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Non-Hermitian tight-binding network engineering
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We suggest a simple method to engineer a tight-binding quantum network based on proper coupling to an
auxiliary non-Hermitian cluster. In particular, it is shown that effective complex non-Hermitian hopping rates can
be realized with only complex onsite energies in the network. Three applications of the Hamiltonian engineering
method are presented: the synthesis of a nearly transparent defect in an Hermitian linear lattice; the realization
of the Fano-Anderson model with complex coupling; and the synthesis of a PT -symmetric tight-binding lattice
with a bound state in the continuum.
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I. INTRODUCTION

Hamiltonian engineering is a powerful technique to control
classical and quantum phenomena with important applications
in many areas of physics such as quantum control [1–4],
quantum state transfer and quantum information processing
[5–10], quantum simulation [11–13], and topological phases
of matter [14–19]. In quantum systems described by a tight-
binding Hamiltonian, quantum engineering is usually aimed
at tailoring and controlling hopping rates and site energies,
using either static or dynamic methods. For example, special
tailoring of the hopping rates in a linear tight-binding chain
allows one to realize perfect state transfer between distant
sites in the chain [6,9,20], whereas external time-dependent
perturbations represent a rich and versatile resource to realize
synthetic gauge fields, thus achieving topological phases in
systems that are topologically trivial in equilibrium [15–19].
The recent growing interest in non-Hermitian quantum and
classical systems [21], especially in those possessing PT
symmetry [22], has motivated the extension of quantum
control methods and Hamiltonian engineering into the non-
Hermitian realm [23–27], with ramifications and important
applications to, e.g., PT -symmetric integrated photonic de-
vices [28]. The ability to tailor complex onsite potentials
and non-Hermitian hopping amplitudes is a key task in the
engineering of non-Hermitian quantum networks [23]. While
the engineering of complex onsite potentials is a rather feasible
task, the realization of complex hopping amplitudes remains a
rather challenging issue. For example, in optics non-Hermitian
tight-binding networks with complex onsite potentials are
readily implemented by evanescent coupling of light modes
trapped in optical wave guides or resonators with optical
gain and loss in them, while the realization of controllable
non-Hermitian coupling constants is a much less trivial task.
However, complex hopping amplitudes play an important
role for the observation of a wide variety of phenomena
that have been disclosed in recent works [24,29–34]. These
include incoherent control of non-Hermitian Bose-Hubbard
dimers [24], self-sustained emission in semi-infinite non-
Hermitian systems at the exceptional point [29], optical
simulation of PT -symmetric quantum field theories in the
ghost regime [30,31], invisible defects in tight-binding lattices
[32], non-Hermitian bound states in the continuum [33], and
Bloch oscillations with trajectories in a complex plane [34].

Previous proposals to implement complex hopping amplitudes
are based on fast temporal modulations of complex onsite
energies [31,32]; however, such methods are rather challenging
in practice and, as a matter of fact, to date there is not
any experimental demonstration of non-Hermitian complex
couplings in tight-binding networks.

In this work we suggest a simple method to engineer
hopping amplitudes and site energies in a tight-binding
network, which simply involves Hermitian couplings and
no synthetic gauge fields. The method is based on proper
coupling of the main tight-binding network to an auxiliary
non-Hermitian cluster. In particular, it is shown that effective
complex (non-Hermitian) hopping rates can be realized with
only static onsite complex potentials in the network, i.e.,
avoiding fast modulation and thus greatly simplifying its prac-
tical implementation. Three applications of the tight-binding
network engineering method are presented: the synthesis of a
nearly invisible defect in an Hermitian tight-binding linear
lattice; the realization of the Fano-Anderson model with
complex coupling; and the synthesis of a PT -symmetric
tight-binding lattice with a bound state in the continuum.

II. NETWORK ENGINEERING METHOD

Let us consider a rather general tight-binding network S,
which is constructed topologically by N sites |n〉S and the
various connections between them. As a simplified model, it
captures the essential features of many discrete classical and
quantum systems [23]. To engineer the hopping rates and site
potentials of the network S, we consider an auxiliary cluster
A, with M sites |α〉A, which is coupled to the main network S
[Fig. 1(a)]. As a limiting case, the network S can comprise
an infinite number of sites; for example, it can describe
an infinitely extended one-dimensional tight-binding lattice,
side-coupled to the auxiliary cluster A. The tight-binding
Hamiltonian of the full system S+A is given by

Ĥ = ĤS + ĤA + ĤI (1)

where

ĤS =
∑
n,m

H(S)
n,m|n〉S〈m|S , ĤA =

M∑
α,β=1

H(A)
α,β |α〉A〈β|A (2)
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FIG. 1. (a) Schematic of a tight-binding network S coupled to an
auxiliary cluster A made of M sites. (b) Control of hopping amplitude
between sites |n0〉S and |m0〉S via an auxiliary site |α0〉A.

are the Hamiltonians of the main (S) and auxiliary (A)
networks, respectively, and

