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Everyday experience supports the existence of physical properties independent of observation in strong contrast
to the predictions of quantum theory. In particular, the existence of physical properties that are independent of
the measurement context is prohibited for certain quantum systems. This property is known as contextuality.
This Rapid Communication studies whether the process of decay in space-time generally destroys the ability of
revealing contextuality. We find that in the most general situation the decay property does not diminish this ability.
However, applying certain constraints due to the space-time structure either on the time evolution of the decaying
system or on the measurement procedure, the criteria revealing contextuality become inherently dependent on
the decay property or an impossibility. In particular, we derive how the context-revealing setup known as Bell’s
nonlocality tests changes for decaying quantum systems. Our findings illustrate the interdependence between
hidden and local hidden parameter theories and the role of time.
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Introduction. The notion of (non)contextuality has its ori-
gins in the logic of nonsimultaneously decidable propositions
[1] and has been extensively studied, in particular with respect
to the question of the existence of hidden parameters [2] and
in terms of applications such as being the key property for a
computation speed up in quantum algorithms [3–5]. A theory
is said to be noncontextual if every random variable only
depends on the choice of the measurement but not on the choice
of other compatible measurements that are comeasured—its
measurement context. If this independence condition does not
hold, we call it contextual. This property can be tested through
criteria designed such that they distinguish these two cases
given the conditions, e.g., [2,6–8]. Another way to formulate
this is to view measurements in groups that are compatible
to each other—contexts—as having outcomes that are jointly
distributed within each context but stochastically unrelated
between contexts. In quantum mechanics different contexts
correspond to different mutually incompatible conditions, so
no stochastic relation is present. The question is whether a
joint distribution on the full set of observables exists, then
providing a noncontextual model, or if it does not exist, so that
the system can be said to be contextual. An overview can be
found, e.g., in Ref. [9].

This Rapid Communication considers decaying quantum
systems and asks whether the process of decay diminishes or
destroys the contextual feature present at a certain time point.
In particular, we will consider the question whether for a set of
measurements, the impossibility of predetermined outcomes
holds for all times if it holds for a certain time in the past (or
future). This is a nontrivial question since decaying systems
live in Hilbert spaces that have to be separated in a “surviving
part” and a “decaying part,” where only the surviving part is
available for the intended measurements. In particular, the all-
important choice of context is only possible for the surviving
part.
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The Rapid Communication is organized as follows. First,
we stress that there are two different types of dichotomic
measurements for decaying (multipartite) systems. We then
show that in the joint-particle measurement scenario (defined
below) every criterion revealing contextuality can be turned
into a criterion that is violated (revealing contextuality) for
all times if it is violated at a time point in the past (or future).
This proves that the property of contextuality, the impossibility
to preassign results to a measurement, persists in time, i.e.,
is unaffected by the decay property. In the case of single-
particle measurements (defined below), which are the most
common experimental situations, we show that the conditions
of compatibility are more involved. Last but not least we
elaborate how the specific contextuality test known as “Bell’s
nonlocality” leads to Bell inequalities for decaying systems.
This, in particular, illuminates how dynamical nonlocality
differs with respect to stable systems.

Two distinct dichotomic measurements on a multipartite de-
caying system. A decaying system has a natural separation into
a “surviving part” and into a “decaying part” whose Hilbert
spaces are disjoint. The crucial point is that any experimental
setup only has access to the surviving part. Consequently,
there exist two dichotomic inequivalent information complete
questions that can be raised to an n-partite decaying system:

(i) Joint-particle measurements: Is the decaying system in
the state |ψ〉 = ∑d1d2···dn

i=1 αi |e(i)〉 at time t1,t2, . . . ,tn or not?
(ii) Single-particle measurements: Is the decaying system

in the state |φ1〉 = ∑d1
i=1 αi |f (i)

1 〉 for particle 1 at time t1 or
not, in the state |φ2〉 = ∑d2

i=1 βi |f (i)
2 〉 at time t2 for particle 2

or not, . . . , and in the state |φn〉 = ∑dn

i=1 γi |f (i)
n 〉 at time tn for

particle n or not?
Here we have assumed that the decaying systems consist

of n particles (n = 1,2, . . . ), each described by dn degrees
of freedom. The vectors |ei〉,|f i

j 〉 form an orthogonal basis
of the surviving part of the Hilbert space, respectively. These
two conceptually different measurement procedures and their
two different cases (equal and unequal times) are illustrated in
Fig. 1.

