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Cross-phase-modulation-instability band gap in a birefringence-engineered photonic-crystal fiber
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We report the cancellation of the cross-phase-modulation-instability (XPMI) gain over a large spectral window
(which we term the XPMI band gap) in a highly birefringent photonic-crystal fiber with zero group birefringence.
The XPMI ceases to occur when single-frequency pumping of orthogonally polarized modes takes place in such
a spectral band gap whose frequency bandwidth depends on the pump power itself. The suppression of XPMI
sidebands is confirmed experimentally when Raman scattering remains negligible. At high powers the Raman
Stokes wave, generated by the pump, implies novel dual-frequency pump configurations with large group-velocity
mismatch, thus leading to another type of Raman-induced XPMI sidebands. The experimental results are in good
agreement with analytical phase-matching calculations and numerical simulations.
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I. INTRODUCTION

Polarization-dependent nonlinear effects are often consid-
ered as potential limitations to coherent optical communication
systems, in particular related to the nonlinear phenomenon
known as cross-phase modulation (XPM). The Kerr nonlinear-
ity through XPM can couple two or more optical fields having
different wavelengths, or distinct polarization states, making
them interact efficiently under appropriate conditions. When
such an interaction among multiple optical fields is fully con-
trolled, one discovers that several practical applications can be
investigated to manage light propagation. The XPM-induced
coupling is known to significantly affect nonlinear phenomena
resulting from a balance between dispersion and self-phase
modulation. It gives rise to new regimes of instabilities and new
effects in pump-probe configurations [1]. As an example, the
XPM-induced coupling between two orthogonally polarized
modes can destabilize a quasi-continuous wave (cw), thus
leading to vector modulation instability (MI). This vector
nonlinear process exhibits flexibility of phase-matching con-
ditions compared to its well-known scalar counterpart [1].
Vector (XPM-induced) MI has been studied extensively in
the context of birefringent fibers [2]. In addition to fiber
nonlinearity and group-velocity dispersion, typical features of
vector MI strongly depend both on the birefringence properties
(i.e., weakly, randomly varying, or strongly birefringent) of
the fiber under study and on the pump polarization [1,2].
This process can involve coherent or incoherent interactions
between polarization components as a function of the linear
phase mismatch (i.e., phase birefringence). In the following we
focus on the case of highly birefringent fibers. Vector MI is then
usually termed cross-phase-modulation instability (XPMI)
and typically corresponds to the generation of orthogonally
polarized sidebands from a pump linearly polarized at 45◦ to
the principal axes of the fiber.

Experimental observation of XPMI was first reported
in the 1990s by using standard highly birefringent (HiBi)
fibers [3,4]. However, during the past decade, photonic-crystal
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fibers (PCFs) [5] have allowed the exploration of a large
number of interesting regimes in which XPMI can also
occur thanks to their outstanding flexibility in the design
of linear and nonlinear characteristics [5–8]. In particular,
Ref. [9] gives a recent overview of the multiple scalar and
vector MI sidebands that can be simultaneously observed in a
highly birefringent PCF. Generally, the frequency bandwidth
of the XPMI gain is relatively narrow compared to the
scalar one. This feature points out its high sensitivity to
fluctuations of fiber parameters, which has hampered its
observation in nonperfectly uniform PCFs [10]. Nowadays,
PCF properties can be precisely tailored and controlled during
the drawing process, thus allowing researchers to benefit from
XPMI sensitivity for applications as a nonlinear fiber-optic
sensor [11]. Indeed, PCFs have become a suitable platform to
study XPMI at any wavelength, since they also offer extremely
high built-in birefringence by breaking the standard perfect
sixfold symmetric core and cladding structure [5,12]. The
induced form birefringence then exhibits strong wavelength
dependence [13]. More generally, any significant variation of
fiber characteristics over a short wavelength range modifies
the phase-matching diagram of XPMI. A detailed analysis of
vector MI has already been proposed by taking into account
the frequency dependence of the group-velocity dispersion
(GVD) [14]. Multiple sideband pairs can then be generated due
to the effect of higher-order dispersion terms [9]. But recently,
sign inversion and the cancellation of the group birefringence
have also been reported at specific wavelengths [15,16], thus
having potential interest for the PCF-based devices that rely
on polarization-dependent nonlinear effects.

In this work, we investigate the XPMI process in the context
of HiBi PCFs with cancellation of the group birefringence at
specific wavelengths around 1.5 μm. In particular, we report
the existence of a XPMI spectral band gap whose frequency
bandwidth depends on the input pump power. It is worth
mentioning that the possible appearance of a nonlinear spectral
gap in which XPMI vanishes was already demonstrated
almost 20 years ago by means of a dual-frequency pumping
configuration with orthogonal polarizations in a birefringent
step-index fiber [17]. This complex pumping scheme allowed
compensation of the group-velocity mismatch (related to the
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fiber birefringence) with chromatic dispersion by fine tuning
of the frequency difference between the two pumps. As a
result, the nonlinearity was responsible for the formation
of a spectral gap in the XPMI phase-matching conditions.
Here, we demonstrate that such a XPMI spectral band
gap can be simply obtained in a birefringence-engineered
PCF under the single-frequency pumping configuration. The
suppression of XPMI sidebands is confirmed experimentally
when Raman scattering remains negligible. At high powers
the Raman Stokes wave, generated by the quasi-cw pump,
induces a dual-frequency pump configuration, thus leading
to additional Raman-induced XPMI sidebands. Our findings
are clearly of interest in the applicability of an alternate class
of controlled-birefringence optical waveguides for potential
nonlinear-optics applications [16,18–20]. Moreover, they will
also be advantageous when the suppression or the fine control
of polarization-dependent nonlinearities is desirable [21].