ĤI =
M∑

α=1

∑
n

(ρα,n|α〉A〈n|S + ρ̃n,α|n〉S〈α|A) (3)

describes their interaction. In the above equations, the Roman
and Greek indices run over the sites of main network S and
auxiliary cluster A, respectively, the matrix H(S) describes
onsite potentials (diagonal elements H(S)

n,n) and hopping ampli-
tudes (off-diagonal elements H(S)

n,m,n �= m) among the various
sites of the main system S, and the M × M matrix H(A) is the
analogous matrix for the auxiliary system. The two matrices
ρ and ρ̃, entering in Eq. (3), describe the interaction between
the sites of S and A. We assume that the hopping rates among
the different sites in both main (S) and auxiliary (A) networks
are Hermitian and that there are not gauge fields that introduce
Peierls phases in the hopping amplitudes. Such an assumption
implies that the nondiagonal elements of the matrices H(S) and
H(A), and all the elements of the matrices ρ and ρ̃, are real,
with ρα,n = ρ̃n,α,H(S)

n,m = H(S)
m,n and H(A)

α,β = H(A)
β,α , i.e.,

ρ̃ = ρT , H(S) = H(S) T , H(A) = H(A) T . (4)

However, site potentials H(S)
n,n and H(A)

α,α , in either or both
the main and auxiliary networks, are allowed to be complex.
Note that if the auxiliary cluster is made of purely dissipative
sites, i.e., the imaginary parts of H(A)

α,α are either zero or
negative, the eigenvalues of H(A) have negative (or vanishing)
imaginary parts, and secularly growing terms of the auxiliary
site amplitudes are avoided in the weak coupling regime
ρ → 0. After expanding the state vector of the full system
as

|ψ(t)〉 =
∑

n

cn(t)|n〉S +
M∑

α=1

aα(t)|α〉A, (5)

from the Schrödinger equation i∂t |ψ(t)〉 = Ĥ |ψ〉 one obtains

i
dcn

dt
=

∑
m

H(S)
n,mcm +

M∑
α=1

ρ̃n,αaα, (6)

i
daα

dt
=

M∑
β=1

H(A)
α,βaβ +

∑
n

ρα,ncn. (7)

To obtain the dynamical behavior of the system solely,
one might try to proceed by elimination of the auxiliary
amplitudes aα(t) from Eqs. (6) and (7), thus obtaining coupled

integrodifferential equations for the system amplitudes cn(t)
(see the Appendix). However, such a procedure turns out
to be useful in defining an effective energy-independent
Hamiltonian Ĥeff for the system S whenever the auxiliary
system A is an almost continuum of states (i.e., M → ∞)
and the S-A coupling is weak. Indeed, this is the usual way
to describe metastability of Markovian open quantum systems
(see, for instance, Refs. [35–37]). Here, however, we typically
consider a finite (and possibly small) number of auxiliary sites
M , a typical infinitely extended system S (N → ∞), and do
not necessarily require the S-A coupling to be weak. In such
a case, the reduction procedure of open quantum systems and
derivation of an effective Hamiltonian can be applied under
certain conditions solely, which are discussed in the Appendix.
For our purposes, we follow here a different strategy. Let us
look for an eigenstate of Ĥ with energy E, which can be either
a bound state or a scattered state when N = ∞. Assuming the
dependence ∼ exp(−iEt) for the amplitudes in Eqs. (6) and
(7), one obtains

Ec = H(S)c + ρ̃a, (8)

Ea = H(A)a + ρc, (9)

where c = (. . . ,c−1,c0,c1,c2, . . . )T and a =
(a1,a2,a3, . . . ,aM )T are the vectors of S and A site
amplitudes. After elimination of the amplitudes a, one obtains

Ec = Heff(E)c, (10)

where we have set

Heff(E) ≡ H(S) + ρ̃(E − H(A))−1ρ. (11)

Equation (11) shows that the effect of the auxiliary cluster A
is to renormalize the hopping amplitudes and site potentials of
the network S by adding, to the Hamiltonian H(S), a generally
energy-dependent term [the second term on the right-hand
side of Eq. (11)]. Such an additional term is analogous to the
so-called optical potential found in the effective Hamiltonian
description of decaying open quantum systems using the
Feshbach’s projection operator method [36].

Interestingly, the optical potential term generally makes the
off-diagonal elements of Heff complex; i.e., the effective hop-
ping amplitudes are non-Hermitian even though all hopping
amplitudes in the network and auxiliary cluster are Hermitian.
In particular, one can readily shown the following:

(i) If the cluster A is Hermitian, i.e., on-site potentials H(A)
α,α

are real, then Heff is real and symmetric. In this case the effect
of A is to renormalize the hopping rates of sites in S because
of additional tunneling paths introduced by the the auxiliary
sites; however, they remain Hermitian. A typical example
is provided by indirect (second-order) tunneling, which is
described in Sec. III A.