Time evolution. Since the decay is a Markov process we can
model the system as an open quantum system (for applications
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FIG. 1. Schematic view of the two dichotomic questions for a two-particle scenario. Note that the two particles can be in a separable or
entangled state.

see, e.g., Refs. [10,11]). As shown in Ref. [12] any decaying
multipartite system can be modeled by a Hamiltonian H

covering the surviving part s and a Lindblad operator L

connecting the s part with the decaying part d, i.e.,

H = |s〉〈s| ⊗ H and L = |d〉〈s| ⊗ L, (1)

which satisfies the Lindblad master equation [13,14] (� ≡ 1)

dρ

dt
= − i[H,ρ] − 1

2

∑
(L†

iLi ρ + ρ L†
iLi − 2Li ρ L†

i ), (2)

where ρ is the state of the decaying system and is divided
into a “surviving” and a “decaying” part: ρ = |s〉〈s| ⊗ ρs +
|d〉〈s| ⊗ ρd . Obviously, the decaying part has to be determined
by the time evolution of the surviving part, i.e.,

ρd (t) = L

∫ t

0
ρs(t

′)dt ′ L†, (3)

and the decay rate � is given by L†L = �. The solution ρ(t) =
|s〉〈s| ⊗ ρs(t) + |d〉〈s| ⊗ ρd (t) of this differential equation can
be derived for any number of particles and is referred to as a
“joint-particle” time evolution.

To obtain a “single-particle” time evolution of n particles
we have to exploit the usual tensor product structure for the
Hamiltonian and the generators of the decay

Hsingle-particle

= H ⊗ 1⊗n−1 + 1 ⊗ H ⊗ 1⊗n−2 + · · · + 1⊗n−1 ⊗ H,

Lsingle-particle

= L ⊗ 1⊗n−1 + 1 ⊗ L ⊗ 1⊗n−2 + · · · + 1⊗n−1 ⊗ L .

(4)

Note that in this case the total state is divided for two parti-
cles into four subspaces, surviving-surviving (ss), surviving-
decaying (sd), decaying-surviving (ds), and decaying-
decaying (dd) and defined for two different times. Explicit
solutions for both cases are discussed later.

Revealing contextuality in decaying systems and as given
by space-time structure. We start by exploiting the state-
dependent Klyachko-Can-Binicioğlu-Shumovsky inequality

[6] that works for any system of dimension three or larger.
It is given by

IKCBS = Tr(O1O2ρ) + Tr(O2O3ρ) + Tr(O3O4ρ)

+ Tr(O4O5ρ) + Tr(O5O1ρ) � −3, (5)

where each pair of observables has to be compatible (which
means for quantum mechanics that the observables are
orthogonal, i.e., TrOiOmod(i+1,5) = 0). For an optimal choice
of quantum observables with respect to some given pure state
ρ it is known that the quantum bound 5 − 4

√
5 ≈ −3.944 can

be reached which, consequently, reveals the contextual feature
of quantum mechanics. Since the operators Oi do not need
to have a tensor-product structure they generally correspond
to joint-particle measurements, type (i), and the relevant time
evolution is a joint-particle time evolution. Let us assign the
numbers +1 to a YES outcome and −1 to a NO outcome;
obviously the physics does not depend on that choice (we will
exploit this fact later). Any expectation value can be rewritten
to only depend on the surviving part through

