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Number-parity effect for confined fermions in one dimension
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For N spin-polarized fermions with harmonic pair interactions in a one-dimensional trap an odd-even effect is
found. The spectrum of the one-particle reduced density matrix of the system’s ground state differs qualitatively
for N odd and N even. This effect only occurs for strong attractive and repulsive interactions. Since it does
not exist for bosons, it must originate from the repulsive nature implied by the fermionic exchange statistics. In
contrast to the spectrum, the one-particle density and correlation function for strong attractive interactions do not
show any sensitivity on the number parity. This also suggests that reduced-density-matrix-functional theory has
a more subtle N dependency than density-functional theory.
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Introduction. Physical behavior often depends qualitatively
on binary parameters as, e.g., odd and even or integer and
half-integer. Such parity effects play an important role in
physics. A well-known example is Kramers’ number-parity
effect, i.e., the twofold degeneracy of the eigenstates of a
quantum system with an odd number of electrons, provided
time-reversal symmetry holds [1]. Haldane [2] has shown
the existence of a spin-parity effect. The spectrum of the
quantum Heisenberg antiferromagnet in one dimension has
an energy gap for all integer spins, whereas it is gapless
in the case of half-integer spins. Recently, an interesting
number-parity effect has been observed experimentally for
a few ultracold fermions in a quasi-one-dimensional trap.
Tuning the potential such that the pair interactions become
attractive, Cooper pairs are formed. Their tunneling is different
for an odd and an even number of fermions [3]. Based on
Kramers’ theorem another number-parity effect was proven
to exist for fermionic one-particle reduced density matrices
(1-RDM) [4] (see also Ref. [5]). There it was shown that
the eigenvalues of a 1-RDM arising from an eigenstate of a
time-reversal symmetric Hamiltonian are twofold degenerate
for an even number of fermions.

In the present work we will show that the so-called natural
occupation numbers, i.e., the spectrum {λk} of the ground state
1-RDM for strongly attractive and spin-polarized fermions
confined in one dimension also exhibits an odd-even effect.
Since the spin-polarizing magnetic field breaks time-reversal
symmetry, this effect is completely different from that found
in Ref. [4]. Furthermore, it does not occur for bosons.
Consequently, it must result from the fermionic exchange
symmetry.

Besides the relevance of parity effects on their own,
exploring the structure of reduced density matrices has
also gained a lot of relevance during recent years. This is
essentially due to progress [6–11] in the quantum marginal
problem (QMP) which studies the relation of reduced density
matrices arising from a common multipartite quantum state.
For basic overviews of the QMP the reader may consult
Refs. [12–14]. The most prominent QMP is the two-particle
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N -representability problem [5,15], the description of 2-RDM
arising from N -fermion quantum states. Its solution would
allow one to efficiently calculate ground states of fermionic
quantum systems with two-body interactions. However, since
this problem and most of the other QMPs are quantum
Merlin-Arthur hard [16], already partial insights on the set
of compatible density matrices are highly appreciated and
alternative methods for the ground state calculation are
gaining importance as well. One such promising method is
reduced-density-matrix-functional theory (see, e.g., [17,18]).
This natural extension of density-functional theory [19] seeks a
distinguished functionalF on the 1-RDM whose minimization
leads to the exact ground state energy and the corresponding
ground state 1-RDM. Any structural insights on ground state
1-RDM contributes to this task of finding or approximating
F by exposing further necessary constraints on legitimate
functionals.

Model and 1-RDM. We consider N identical particles with
mass m in a one-dimensional harmonic trap interacting via a
harmonic two-body potential. If xi is the position of the ith
particle the Hamiltonian reads

Ĥ =
N∑

i=1

[
− �

2

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

]
+ 1

2
D

∑
1�i<j�N

(xi − xj )2,

(1)

where ω is the eigenfrequency of the trap and D is the inter-
action strength, which can be positive or negative. Stability
requires D > Dlow ≡ −mω2/N .

Hamiltonian (1) arises as an effective model, e.g., for the
description of quantum dots, where the Coulomb interaction
between the electrons is screened (see, e.g., Ref. [20]).
Furthermore, it was used to understand the emergence of shell
structures in atoms (see, e.g., Ref. [21]) and nuclei (see, e.g.,
Ref. [22]).

The great advantage of model (1) is the exact knowledge
of all its eigenstates [23–27]. For arbitrary numbers of bosons
and any spatial dimension the ground state 1-RDM can easily
be calculated [24–27]. Based on such analytic results Bose-
Einstein condensation in harmonic traps was explored (see,
e.g., Ref. [28]). In contrast to bosons, the analytical calculation
of the corresponding fermionic 1-RDM is much more involved.
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We will show that the properties of the fermionic 1-RDM are
much richer, compared to the bosonic case, leading to new
insights.