(ii) If the onsite potentials H(A)
α,α in the auxiliary sites are

complex, for any real energy E the matrixHeff(E) is symmetric
but not Hermitian, i.e., one has

(Heff)n,m = (Heff)m,n (12)

but (Heff)n,m is generally complex. This is one of the most
important result of the analysis and shows that complex onsite
potentials in the auxiliary sites result in an effective non-
Hermitian hopping amplitudes among sites in the network S.
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It should be noted that the above equivalence holds for a
prescribed energy E, and that Eq. (10) is actually an implicit
eigenvalue equation since the effective Hamiltonian Heff(E)
depends on energy E via the optical potential term [the second
term on the right-hand side of Eq. (11)]. For weak S-A
coupling, i.e., for ρ → 0, an iterative procedure can be used
to solve Eq. (10), while in certain special cases some bound
states can be determined in a closed form without resorting
to any approximation (see, for example, the model discussed
in Sec. III C). However, there are at least two important cases
where the problem is amenable of analytical results, without
requiring small interaction limit.

(i) Linear tight-binding homogeneous lattices. Let us
suppose that the network S is an infinitely extended one-
dimensional tight-binding lattice with (asymptotically) ho-
mogeneous nearest-neighbor hopping rate κ and uniform site
potentials, i.e., H(S)

n,m → κ(δn,m+1 + δn,m−1) as n,m → ±∞.
Since the auxiliary cluster A couples only with a few sites
in S with finite index n, the scattering states of S are
asymptotically plane waves, cn ∼ exp(±iqn) as n → ±∞,
and their energy is known and given by E = 2κ cos(q), where
−π � q < π is the Bloch wave number. Hence, for a fixed
value of the wave number q, the effective Hamiltonian Heff is
known and scattering states, including reflection-transmission
coefficients, can be readily determined by standard methods.
This approach can be applied to the determination of bound
states as well, looking at the poles of the spectral transmission.
An example is discussed in Sec. III A.

(ii) Large onsite potentials of auxiliary cluster. If the onsite
potentials H(A)

α,α of the auxiliary sites are (in modulus) much
larger than the energy |E|, the inverse matrix (E − H(A))−1

entering in the optical potential is weakly dependent on the
energy E, and thus one can approximately set

Heff 	 H(S) − ρ̃(H(A))−1ρ. (13)

In this way the dependence of the effective HamiltonianHeff on
energy is removed. In particular, by further assuming |H(A)

α,α| 

|H(A)

β,γ | (β �= γ ), (H(A))−1 is diagonal with elements 1/H(A)
α,α ,

so that taking into account that ρ̃ = ρT one has

(Heff)n,m 	 H(S)
n,m −

M∑
α=1

ρα,nρα,m

H(A)
α,α

. (14)

Equation (14) enables us, in principle, to engineer the effective
matrix elements (Heff)n,m in a rather flexible and independent
way. For example, to engineer the hopping amplitude between
two prescribed sites n = n0 and m = m0 of the network S, we
can consider an auxiliary site, say |α0〉A, which is the only site
of A coupled to |n0〉S and |m0〉S [Fig. 1(b)]. From Eq. (14) one
then obtains

(Heff)n0,m0 	 H(S)
n0,m0

− ρα0,n0ρα0,m0

H(A)
α0,α0

. (15)

Note that while the hopping amplitudes (H(S))n0,m0 ,ρα0,n0 and
ρα0,m0 are real, the onsite potential H(A)

α0,α0
is complex, so that

by a judicious choice of (H(A))α0,α0 and ρα0,n0ρα0,m0 a desired
non-Hermitian complex hopping amplitude (Heff)n0,m0 can be
realized. Note that, as opposed to the weak coupling limit
described in the Appendix, in such a procedure there is no
restriction on the magnitude of the S-A coupling ρ, so that the

correction to the hopping rate provided by the second term on
the right-hand side of Eq. (15) is not necessarily small.

III. APPLICATIONS

The rather general procedure of network engineering
presented in Sec.II is exemplified by considering three
applications to some important physical problems, namely
the synthesis of a nearly invisible defect in an Hermitian
homogeneous lattice, the realization of the Fano-Anderson
model with non-Hermitian coupling, and the synthesis of a
PT -symmetric tight-binding lattice with a bound state in the
continuum.

A. Nearly invisible defect in an Hermitian tight-binding lattice

The possibility of synthesizing transparent defects in tight-
binding lattices has received an increasing interest in the past
recent years [32,38–40], with the experimental demonstration
of reflectionless potentials in arrays of evanescently coupled
optical waveguides with tailored coupling constants [39]. In
optics, reflectionless defects sustaining propagative bound
states offer the possibility to realize transparent optical inter-
sections in photonic circuits [40]. Transparent defect modes are
generally synthesized by inverse scattering or supersymmetric
methods [32,38], which require a careful control of hopping
amplitudes over several lattice sites. Here it is shown that
a nearly invisible defect mode can be simply realized in an
otherwise homogeneous tight-binding linear lattice exploiting
the hopping rate engineering method discussed in the previous
section. Let us consider the linear tight-binding lattice S shown
in Fig. 2(a), which is side-coupled to one auxiliary site A
(M = 1). For such a system we have