TrOiρ = Tr(2Pi − 1)ρ = Tr(2Pi − 1)ρs − Trρd

= Tr(2Pi − 1)ρs − (1 − Trρs), (6)

where Pi is a projector on the full space and Pi the
corresponding projector onto the surviving part (note that no
projection onto the decaying part is possible). If we assign
instead the numbers −1 to a YES outcome and +1 to a NO
outcome, we obtain an overall minus sign, but if we assign
this relabeling to the projector Pi only onto the decaying part,
we obtain a relative sign change. This situation corresponds
to two physical distinct questions that are identical for stable
systems, i.e. (here we assume for simplicity that all particles
are measured jointly at the same time instance),

(A) Is the system in the state |ψi〉 at time t or not?:
TrOiρ(t) = Tr(2Pi − 1)ρs(t) − [1 − Trρs(t)]

(B) Is the system not in the state |ψ⊥
i 〉 with 〈ψ |ψ⊥〉 = 0 at

time t or is it?: TrŌiρ(t) = Tr(2Pi − 1)ρs(t) + [1 − Trρs(t)].
The first question outputs +1 if the system is in the state

|ψi〉, while the second question outputs +1 if the system is
in the state |ψi〉 or if it has decayed. In a measurement of
OiOj there are now two possibilities depending on whether
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we choose the same or different assignments of +1 and −1 to
the measurement outcomes, i.e.,

TrO1O2ρ = Tr(2P1 − 1)(2P2 − 1)ρs ± (1 − Trρs). (7)

Inserting these expectation values into IKCBS we obtain an
inequality for decaying subsystems that reads

I
decay
KCBS(t) = Tr[(2P1 − 1)(2P2 − 1)ρs(t)]

+ Tr[(2P2 − 1)(2P3 − 1)ρs(t)]

+ Tr[(2P3 − 1)(2P4 − 1)ρs(t)]

+ Tr[(2P4 − 1)(2P5 − 1)ρs(t)]

+ Tr[(2P5 − 1)(2P1 − 1)ρs(t)]

+ c[1 − Trρs(t)] � −3. (8)

Due to the freedom of assigning +1 and −1 to the
measurement outcomes one can control the additional term
c(1 − Trρs). The optimum is reached by choosing alternating
assignments of −1 and +1 to the event of finding that
the system has decayed, resulting in copt = −3. Since ρs

vanishes with increasing time t the inequality I
decay
KCBS(t → ∞)

approaches the classical bound −3 from below. Consequently,
we have shown that if a decaying system violates this criterion
at a given point in time, the violation decreases as time
goes on but will remain for all times, thus the contextual
feature remains. Note that this result holds only for joint-
particle measurements and corresponding joint-particle time
evolutions as we will discuss later in detail.

Let us consider another inequality revealing contextuality,
the well known Mermin-Peres square [7,8], which is known to
be state independent:

IMP = Tr{(A11A12A13 + A21A22A23 + A31A32A33

+A11A21A31 + A21A22A23 − A31A32A33)ρ} � 4

with

(A)ij =
⎛
⎝ σx ⊗ 1 1 ⊗ σz σx ⊗ σz

1 ⊗ σx σz ⊗ 1 σz ⊗ σx

σx ⊗ σx σz ⊗ σz σy ⊗ σy

⎞
⎠

ij

. (9)

It involves the product of three operators (being measured
jointly) and that all products compute. For decaying quantum
systems we obtain

TrO1O2O3ρ = ±Tr(2P1 − 1)(2P2 − 1)(2P3 − 1)ρs(t)

− [1 − Trρs(t)], (10)

where we obtained again a relative sign depending on our
assignment of +1 or −1 to a “YES” event. Thus the Mermin-
Peres version for decaying systems (for both sign choices)
becomes

I
decay
MP = 6 Trρs(t) + 4[1 − Trρs(t)] = 2 Trρs(t) + 4 � 4,

which is obviously violated for any initial state and for all
times.

