, a proof of the equivalence between Eqs. (B2) and (68)

will be presented by mathematical induction. As the first step,
it will be shown that the statement holds for a

(d)
1 and a

(d)
d−1. It

is easy to see that both equations yield a
(d)
1 = 1/ ln 2. At the

same time, by using the identity

1

k

(
d

d − 1 − k

)
= d

[
1

k
− 1

k + 1

](
d − 1

k

)
(B3)

and the summation formulas
n∑

k=1

(−1)k+1

k

(
n

k

)
= η(n),

n∑
k=1

(−1)k+1

k + 1

(
n

k

)
= n

n + 1
,

(B4)

a
(d)
d−1 in Eq. (B2) becomes

a
(d)
d−1 = d

ln 2
[η(d) − 1], (B5)

which is equal to that in Eq. (68). As the second step, it
will be shown that if the statement holds for a(d−1)

n with n =
1,2, . . . ,d − 2, then it holds for a(d)

n with n = 2,3, . . . ,d − 2,
on the basis of the recurrence relation

a(d)
n = a(d−1)

n + a
(d−1)
n−1 , (B6)

which originates from

(1 + ε)d log2 (1 + ε) = (1 + ε)(1 + ε)d−1 log2 (1 + ε).

(B7)

Since this recurrence relation is satisfied by both equations,
the second step can be shown. Accordingly, by mathematical
induction starting from d = 2 and n = 1, the statement that
Eq. (B2) is equal to Eq. (68) for all d and n has been proven.
Note that Eq. (68) can include the case of n = 0, since a

(d)
0 = 0.

By using the coefficients {a(d)
n }, the coefficients {c(d)

n (λ)}
can be found. The left-hand side of Eq. (66) can be written as

(λ2 + ε)d log2(λ2 + ε)

= λ2d

(
1 + ε

λ2

)d[
log2 λ2 + log2

(
1 + ε

λ2

)]
, (B8)

while from Eq. (B1),(
1 + ε

λ2

)d

log2

(
1 + ε

λ2

)
=

d−1∑
n=0

a(d)
n

(
ε

λ2

)n

+ O(εd ).

(B9)

By substituting Eq. (B9) into Eq. (B8), the coefficients {c(d)
n (λ)}

can be obtained, as in Eq. (67).
Finally, the coefficients {b(s)

n } of Eq. (71) will be derived.
The coefficients {b(s)

n } can be found by defining Ks as

Ks ≡
∏
r 	=s

(
1 + ε

λ̄2
ms − λ̄2

mr

)−nr

=
∞∑

n=0

b(s)
n εn (B10)
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and expanding ln Ks rather than Ks itself as a Taylor series:

ln Ks =
∞∑

n=1

1

n!
h(s)

n εn, (B11)

where the coefficients {h(s)
n } are given by Eq. (76). Therefore,

Ks can be expressed as the exponential of a Taylor series:

Ks = exp

( ∞∑
n=1

1

n!
h(s)

n εn

)
. (B12)

According to Faà di Bruno’s formula, the exponential of
a Taylor series can be expanded as a Taylor series by the
complete Bell polynomials shown in Eq. (72) as

exp

( ∞∑
n=1

1

n!
xnε

n

)
=

∞∑
n=0

1

n!
Bn(x1,x2, . . . ,xn)εn. (B13)

By applying this formula to Eq. (B12), the coefficients {b(s)
n }

of Eq. (75) can be obtained. Note that the complete Bell
polynomials satisfy the following formulas: for a constant c

and a positive integer m,

Bn(cx1,c
2x2, . . . ,c

nxn) = cnBn(x1,x2, . . . ,xn), (B14)

Bn(0!m,1!m, . . . ,(n − 1)!m) = n!

(
m + n − 1

m − 1

)
. (B15)

The first formula is valid on the basis of the definition in
Eq. (72), and the second formula can be derived from Eq. (B13)
because

∞∑
n=0

1

n!
Bn(0!m,1!m, . . . ,(n − 1)!m)εn

= exp

(
m

∞∑
n=1

1

n
εn

)
= e−m ln (1−ε) = 1

(1 − ε)m
. (B16)

APPENDIX C: LIMITS TO PROJECTIVE MEASUREMENT

Herein, Eq. (90) for (k,l) is shown to be equal to Eq. (91)
for r = k when λ = 0 and to that for r = k + l when λ =
1, as expected from the definition of Eq. (83). When λ = 0,
the dangerous term J = J1 + J2 given in Eqs. (88) and (89)
becomes

lim
λ→0

J =
k−1∑
n=0

(
k + l − n − 2

l − 1

)
(−1)k−n−1a(k+l)

n , (C1)

since c(d)
n (0) = 0. This expression can be simplified by the

identity

k−1∑
n=0

(
k + l − n − 2

l − 1

)
(−1)k−n−1a(k+l)

n = a
(k)
k−1, (C2)

which is derived from
1

(1 + ε)l
(1 + ε)k+l log2 (1 + ε) = (1 + ε)k log2 (1 + ε)

(C3)

by expanding 1/(1 + ε)l , (1 + ε)k+l log2(1 + ε), and (1 +
ε)k log2(1 + ε) in Taylor series and comparing terms of order

εk−1 on both sides. The dangerous term is then found to be

lim
λ→0

J = a
(k)
k−1 = k

ln 2
[η(k) − 1] (C4)

by using Eq. (68). This shows that, when λ = 0, Eq. (90)
becomes

I (m) = log2
d

k
− 1

ln 2
[η(d) − η(k)], (C5)

which is equal to Eq. (91) for r = k.
On the other hand, when λ = 1, the dangerous term J =

J1 + J2 has apparent divergences as in Eqs. (88) and (89).
However, it can be calculated by substituting 1 + ε for λ2 and
taking the limit as ε → 0. Note that the divergent terms in
Eqs. (88) and (89) should cancel each other, since J is finite.
The dangerous term is thus given by

lim
λ→1

J =
l−1∑
n=0

(
k + l − n − 2

k − 1

)
(−1)l−n−1

×
[(

k + l

n

)
a

(k+l−n)
k+l−n−1 + (k + l − n)a(k+l)

n

]
. (C6)

Moreover, by using

(
k + l

n

)
a

(k+l−n)
k+l−n−1 + (k + l − n)a(k+l)

n =
(

k + l − 1

n

)
a

(k+l)
k+l−1

(C7)

derived from Eq. (68) and

l−1∑
n=0

(−1)l−n−1

(
k + l − n − 2

k − 1

)(
k + l − 1

n

)
= 1 (C8)

derived from

1

(1 + ε)k
(1 + ε)k+l−1 = (1 + ε)l−1 (C9)

by comparing terms of order εl−1 on both sides, it is found to
be

lim
λ→1

J = a
(k+l)
k+l−1 = k + l

ln 2
[η(k + l) − 1]. (C10)

This shows that, when λ = 1, Eq. (90) becomes

I (m) = log2
d

k + l
− 1

ln 2
[η(d) − η(k + l)], (C11)

which is equal to Eq. (91) for r = k + l.
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