(H(S))n,m = κ(δn,m+1 + δn,m−1) + σ (δn,0δm,0 + δn,1δm,1)

+ (θ − κ)(δn,0δm,1 + δn,1δm,0), (16)

H(A) = U, (17)

ρ1,n = ω(δn,0 + δn,1). (18)

In the above equations, κ is the hopping rate between adjacent
sites in the main lattice S, with a defective hopping rate θ

between sites |0〉S and |1〉S ; σ is the potential at sites |0〉S
and |1〉S ; ω is the hopping rate between the auxiliary site |1〉A
and the two sites |0〉S and |1〉S ; and U is the potential of site
|1〉A [see Fig. 2(a)]. According to Eq. (11), elimination of the
auxiliary site yields the following effective Hamiltonian for
the lattice S:

(Heff)n,m = H(S)
n,m + ω2

E − U

1∑
k,l=0

δn,lδm,k, (19)

which basically describes the modified linear lattice depicted
in Fig. 2(b). As can be seen, the role of the side-coupled
auxiliary site |0〉A is to modify the potentials and hopping rate
between sites |0〉S and |1〉S to the effective values

σ ′ = σ + ω2/(E − U ), (20)

θ ′ = θ + ω2/(E − U ). (21)
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FIG. 2. (a) Schematic of a linear tight-binding lattice S side-
coupled to an auxiliary site A. (b) Equivalent lattice after elimination
of the auxiliary site, with energy-dependent renormalized hopping
rate θ ′ and site potential σ ′, defined by Eqs. (20) and (21) given
in the text. (c) Behavior of the spectral transmittance |t(E)|2 and
phase of t(E) vs energy E = 2κ cos(q) for parameter values θ/κ =
0.2,σ/κ = −0.8 and for U/κ = −5,ω/κ = 2 (curve 1); U/κ =
−10,ω/κ = 2

√
2 (curve 2); U/κ = −20,ω/κ = 4 (curve 3); and

U/κ = −40,ω/κ = 4
√

2 (curve 4).

In particular, note that the effective hopping rate θ ′ is given by
the interference of two terms: direct tunneling between sites
|0〉S and |1〉S with hopping amplitude θ , and indirect (second-
order) tunneling via the auxiliary site with energy-dependent
hopping amplitude ω2/(E − U ).

The spectral transmission and reflection of the resulting
lattice of Fig. 1(b), as well as bound states, can be calculated
by standard methods, with the results of the analysis given
below. However, the conditions for a nearly invisible defect
can be readily established from an inspection of Eqs. (20) and
(21) without any detailed calculation. In fact, as discussed for
the general case in Sec. III, in the large |U | limit the effective
Hamiltonian turns out to be independent of the energy E, the
latter being bounded in the interval (−2κ,2κ) for scattering
states. Hence for large |U | one can assume σ ′ 	 σ − ω2/U

and θ ′ 	 θ − ω2/U . Interestingly, with the choice

σ = θ − κ , ω2 = U (θ − κ) (22)

one has σ ′ 	 0 and ω′ 	 κ; i.e., the effective lattice in
Fig. 1(b) is homogeneous and thus invisible. Note that, for
θ < κ , invisibility is obtained for U < 0 and σ < 0. The
onset of invisibility can be checked by exact calculation of the
spectral transmission and reflection coefficient for the lattice
of Fig. 1(b) following a standard procedure. Let us look for a

scattered state solution to the eigenvalue equation (10) of the
form

cn =
{

exp(−iqn) + r(q) exp(iqn) n � 0
t(q) exp(−iqn) n � 1, (23)

where q is the Bloch wave number, t(q) and r(q) are the
spectral transmission and reflection coefficients, respectively,
and E = 2κ cos(q) is the energy. The expressions of t and r

can be determined by writing coupled equations for amplitudes
at sites |0〉S and |1〉S , i.e.,

Ec0 = κc−1 + θ ′c1 + σ ′c0, (24)

Ec1 = κc2 + θ ′c0 + σ ′c1. (25)

After substitution of the ansatz (23) into Eqs. (24) and (25),
coupled equations for r and t are obtained, which can be solved
for t , yielding

t(q) = 2iκθ ′ sin(q) exp(iq)

[κ exp(iq) − σ ′ + θ ′][κ exp(iq) − σ ′ − θ ′]
. (26)

The dependence of the corrected hopping rate θ ′ and site
potential σ ′ on energy E is determined by Eqs. (20) and (21).
Substitution of Eqs. (20) and (21) into Eq. (26) finally yields

t(q) =
2iκ[θ (E − U ) + ω2] sin(q) exp(iq)

[κ exp(iq) − σ + θ ]{(E − U )[κ exp(iq) − σ − θ ] − 2ω2} .

(27)

A typical behavior of t(E) (modulus and phase) for increasing
values of |U |/κ and for θ = κ/5 are shown in Fig. 2(c).
The site potential σ and hopping rate ω are chosen to
satisfy the invisibility condition Eq. (22). Note that, according
to the theoretical prediction, a near-invisible defect over the
entire tight-binding energy band is realized at increasing values
of |U |/κ .