Straightforwardly, one can also optimize the corresponding
contextuality criteria for more than two particles, e.g., the
state-independent criterion for three qubit systems introduced

in Ref. [15] becomes

I
decay
3particles = 3 + 2 Trρsss + 2Trρsds + 2Trρdsd � 3.

Again in the limit of infinite time, we approach the bound
from above showing that if contextuality can be witnessed by
this inequality for a certain time instance, then it holds for all
times.

Refining the contexts by the space-time structure. The
simplest decaying quantum system is a two-state system
(qubit). The solution of the Lindblad equation (2) in terms
of Kraus operators Qi and assuming two decay constants �1,2

and two energies E1,2 is given by

ρ(t) =
d∑

i=s

Qi(t)ρsQ
†
i (t) (11)

with Qs(t) = |s〉〈s| ⊗ Ks(t), Qd (t) = |d〉〈s| ⊗ Kd (t), Ks(t) =
diag{e−[�1+i(E2−E1)/2]t ,e−[�2−i(E2−E1)/2]t }, and Kd (t)=
diag{√1 − e−�1t ,

√
1 − e−�2t }. Obviously both discussed

criteria for contextuality cannot be violated since at least
a three-dimensional system for the KCBS criterion or a
four-dimensional system for the Mermin-Peres criterion is
required. Therefore we proceed to bipartite identical two-state
systems. The joint-particle time evolution in terms of Kraus
operators is derived to

ρ(t) =
2∑

i=1

Qi(t)ρssQ
†
i (t) (12)

with Q1(t) = |s〉〈s| ⊗ Ks(t) ⊗ Ks(t), Q2(t) = |d〉〈s| ⊗
Kdd (t), and

Kdd (t) = diag{
√

1 − e−2�1t ,
√

1 − e−(�1+�2)t ,√
1 − e−(�1+�2)t ,

√
1 − e−2�2t }.

Note that in the decay-decay (dd) part the tensor-product
structure in the time parameter is lost.

We can now use the above two criteria for contextuality—
KCBS and Mermin-Peres. Figure 2 shows the result for

FIG. 2. The curves show the KCBS inequality optimized over all
five observables at each time point for entangled neutral K-meson
pairs (in units of time life of the shortest decay rate). The blue
curves correspond to initial Bell states |ψ±〉 ≡ ψ and the green
curves for |φ±〉 ≡ φ given in the basis of the eigenstates of the
Hamiltonian (the mass eigenstates). The dashed curves are the results
of the unoptimized version, inequality (5), and the bold curves of
the optimized version, inequality (8). For longer time scales also
I

decay
KCBS(φ,t) approaches from above the classical bound −3.
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the flavor-oscillating and decaying K-mesons system for
the KCBS criterion (E1 − E2 ≡ 
m = m2 − m1 = 3.5 ×
10−12 MeV and �1 ≈ 2
m ≈ 600�2). Let us remark that the
behavior of the violation depends strongly on the initial Bell
state (symmetric or antisysmmetric) showing an additional
state dependence due to the decay property. Initial entangled
states for pairs of K mesons can be produced [16,17],
however, it is not clear how joint-particle measurements may
be technically realized. A suitable system for the application
of the Mermin-Peres criterion are spin entangled hyperon-
antihyperon systems which also decay via weak interactions
but have half-integer spins as discussed in Ref. [18].