For spin-polarized (or spinless) fermions in one dimension,
the spatial part of the ground state of Hamiltonian (1) is
the totally antisymmetric wave function [23–25] (see also
Refs. [20,21])

�
(f )
0 (x1, . . . ,xN ) = N (f )

N

⎡
⎣ ∏

1�i<j�N

(xi − xj )

⎤
⎦

× exp
[ − A

(
x2

1 + · · · + x2
N

)
+B(x1 + · · · + xN )2

]
(2)

with N (f )
N a normalization factor and

A = 1

2l2+
, B = 1

2N

(
1

l2+
− 1

l2−

)
. (3)

l− = √
�/mω and l+ =

√
�/m(ω2 + DN/m)1/2 are the

length scales for the center of mass and the relative motion,
respectively. Note that �

(f )
0 (x1, . . . ,xN ) resembles Laughlin’s

wave function [29] for the fractional quantum Hall effect. We
will come back to this point below.

The 1-RDM of wave function (2) follows as [24,25]

ρ
(f )
1 (x; y) = N (f )F (x,y) exp[−a(x2 + y2) + bxy] (4)

with the polynomial F (x,y) in x and y of degree 2(N − 1) [30]
and

a = A − B − b/2, b = (N − 1)B2/[A − (N − 1)B].

(5)

The factor N (f ) (not to be confused with N (f )
N , the nor-

malization constant of �
(f )
0 ), follows from the normalization∫ ∞

−∞ dx ρ
(f )
1 (x; x) = N . The bosonic and fermionic 1-RDM

are related by [25]

ρ
(f )
1 (x; y) = Ñ (f )F (x,y) ρ

(b)
1 (x; y), (6)

where Ñ (f ) = N (f )/N (b) and N (b) the corresponding nor-
malization constant appearing in ρ

(b)
1 (x; y). Consequently,

the fermionic nature of ρ
(f )
1 (x; y) is only contained in the

polynomial prefactor F (x,y). It arises from the polynomial
prefactor of the exponential function in Eq. (2), the Vander-
monde determinant, which is a result of the fermionic exchange
symmetry.

The spectrum {λk} follows from solving the eigenvalue
equation ∫ ∞

−∞
dy ρ

(f )
1 (x; y)χ (f )

k (y) = λ
(f )
k χ

(f )
k (x), (7)

k = 1,2,3, . . . . In quantum chemistry the λk are called
natural occupation numbers. These eigenvalues will be ordered
decreasingly, i.e., λk � λk+1 for all k � 1. Due to the duality
{λk(l−,l+)} = {λk(l+,l−)}, first observed in Ref. [31] and
proven in Ref. [32], we restrict to l+/l− � 1. Note, l+/l− < 1
(l+/l− > 1) means attractive (repulsive) pair interactions.
Since we are interested only in fermions we also suppress
the superscript (f ).

Strong-coupling limit and results. For attractive interaction
the strong-coupling limit DN/mω2 → ∞ corresponds to the
limit t ≡ l+/l− → 0, performed at N fixed. For repulsive
interactions it follows for DN/mω2 → DlowN/mω2, corre-
sponding to t → ∞.

We will prove that completely unexpected features of
the spectrum of the fermionic 1-RDM occur in this limit,
which can be discussed analytically. Due to the duality
property [32] we can restrict to attractive interactions, i.e.,
to t � 1. Technical details can be found in [30].

In the following all coordinates xi and all lengths will
be measured in units of l−. For t → 0, there are three basic
observations. First, the leading order of ρ1(x; y) is proportional
to exp{−N−1

4N
[(x − y)/t]2} [30]. Therefore, the weight of the

deviation of y from x decreases extremely fast for decreasing
t . Second, χk(x) varies on an x scale proportional to

√
t and

third, the polynomial prefactor F (x,y) converges to a poly-
nomial F̃ (z̃) where z̃ = (x − y)/t [30]. Let us introduce the
rescaled variable x̃ = x/

√
t and χk(

√
t x̃) = exp( 1

2Ntx̃2)ζk(x̃).
Then, by using the momentum representation the eigenvalue
equation (7) for t � 1 reduces to a Schrödinger equation (with
position and momentum exchanged) [30][

− �
2

2m̃

∂2

∂p̃2
+ VN (p̃)