Bound states sustained by the lattice at the defective
region can be determined by looking at the poles of t(q)
in the complex q plane, with Im(q) < 0. Assuming that the
conditions (22) are satisfied, after setting y = exp(iq) the
condition t(q) = ∞ leads to the following algebraic (cubic)
equation for y:

y3 +
(

1 − U

κ
− 2θ

κ

)
y2 +

(
1 + U

κ

)
y + 1 − 2θ

κ
= 0,

(28)
with the constraint |y| > 1. Assuming U < 0 and 0 � θ < κ ,
such an equation admits of one acceptable solution, corre-
sponding to the existence of one bound state, for U < −2θ .
Hence, in the near transparency regime (i.e., for |U |/κ large),
there is always one bound state, corresponding in the physical
lattice of Fig. 1(a) to high localization in the auxiliary site |1〉A.

B. Fano-Anderson model with complex coupling

The Fano-Anderson model [41,42], also referred to as
the Friedrichs-Lee model in quantum field theory [43], is
ubiquitous in different areas of physics and describes quite
generally the coupling of a bound state to a continuum
[Fig. 3(a)]. A paradigmatic example of the Fano-Anderson
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FIG. 3. (a) Schematic of a bound state coupled to a continuum
of states. When the energy of the bound state is not embedded in
the continuous spectrum, for small coupling g there is not a decay
while the energy of the bound state is renormalized. The ghost regime
of the Lee model is realized when the coupling g to the continuum
is imaginary (g = −iG). (b) Tight-binding lattice realization of the
Lee model in the ghost regime. The continuum of states is given
by the Bloch modes of a semi-infinite homogeneous lattice. The
end of the semi-infinite lattice is attached by complex coupling
g to the localized state |0〉. (c) Phase diagram of the Lee model.
Below the curve 2 the system is in the unbroken PT phase, with
one bound state in region I (the so-called physical particle state)
and two bound states in region II (the so-called physical particle
state plus the so-called ghost). Above curve 2 the PT symmetry is
broken. Analytic equations of curves 1 and 2 are G = κ

√−2 + (σ/κ)
and G = κ

√−1 + (σ/2κ)2, respectively. (d) Implementation of
the non-Hermitian (imaginary) coupling by an auxiliary site |1〉A.
(d) Numerically computed evolution of the occupation probability
P (t) as obtained from the exact Lee Hamiltonian (solid curve) and
from the synthesized lattice (dashed curve). Parameter values are
given in the text.

model, which is often encountered in the theory of coherent
transport in mesoscopic condensed-matter systems and in
integrated photonic systems, is provided by the coupling of
a localized state to an infinite or semi-infinite tight-binding
lattice, i.e., to a continuous band of Bloch modes [44,45].
Hermitian coupling (hopping amplitude g real) is the gold
standard in such models; however, complexification of the
coupling constant (g imaginary) is of some interest in certain
quantum models, such as the Lee model in the so-called ghost
regime [30] or in the theory of the inverted quantum oscillators
and quantum amplifiers [46,47]. Let us discuss here the Lee
model with complex coupling, in which the Hamiltonian is
not Hermitian but PT symmetric [30]. A simple tight-binding
lattice realization of the Lee model in the ghost regime is shown
in Fig. 3(b) [31]. It consists of a semi-infinite homogeneous
tight-binding chain with (Hermitian) hopping amplitude κ

between adjacent sites and connected to the end to a node with
onsite potential σ > 2κ and with complex coupling g = −iG.
The Hamiltonian of the tight-binding Lee model of Fig. 3(b)

reads

Ĥ =
∞∑

n=1

κ(|n〉〈n + 1| + |n + 1〉〈n|)

+ σ |0〉〈0| + g(|0〉〈1| + |1〉〈0|), (29)

where g = −iG is the imaging coupling of the localized state
at site |0〉 with the semi-infinite tight-binding lattice. The phase
space diagram of the Lee Hamiltonian (29) is depicted in
Fig. 3(c) [31]. In the unbrokenPT phase, the lattice can sustain
either one or two bound states. For a small coupling G [domain
I in Fig. 3(c)], the system shows a single bound state with
energy slightly modified from the unperturbed value σ and
given by

E1 = (σ/2 +
√

(σ/2)2 − G2 − 1)2 + (1 + G2)2

(1 + G2)(σ/2 +
√

(σ/2)2 − G2 − 1)
. (30)

In the framework of the Lee model, such a state represents the
physical particle state of the V fermion with renormalized mass
[30]. However, as G is increased, in addition to the physical
particle state, another bound state appears at the energy

E2 = (σ/2 −
√

(σ/2)2 − G2 − 1)2 + (1 + G2)2

(1 + G2)(σ/2 −
√

(σ/2)2 − G2 − 1)
. (31)

which is called a ghost [domain II in Fig. 3(c)]. As discussed
in Ref. [31], the appearance of a ghost state in addition to
the physical V-particle state can be detected by monitoring
the temporal evolution of the occupation probability P (t) =
|c0(t)|2, when the system is initially prepared in the bare V
state, i.e., for cn(0) = δn,0: The existence of the ghost state is
visualized as an undamped oscillatory behavior of P (t) that
arises from the interference of the physical and ghost states.