Typically in decaying bipartite systems one assumes in-
dependent time evolutions for the individual particles. The
solution of the Lindblad equation (2) has then to be separated
into the four parts (ss),(sd),(ds), and dd, i.e., we obtain a state
conditioned to the two time choices tl ,tr (l...left, r ...right),

ρ(tl,tr ) ≡
d∑

i,j=s

Qij (tl,tr )ρssQ
†
ij (tl,tr ) (13)

with Qij (tl,tr ) = |ij 〉〈ss| ⊗ Ki(tl) ⊗ Kj (tr ). Consequently,
the expectation value of two jointly measured observables
becomes

Tr{O1O2ρ} = Tr{(2P1 − 1)(2P2 − 1)ρ(tl,tr )}

=
d∑

j,k=s

Tr{[2(P1)jk − 1][2(P2)jk − 1]

×Qjk(tl,tr ) ρss Q
†
jk(tl,tr )}, (14)

where we have for joint-particle measurements that P jk is
a projector P on the ss part or else the unity operator.
Since we can again construct commuting operators we can
apply also in this case the contextuality criteria revealing the
contextual nature even for two different times [case (i)(a)
of Fig. 1]. On the other hand, if we perform single-particle
measurements, the compatibility of the operators cannot be
obtained, and consequently we cannot apply the criteria. One
may think that increasing the number of particles (like in
Ref. [15]) or increasing the number of observables (like in
Ref. [19]) may help, however, it is principally not possible to
restore the compatibility. A context can only be generated for
single-particle measurements if Bell’s locality assumption in
space-time is taken into consideration.

Connection to Bell’s theorem. As is well known, if
one reduces the number of measurements for the KCBS
or Mermin-Peres contextuality test and assumes a tensor
product structure of the involved observables, one obtains
the Bell–Clauser-Horne-Shimony-Holt inequality [20]. The
crucial point here is that by Bell’s locality assumption
one implies indirectly individual particles propagating in
space-time. Still there are the two options of measurements.
For joint-particle measurements on a bipartite system we
obtain

−2 Trρss(t) � TrB̂ell ρss(t) � 2 Trρss(t), (15)

which is violated for all times for any initial state that violates
the Bell inequality since ρss(t)/Trρss(t) is a normalized state.
This inequality is a contextuality proof, but no test for Bell’s
locality hypothesis since both particles are measured jointly.

Bell’s locality hypothesis requires individual particles
located at different locations in space-time imposing single-
particle measurements and single-particle time evolution. In
this case the single-particle measurements do depend on the
time choices of tl,tr and the projections, i.e., the operators
under investigation become time dependent:

Õ =
d∑

j,k=s

2K
†
j (tl)(P

l)jKj (tl) ⊗ K
†
k (tr )(P r )kKk(tr )

−K
†
j (tl)Kj (tl) ⊗ K

†
k (tr )Kk(tr ) (16)

with

(P )j =
{

j = s : P

j = d : 1. (17)

These operators are always commuting (compatible) since
they have the natural context of being measured at different
instances in space-time. Note in particular, in the case all oper-
ators P l,P r are chosen to be the same, we obtain a nontrivial
Bell inequality violated by different time choices (distances
from the source), exhibiting a kind of “dynamical” nonlocality.
Such a type of Bell’s inequality being experimentally feasible
with a further trick was introduced for entangled decaying K

mesons in Ref. [21].
Conclusions. The contextual property is conjectured to

be a key ingredient of quantum theory. We discuss how
this property can be revealed in decaying quantum systems
under the assumption that the entire time evolution includ-
ing the decay property is independent of the measurement
choices. We found that any criterion based on joint-particle
measurements and joint-particle or single-particle time evo-
lution can be rewritten to display the contextual nature, in
principle at any instant in time. That proves that the decay
property per se is not sensitive to the notion of measurement
contextuality.

Interestingly, we find that the standard contextuality cri-
teria cannot be applied when we assume single-particle
measurements, because the compatibility requirement is not
fulfilled. The requirement can be restored by generating the
context via assumption of space-time localization leading
to state-dependent and decay property dependent Bell-like
inequalities.

These findings prove the crucial difference between assign-
ing hidden parameters to measurement outcomes and local
hidden parameters to the involved state, such as that the context
is achieved by different requirements on the setup: compatible
joint-particle measurements or localization assumption in
space-time. It illustrates the foundational different concepts
of time in time evolutions of states and in space-time with
respect to compatible measurement setups.
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