]
ζ̃k(p̃) = (−λk) ζ̃k(p̃). (8)

Here ζ̃k(p̃) is the Fourier transform of ζk(x̃),

m̃N = �
2/[−2tNVN (0)] (9)

is the mass of the “particle,” and

VN (p̃) = −tN
∫ ∞

−∞
dz̃ F̃ (z̃) cos(

√
t p̃z̃) exp

(
−N − 1

4N
z̃2

)

(10)

is an effective potential, where the scaled momentum p̃ =√
tp/� has been introduced. p is the conjugate momentum

of x. VN (p̃) is a product of a polynomial in (
√

t p̃)2 of degree
(N − 1) (originating from the fermionic nature of the 1-RDM)
and a Gaussian exp [− N

N−1 (
√

t p̃)2] [30].
Figure 1 depicts VN (p̃) for N = 3 and N = 4. One observes

that its number of minima equals N . Since VN (p̃) for arbitrary
N is symmetric, one of the minima must be at p̃ = 0, for
N odd. In this case it is the global minimum, which we
checked systematically up to N = 19 and for some exemplary
N up to N = 101. For N even, the global minimum is
twofold degenerate, which we checked for N = 2,4,6, . . . ,20
and for some exemplary N up to N = 100. There is little
doubt that these properties hold for all N . This qualitatively

FIG. 1. Scaled effective potential as a function of
√

t p̃ for N = 3
(left panel) and N = 4 (right panel).
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different behavior of VN (p̃) implies that the spectrum {λk} of
the ground state 1-RDM will qualitatively differ for an odd
and even number of particles. Without solving the eigenvalue
equation (8) one can already predict that the spectrum σ of the
1-RDM consists of two parts σ (up) for k < k∗(t) and σ (low) for
k > k∗(t) where k∗(t) ∼ 1/t is the k value for which (−λk)
equals the height of the highest maximum of VN (p̃). σ (low)

consists of “isolated” eigenvalues only, and does not depend
qualitatively on the number parity. In contrast, the upper part,
σ (up), differs qualitatively for N odd and even. For N odd it
consists of subsets with “isolated” eigenvalues and subsets of
pairs of quasidegenerate eigenvalues, whereas for N even only
subsets with quasidegenerate eigenvalues occur.

This number parity effect can be illustrated by calculating
analytically the largest eigenvalues of the 1-RDM correspond-
ing to the low-lying eigenvalues (−λk) of the “particle” in the
effective potential. This will be done by use of the harmonic
approximation VN (p̃) 	 V

(min)
N + 1

2V
′′(min)
N (p̃ − p̃min)2 for the

global minimum. Then, Eq. (8) reduces to the eigenvalue
equation of a harmonic oscillator with mass m̃, frequency


̃ =
√

V
′′(min)
N /m̃, and eigenvalues λ̄k = −(λk + V

(min)
N ) =

�
̃(k − 1
2 ). Accordingly, we obtain

λk 	 tα

[
1 − tβ

(
k − 1

2

)]
(11)

for k = 1,2,3, . . . . The coefficients follow from

α = −V
(min)
N /t, β =

√
2NV

′′(min)
N

/( − tV
(min)
N

)
, (12)

which are of O(t0).
For N odd, the global minimum of VN (p̃) is nondegenerate

at p̃ = 0. Hence the smallest eigenvalues (−λk) and therefore
the largest eigenvalues λk of Eq. (7) are “isolated.” In the case
of N even, the global minimum is twofold degenerate such that
the tunneling between both minima leads to a splitting (
λ+

k +

λ−

k ). Therefore, the eigenvalues appear in quasidegenerate
pairs {λ2k−1,λ2k} given by

λ2k−1 	 tα

[
1 − tβ

(
k − 1

2

)]
+ 
λ+

k (13)

for k = 1,2,3, . . . . λ2k follows from Eq. (13) by replacing

λ+

k by (−
λ−
k ).

The results (11) and (13) show that λk is of O(t). Its
k dependency is proportional to t2. Since these eigenvalues
are the occupancies of the one-particle states χk(x) they are
non-negative. Hence, the validity of Eqs. (11) and (13) is
limited to k < k∗ ∼ 1/t . They are also based on the harmonic
approximation, which restricts their validity even more (see
below). Furthermore, the tunneling splitting (
λ+

k + 
λ−
k )

can be estimated. Equation (10) shows that VN (p̃) = O(t)
and that it varies on a scale 1/

√
t . This implies m̃ = O(t−2),

a potential barrier 
VN = O(t), and a tunneling distance

p̃ = O(1/

√
t). Using that the splitting is proportional

to exp(−√
m̃
VN
p̃/�) it follows that (
λ+

k + 
λ−
k ) ∼

exp[−O(1/t)], i.e., for N even the pairs (λ2k−1,λ2k) become
quasidegenerate in the regime of strong coupling.