The most challenging issue for an experimental implemen-
tation of the tight-binding lattice relies on the realization of
the non-Hermitian coupling g = −iG of site |0〉 with the
semiarray. A few proposals have been previously suggest,
based on a fast temporal modulation of complex onsite
energies [31,32]; however, such methods are rather challenging
in practice and, as a matter of fact, to date there has
not been any experimental demonstration of non-Hermitian
complex couplings in tight-binding networks. A simple way
to synthesize a complex hopping, and thus the Lee Hamiltonian
(29) in the ghost regime, is shown in Fig. 3(d). The two
terminating sites in the main lattice S are connected to an
auxiliary site A with complex potential U . The Hamiltonian
of S is given by

(H(S))n,m = κ(δn,m+1 + δn,m−1) + σ1δn,0δm,0 + σ2δn,1δm,1

+ (θ − κ)(δn,0δm,1 + δn,1δm,0) (32)

(n,m = 0,1,2, . . . ), where κ is the hopping rate between
adjacent sites, with a defective hopping rate θ between sites
|0〉S and |1〉S ; and σ1,σ2 are the potentials at sites |0〉S and
|1〉S , respectively. The auxiliary site, with complex potential
U , is connected to sites |0〉S and |1〉S via a hopping amplitude
ω. Following a similar procedure than the one discussed in the
previous example (Sec. III A), after elimination of the auxiliary
site A the following effective energy-dependent Hamiltonian
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for S,

(Heff)n,m = H(S)
n,m + ω2

E − U

1∑
k,l=0

δn,lδm,k. (33)

Since we wish to simulate the Lee Hamiltonian at energies
in proximity of the physical particle-V state, an approxi-
mate energy-independent Hamiltonian can be obtained from
Eq. (33) by letting E = E0, where E0 is an energy close to
either the particle or ghost state energies E1,2. Taking, for
example, E = E2, the effective Hamiltonian (33) reduces to
the Lee Hamiltonian (29) with complex coupling provided that
the site potentials U,σ1 and σ2 are tuned at the values

U = ω2

θ + iG
+ E2, (34)

σ1 = σ + θ + iG, (35)

σ2 = θ + iG. (36)

For example, let us consider the Lee Hamiltonian for parameter
values G/κ = 1.05 and σ/κ = 3, i.e., inside the domain II of
Fig. 3(b) and corresponding to the existence of two bound
states (the physical V state and the ghost state). To implement
such an Hamiltonian, we assume ω/κ = 7,θ/κ = 0.2 and tune
the values of U, σ1, and σ2 according to Eqs. (34)–(36),
namely σ1/κ = 3.2 + 1.05i,σ2/κ = 0.2 + 1.05i and U/κ 	
11 − 45i. To check the fidelity of the synthesized Hamil-
tonian, in Fig. 3(e) we compare the numerically computed
evolution of the occupation probability P (t) = |c0(t)|2 with
the initial condition cn(0) = δn,0, as obtained by the exact
Lee Hamiltonian with complex coupling [Eq. (29)] and by
the synthesized effective Hamiltonian [Eq. (33)]. Note that
the oscillatory behavior of the occupation probability, arising
from the interference of the physical particle state and the ghost
state, is satisfactorily reproduced by the effective Hamiltonian.

C. Bound states in the continuum in a PT -symmetric
tight-binding lattice

Bound states in the continuum (BIC) are quite anomalous
bound states with energy embedded into the continuous spec-
trum of scattered states. In simple terms, they can be viewed
as resonances of zero width. Originally predicted by Von
Neumann and Wigner in certain slowly decaying oscillating
potentials [48], they have been later found to arise from
quite different mechanisms. In experiments, BICs have been
predicted and observed in a wide range of physical systems,
such as condensed-matter, electromagnetic, optical, acoustical,
and hydrodynamic systems [44,49–53]. In particular, classical
and quantum tight-binding networks provide a fertile platform
to tailor the energy spectrum and to synthesize BIC modes
[44,53,54]. While most of previous studies on BIC states
have been limited to considering Hermitian systems, recent
works have extended the idea of BIC modes to PT -symmetric
non-Hermitian photonic networks [33,55,56], where they
can appear either below or above the symmetry-breaking
threshold. While BIC states above the symmetry-breaking
threshold are quite common and are similar to bound states
outside the continuum because they have complex energies

[55], BIC modes in the unbroken PT phase are less common
and their synthesis requires special lattice engineering [33]. In
particular, a non-Hermitian PT -symmetric lattice sustaining
one BIC mode below the symmetry-breaking threshold can
be synthesized following the proposal of Ref. [33]; however,
complex hopping rates are required. The tight-binding Hamil-
tonian of the lattice is given by [33]

Ĥ =
∞∑

n=−∞
(κn+1|n + 1〉〈n| + κn|n〉〈n − 1|) (37)

with inhomogeneous hopping amplitudes given by

κn

κ
=

{√
(n + 1)/(n − 1) n even, n �= 0 κ0 = −ig,

√
(n − 2)/n n odd, n �= 1 κ1 = ig,

(38)

where g > 0 is a real-valued parameter. Note that, since
κn/κ → 1 as n → ±∞, the lattice is asymptotically ho-
mogeneous. It also satisfies the PT symmetry requirement
κ−n = κ∗

n+1. The non-Hermitian nature of the lattice arises
from the imaginary value of the hopping amplitudes κ0 and κ1.
The energy spectrum of Ĥ is real valued for g � gth = κ; i.e.,
PT symmetry breaking occurs at gth = κ . In the unbrokenPT
phase (g < gth), the energy spectrum comprises, in addition
to the continuous spectrum (−2κ,2κ) of scattered states of the
asymptotic homogeneous lattice, one BIC mode with algebraic
localization at the energy E0 = 0, given by [33]

cn =
⎧⎨
⎩

0 n odd
κ/g n = 0
n
|n|

in+1√
n2−1

n even, n �= 0
. (39)

Here we suggest a simpler PT -symmetric tight-binding
lattice, which does not require complex hopping rates and that
admits of the same BIC state. It comprises a tight-binding
network S and two auxiliary sites |1〉A and |2〉A in the
geometrical setting of Fig. 4(a). For such a system we can
write

H(S)
n,m =

{
κnδn,m+1 + κn+1δn,m−1 both n,m �= 0

0 either n,m = 0
,

(40)

H(A) =
(−iU 0

0 iU

)
, (41)

ρα,n = ωδα,1(δn,−1 + δn,0) + ωδα,2(δn,0 + δn,1), (42)

where κn (with n �= 0,1) are defined by Eq. (38) and ω,U

are real parameters. After elimination of the auxiliary sites,
according to Eq. (11) the following effective energy-dependent
Hamiltonian is obtained:

(Heff)n,m = H(S)
n,m

+ ω2

E + iU
(δn,−1δm,−1 + δn,−1δm,0 + δn,0δm,−1)

+ ω2

E − iU
(δn,0δm,1 + δn,1δm,0 + δn,1δm,1)

+ 2Eω2

E2 + U 2
δn,0δm,0, (43)
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FIG. 4. (a) Schematic of the PT -symmetric tight-binding lattice,
with Hermitian hopping amplitudes and imaginary potentials ±iU

at the auxiliary sites |1〉A and |2〉A, that admits of a bound state
in the continuum. The hopping rates κn (n �= 0,1) are defined by
Eq. (37) given in the text. (b) Equivalent tight-binding lattice model
obtained after elimination of the two auxiliary sites. The energy-
dependent hopping amplitudes θ0,1 and site potentials σ0,1,2 are
given by θ0(E) = ω2/(E + iU ), θ1(E) = ω2/(E − iU ), σ−1(E) =
ω2/(E + iU ), σ0(E) = 2Eω2/(E2 + U 2), and σ1(E) = ω2/(E −
iU ). (c) Numerically computed energy spectrum of the tight-binding
lattice of Fig. 4(a) for ω/κ = 1 and U/κ = 0.4. The lattice comprises
N = 403 sites. Eigenmodes are ordered for increasing values of
eigenenergy. The two arrows in the figure highlight the existence
of four bound states with energies in the gap, two above and the other
two below the tight-binding energy band. (d) Numerically computed
participation ratio R of the lattice eigenmodes. Localized modes,
corresponding to low values of R, are highlighted by the arrows in
the figure. The central eigenmode, with energy E0 = 0 in the middle
of the allowed band, corresponds to the BIC state.

which is illustrated in the scheme of Fig. 4(b). Note that, for
E = E0 = 0, the effective Hamiltonian (43) is equivalent to
the Hamiltonian (37) with g = ω2/U , except for additional
energy potentials ∓iω2/U at the odd sites n = ±1 [Fig. 4(b)].
Since the BIC mode of the Hamiltonian (37) does not occupy
odd sites of the lattice [see Eq. (39)], it follows that the
Hamiltonian (43), i.e., the lattice depicted in Fig. 4(a), has one
BIC state at energy E0 = 0 as well. It should be noted that,
owing to the dependence of Heff on the energy E, its energy
spectrum is not equivalent to the one of the Hamiltonian (37),
even thought they admit the same BIC mode at energy E0 = 0.
In particular, the lattices of Fig. 4(a) sustains additional bound
states in the gap, i.e., bound states outside the continuum
(BOC), while the original Hamiltonian (37) does not. We

numerically computed the energy spectrum of the lattice of
Fig. 4(a) for ω/κ = 1 and for increasing values of the onsite
potential U/κ , assuming typically N = 403 lattice sites with
reflective boundary conditions [57]. The spectrum turns out to
be real (unbroken PT phase) for U/κ � 0.46. As an example,
Fig. 4(c) shows the numerically computed spectrum for U/κ =
0.4. The degree of localization of the eigenstate cn(E) with
energy E is measured by the participation ratio R(E), given by
R(E) = (

∑
n |cn|2)2/(

∑
n |cn|4). For localized modes, R ∼ 1

while for extended states R ∼ N . The distribution of R(E)
for the N = 403 lattice eigenmodes is shown in Fig. 4(d).
The figure clearly indicates the existence of one BIC state
with algebraic localization at energy E0 = 0, together with
four BOCs with exponential decay tails and with energies
outside the lattice band. The outer BOC states have an energy
E1,2 	 ±2.202κ and E3,4 	 ±2.142κ .