In order to test these predictions we have determined the
eigenvalues by solving numerically the original eigenvalue

FIG. 2. Spectrum {λk} for t = 10−3. Upper panel: N = 3 and
1 � k � 40; lower panel: N = 4 and 1 � k � 62. The solid lines
present the corresponding analytical result for {λk} from Eq. (11)
and from the first term of Eq. (13), respectively. The insets show
the final crossover from the regime of quasidegenerate to that of
nonquasidegenerate eigenvalues.

equation (7) for N = 3 up to N = 8. Note that N = 2 is a spe-
cial case, since there, all eigenvalues are automatically twofold
degenerate as a Hamiltonian-independent consequence of the
fermionic exchange statistics (see Theorem 4.1 in Ref. [5]).

Figure 2 presents the larger eigenvalues for the coupling
t = 10−3 for N = 3 and N = 4. In the case of N = 3 the
subsequent eigenvalues have almost the same distance which
is of O(t2), whereas for N = 4 they occur in quasidegen-
erate pairs with λ2k−1 − λ2k+1 = O(t2) and λ2k−1 − λ2k ∼
exp [−O(1/t)], as predicted by our analysis above. Comparing
for N = 3 the numerical result with the analytical one,
Eq. (11), shows very good agreement for λ1 and the slope
dλk/dk, for small k. For N = 4, λ1 is also well reproduced.
However, the analytical and numerical values for the slope
dλk/dk deviate stronger from each other. This is a consequence
of the fact that in contrast to N = 3 the harmonic approxima-
tion is rather poor due to (p̃ − p̃min)3 anharmonicities of V4

around p̃min. Note, our major achievement is not results (11)
and (13) for the largest eigenvalues, but

(i) the qualitatively different spectrum of the 1-RDM for N

odd and even in the strong-coupling limit and
(ii) the generation and annihilation of quasidegenerate pairs

of eigenvalues for those indices k for which (−λk) becomes
equal to the height of corresponding minima and maxima,
respectively, of VN (p̃).
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FIG. 3. x dependency of the one-particle density for N = 3 (left
panel) and N = 4 (right panel), where we set l− ≡ 1. Blue dashed,
black solid, and red dotted lines correspond to t = 0.1 (attractive),
t = 1 (free fermions), and t = 10 (repulsive), respectively [for t = 10
it is plotted 10 n(10x)].

Figure 2 demonstrates the creation of pairs of quasidegen-
erate eigenvalues and its inset illustrates their annihilation,
e.g., at the highest maximum of VN (p̃), where the crossover to
“isolated” eigenvalues of σ (low) occurs.

Since under an increase of N , VN (p̃) develops more and
more extrema, there will be more and more regimes with
groups of a different number of quasidegenerate pairs. In order
to resolve these regimes for large N , t must become small
enough. Since the t and N dependence occurs as tN [30] it
must be t � t∗(N ) ∼ 1/N . For macroscopically large N of
O(1023) this requires values for t which are not realizable
in experiments. Yet, for N of O(102), for which already
macroscopic properties are present, this should be feasible.
Accordingly, few-fermion systems are particularly suitable
to observe these qualitative features of the spectrum of the
1-RDM.

λk for k � k∗ ∼ 1/t can be determined analytically. With
the approach discussed in Ref. [25] we obtain [30]

λk ∼ (kt)N−1 exp

[
− 2N√

N − 1
t

(
k − 1

2

)]
, (14)

independent of the parity of N .
We have also calculated analytically the one-particle

and two-particle densities n(x) ≡ ρ1(x; x) and n(x,y) ≡
ρ2(x,y; x,y), respectively. The latter follows from the 2-RDM
ρ2(x,y; x ′,y ′). n(x) is shown in Fig. 3 for N = 3 and N = 4.
For noninteracting fermions (black solid line), the “layering”
of the particles within the harmonic trap can be seen. This
“shell structure” also exists for repulsive (red dotted line)
and weak attractive coupling, but disappears completely for
strong attractive interactions (blue dashed line), becoming
qualitatively independent of N , which we checked up to
N = 20. The duality discussed in Ref. [32] implies that the
one-particle density in momentum space for strong repulsive
interaction behaves similarly as n(x) for strong attractive
interactions, i.e., it becomes structureless, as well. Quite
similar behavior has been found for n(x,y). As demonstrated
by Fig. 4 the layering (not shown) for n(x,y) disappears
again for strong attractive coupling, and does not exhibit any
qualitative sensitivity on N (cf. left and right panels of Fig. 4).
All these properties also hold for the correlation function
C(x,y) = n(x,y)/n(x)n(y).