IV. CONCLUSIONS

In this paper we have suggested a simple method to engineer
a tight-binding quantum network by judicious coupling to
an auxiliary cluster. Remarkably, the technique allows one
to implement effective non-Hermitian hopping rates with
only complex onsite energies and Hermitian couplings in
both the network and auxiliary cluster, avoiding the use of
external time-dependent control fields. As compared to other
engineering methods, such as those based on inverse scattering,
supersymmetry or external time-dependent control fields, the
method turns out to be rather simple and flexible for a practical
implementation. We have discussed three applications of
the method to timely problems: the synthesis of a nearly
transparent defect in an Hermitian linear lattice, the realization
of the Fano-Anderson model with complex coupling, and
the synthesis of a PT -symmetric tight-binding lattice with
a bound state in the continuum.

APPENDIX: EFFECTIVE HAMILTONIAN DESCRIPTION
IN THE WEAK COUPLING LIMIT

In this Appendix we briefly discuss the possibility of
deriving an energy-independent effective Hamiltonian Ĥeff for
the tight-binding network S after elimination of the degree of
freedoms of the auxiliary system A. To this aim, let us intro-
duce the vectors of amplitudes c(t) = (. . . c−1,c0,c1,c2, . . . )T

and a(t) = (a1,a2,a3, . . . )T and write the coupled differential
equations (6) and (7) in the compact form

i
dc
dt

= H(S)c + ρT a, (A1)

i
da
dt

= H(A)a + ρc. (A2)

Equation (A2) can be formally integrated, yielding

a(t) = −i

∫ t

0
dξ exp[iH(A)(ξ − t)]ρc(ξ ). (A3)

In writing Eq. (A3) we assumed that the auxiliary sites are
not excited at initial time, i.e., a(0) = 0. Such a condition
is not necessary when the auxiliary cluster A is dissipative,
i.e., all eigenvalues of H(A) have negative imaginary part.
Substitution of Eq. (A3) into Eq. (A1) yields the following
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integrodifferential equation for c(t)

i
dc
dt

= H(S)c − i

∫ t

0
dξρT exp[iH(A)(ξ − t)]ρc(ξ ). (A4)

The standard derivation of an effective Hamiltonian from the
integrodifferential equation (A4) within Markovian approxi-
mation generally requires that [35] (i) the auxiliary cluster A
has a continuous spectrum, i.e. M → ∞, and (ii) the S-A cou-
pling is weak, i.e., ρ → 0 (Weisskopf-Wigner approximation).
For a finite number M of sites in A, such a reduction cannot
be generally accomplished. There is, however, a special case
where it can be done and that deserves to be briefly mentioned,
although it has some narrow application for the purpose of
network engineering. Let us assume that (i) S is Hermitian, so
they the eigenvalues of H(S) are real; (ii) A is non-Hermitian
and dissipative, with all eigenvalues of H(A) with negative
imaginary part; and (iii) S-A coupling is weak, i.e. ρ → 0. In
this case, it is worth considering the dynamics in the interaction
picture. After setting

c(t) = exp(−iH(S)t)c̃(t), (A5)

form Eqs. (A4) and (A5) one obtains

i
d c̃
dt

= −i exp(iH(S)t)

×
∫ t

0
dτρT exp(−iH(A)τ )ρ exp[iH(S)(τ − t)]c̃(t − τ ).

(A6)

In the ρ → 0 limit, c̃(t) varies slowly on time, and c̃(t − τ )
under the sign of integral on the right-hand side of Eq. (A6)
can be calculated at τ = 0, since exp(−iH(A)τ ) → 0 and
exp(iH(S)τ ) remains limited at τ → ∞. After extending the
upper integral limit on the right-hand side of Eq. (A6) to ∞, the
integrodifferential equation (A6) simplifies into the following
differential equation:

i
d c̃
dt

= exp(iH(S)t)� exp(−iH(S)t)c̃(t), (A7)

where we have set

� ≡ −i

∫ ∞

0
dτρT exp(−iH(A)τ )ρ exp(iH(S)τ ). (A8)

In terms of the original amplitude c(t), by using Eqs. (A5) and
(A7) one finally obtains

i
dc
dt

= Heffc(t), (A9)

where we have set

Heff = H(S) + �. (A10)

Therefore, coupling with the auxiliary dissipative cluster A
yields a correction to the the tight-binding Hamiltonian of
the network S, given by the term � defined by Eq. (A8).
However, since the above derivation holds in the weak coupling
approximation, the correction � to H(S) is generally a small
one.
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