Summary and conclusions. We have shown that the one-
particle description in the form of the 1-RDM exhibits an
odd-even effect. The spectrum of the 1-RDM related to
the fermionic ground state of our one-dimensional harmonic

FIG. 4. x and y dependency of the two-particle density n(x,y)
(not normalized and we set l− ≡ 1) for t = 0.1, N = 3 (left panel),
and N = 4 (right panel).

system differs qualitatively for an even and an odd number
of particles. This effect only occurs for strong attractive and
repulsive (due to the duality property [32]) interactions. The
number-parity effect does not exist for bosons. Therefore
it must originate from the repulsive nature implied by the
fermionic exchange statistics (antisymmetry of the wave
function). One may wonder how far the interplay between
strong pair interactions (particularly for attractive ones) and
the exchange symmetry leads to new phenomena for fermions,
beyond the present parity effect. Also the investigation of
the existence of the odd-even effect in more than one spatial
dimension will be of interest.

It would also be interesting to develop tools which make
it possible to investigate these predictions by experiments.
In that case the parameter t has to be tuned (see below)
such that the splitting of the quasidegenerate eigenvalues is
still large enough in order to be resolved. Since our model
involves harmonic pair interactions one might be tempted to
deny the relevance of our findings for realistic systems. There
are two reasons why this might be not true. First, for arbitrary
pair potential the particles in a trap form a one-dimensional
lattice. Expanding the potential up to quadratic terms in the
displacements with respect to the classical ground state will
result in a harmonic model similar to that studied by us.
This has recently been done for a one-dimensional N -particle
system with long-range inverse power-law potential in order
to calculate the von Neumann entanglement entropy [33].
Second, and even more important, the specific form of the
pair interactions may not be as important as one might
believe. As pointed out above, the odd-even effect for the
spectrum of the fermionic 1-RDM is a result of the polynomial
prefactor in Eq. (2) which makes the wave function totally
antisymmetric. This requirement of antisymmetry has also
been the guide leading to Laughlin’s wave function for
describing the fractional quantum Hall effect. This wave
function again has a preexponential factor [

∏
1�i<j�N (zi −

zj )p], with p an odd natural number and zi the complex
variable specifying the position of the ith particle in the plane.
Laughlin’s ansatz is a surprisingly good approximation of
the two-dimensional electron system’s ground state, not only
for a Coulombic pair potential but for harmonic interactions
as well [29]. This suggests that the specific form of the
pair interactions is less important, which is supported by the
exact ground state solution of the one-dimensional Calogero-
Sutherland model [34–38]. Besides a harmonic trap potential
this model contains pair interactions g(xi − xj )−2. Its ground
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state involves a preexponential factor [
∏

1�i<j�N (xi − xj )p]

with p(g) = 1
2 (1 ± √

1 + 4g). Choosing the coupling constant
such that p(g) is an odd natural number one obtains the ground
state for N fermions.

Therefore our results may also hold for ultracold fermionic
atoms in an optical trap interacting by a contact potential
[39–41]. The interaction can be tuned from attractive to
repulsive. In particular, it can be made arbitrarily strong by
approaching the Feshbach resonance. This would allow one to
experimentally approach the strong-coupling limit discussed
in the present Rapid Communication. Of course, another
possibility to realize that limit is the decrease of the trap
frequency. For instance, for 7Li the trap frequency in the
experimental setup in Ref. [42] is about 30 times smaller than
in the setup of Ref. [43].

The odd-even effect may also initiate and guide a new
direction in density and reduced-density-matrix-functional
theory. Although three decades ago it had been argued that
the N dependency of the ground state energy implies an N

dependency of the density functionals FN [44], all of the
prominent functionals used today do not exhibit an explicit
dependency on N (see, e.g., [45]). The parity effect found
by us is a demonstration of a subtle N dependency of the
spectrum of the ground state’s 1-RDM, and therefore also of
FN . In addition, the fact that the one-particle density n(x)
in the strong-coupling regime does not show any sensitiv-
ity on the number parity suggests that the N dependence
within reduced-density-matrix-functional theory [17,18] is
much more subtle than in ordinary density-functional
theory [19].
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