This work is organized as follows. In Sec. II, we give an
overview of the impact of zero group birefringence on the
XPMI process by means of theoretical calculations of the
phase-matching diagram and numerical simulations based on
coupled nonlinear Schrödinger equations (NLSEs). In Sec. III,
we describe the specific PCFs and experimental setup used
here, and we present the experimental results that confirm
our predictions obtained in Sec. II. In Sec. IV, we discuss
the impact of the Raman effect on XPMI phase-matching
conditions in our birefringence-engineered PCFs. In Sec. V,
we conclude this work.

II. THEORY AND NUMERICAL SIMULATIONS

To analyze the impact of zero group birefringence on
the XPMI process induced by single-frequency pumping, we
designed a suitable birefringence engineered photonic-crystal
fiber. Our PCF design includes the following requirements:
high phase birefringence to favor XPMI and zero group
birefringence close to potential high-power quasi-cw laser
sources around 1.5 μm, but also single-mode operation over
the wavelength range of interest and weak longitudinal fluc-
tuations. By using some of the features reported in Ref. [15],
the suitable microstructure was identified by simulating fiber
properties with a commercial mode solver based on a finite-
element method. The PCF consists of a standard triangular
lattice of air holes. The hole diameter and pitch are respectively
d = 0.65 μm and � = 1.12 μm, except for two large holes
on either side of the core whose diameter is 0.75 μm [see the
cross section of the PCF design in the inset of Fig. 1(a)]. This
core asymmetry then involves distinct propagation parameters
for the fundamental linearly polarized modes as shown in
Fig. 1(a). The corresponding phase and group birefringence
are then given in Figs. 1(b) and 1(c), respectively. We recall
the basic relations for the phase birefringence B = neff,x −
neff,y , and the group birefringence G = ng,x − ng,y , where
neff,x, neff,y and ng,x, ng,y are respectively the effective indices
and the group indices of both orthogonal polarization modes,
respectively. B and G are linked through G = B − λdB/dλ,
where λ is the input wavelength. Here, the x axis joining
the two larger holes is the fast one. The value of phase
birefringence is here on the order of 10−3, which is typical
of HiBi fibers [1]. We note that B and G have opposite signs
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FIG. 1. Computed properties of the birefringence-engineered
PCF: (a) Effective indices along the fiber principal axes. Inset:
scanning electron microscope image of the typical PCF structure.
(b) Phase birefringence. (c) Group birefringence. Note that the
zero-group-birefringence wavelength is 1508 nm.

at wavelengths below 1.5 μm because B/λ is smaller than
dB/dλ. But, since the phase birefringence (in absolute value)
increases with wavelength, one can reach a specific wavelength
at which these two terms compensate, thus giving G = 0. The
numerical zero group birefringence is obtained at 1508 nm for
this particular PCF design.

In a HiBi optical fiber, the interaction between two orthog-
onally polarized waves along x and y axes, and copropagating
along the z axis, is governed by the following two incoherently
coupled NLSEs [1,14]:
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where Ax and Ay are the slowly varying amplitudes of the
linearly polarized field components along each axis, respec-
tively. βmx,y and γx,y are the dispersion coefficients and the
effective Kerr nonlinear coefficients for both polarized waves.
Note that G/c = β1x-β1y is related to the group-velocity
mismatch, where c is the speed of light. The coefficients
βm�2 are obtained from the expansion of β2(ω) in a Taylor
series around the pump frequency ω0, i.e., they describe the
frequency dependence of the GVD. Figures 2(a) and 2(b)
show the group-velocity dispersion and nonlinear parameter as
functions of wavelength for the fundamental linearly polarized
modes. For gain calculations, we consider averaged values
of the dispersion terms and nonlinear parameter between
the two polarized modes. Our PCF exhibits a large normal
dispersion, which prevents any significant impact of higher-
order dispersion terms in our analysis. Moreover, only vector
sidebands will appear in this dispersion regime [1,9].
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When considering a cw pump, the phase-matching diagram
of both scalar and vector MI can be directly calculated through
the linear stability analysis (LSA) of steady-state solutions

of the NLSEs [Eqs. (1)]. Assuming that the pump (with a total
power equal to 2P0) is linearly polarized at 45◦ with respect to
the fiber axes, we can find the following stability matrix [14]:
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Here we recall that � = (ω − ω0), and we introduced the
following parameter:
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The four eigenvalues of the matrix M are given by
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where δ = G/2c, and S± = D+ ± D−. The gain spectrum of
MI is simply obtained through the following relation g(�) =
2 Im(K) [1]. To illustrate the existence of a XPMI spectral
band gap in the following, we consider only the second-order
dispersion term β2, which gives S− = 0 and S+ = β2�

2.
Figure 3(a) reports the calculated MI phase-matching dia-

gram with associated parametric gain as a function of the pump
wavelength when using the fiber parameters described above
(as an example β2 = 272 ps2/km and γ = 33 W−1 km−1 at
1508 nm) and a pump power P0 = 20 W. The phase-matching
diagram shows the suppression of XPMI sidebands for pump
wavelengths around the zerogroup-birefringence wavelength.
It also reveals the particular symmetric feature of the MI
diagram with respect to this wavelength. The existence of
such a XPMI spectral band gap originates from the fact
that vector MI ceases to occur above a critical value of
the input pump power [1]. This critical power P0 = Pc =
3G2/(4c2β2γ ) is derived from the condition of MI gain in the
normal-dispersion regime: Im(K) > 0 [1,3]. Pc depends on the
group birefringence so that its value strongly decreases when G

becomes low enough (i.e., the group-velocity mismatch almost
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FIG. 2. (a) Group-velocity dispersion and (b) nonlinear parameter
as functions of wavelength for the fundamental linearly polarized
modes.

vanishes [17]). As a result, the zero group birefringence implies
here that the XPMI band gap does exist for any input power. For
a fixed power, one can also determine the critical birefringence
by using the relation given for Pc. Two distinct wavelengths
corresponding to this critical birefringence can be found thanks
to G—the curve plotted in Fig. 1(c). These critical wavelengths
are reported with dashed lines in Fig. 3(a), thus revealing the
frequency bandwidth of the XPMI band gap. From this simple
analysis the spectral width of the band gap is expected to
change when the input power is varied. Figure 3(b) confirms
such a behavior, as we observe the increase of the band gap for
higher input pump power P0 = 60 W. The band-gap variation
as a function of the input power P0 (on each fiber axis) is
depicted in Fig. 3(c).

To confirm the predictions provided by LSA about the
existence of a nonlinear XPMI spectral band gap, we compare
in Fig. 4 the above results with numerical simulations based
on the coupled NLSEs [see Eq. (1)], taking into account the
full dispersion curve. We considered a 12-m-long segment
of the birefringence-engineered PCF pumped at two different
wavelengths located inside or outside the predicted XPMI band
gap. The CW pump is linearly polarized at 45◦ with respect to
the fiber axes with a total input power of 40 W. As our analysis
was performed at wavelengths for which the fiber exhibits
a strong normal dispersion (i.e., without significant impact
of higher-order dispersion), the agreement of XPMI gain
features and orthogonally polarized sidebands between LSA
and numerical simulations is excellent (see Fig. 4). Similar
agreement was obtained when the input power, the pump
wavelength, or the propagation distance was varied, provided
that the development of XPMI gain bands remains restricted
to the assumption of LSA. Note that in the normal-dispersion
regime, the Stokes (anti-Stokes) sideband is polarized along
the slow (fast) fiber axis.

III. EXPERIMENTS

To reveal the existence of the XPMI band gap, we used
a typical configuration of vector MI experiments in optical
fibers based on a quasi-cw pumping with a linear state of
polarization oriented at 45◦ with respect to the principal axes
of the fiber under test, by using a polarizer and a half-wave
plate. An analyzer was used at the fiber output to separately
observe light polarized along the fast or the slow axis, and the
output signal spectrum was recorded with an optical spectrum
analyzer. The quasi-cw pump was a passively Q-switched laser
that delivers 3.68 ns pulses at 1535 nm and 2.68 kHz repetition
rate. As the pump wavelength was fixed, several PCFs were
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FIG. 3. (a),(b) Calculated MI phase-matching diagram with associated parametric gain (dB/m) as a function of the pump wavelength
λP for pump powers P0 = 20 and 60 W, respectively. The XPMI band gap for pump wavelengths is located between red dashed lines.
(c) Corresponding evolution of XPMI band gap as a function of the input power P0.

drawn with slight variations of the microstructure with regard
to the PCF design described in the previous section. More
precisely, the pitch � was slightly varied (while keeping the
d/� parameter constant), which resulted in the shift of the
zero-group-birefringence wavelength in the range 1450–1650
nm. Roughly speaking, a typical pitch variation of 5% results
in a variation of the zero-group-birefringence wavelength on
the order of 100 nm, which indicates that the latter it is
extremely sensitive to the PCF design. In our experiment,
we investigated three different PCFs (labeled A, B, and C)
with a zero-group-birefringence wavelength located around
the pump wavelength, at 1488, 1540, and 1573 nm respectively
(see Fig. 5). The group birefringence and the second-order
dispersion coefficient (not shown here) of fabricated PCFs
were measured by standard techniques based on white-light
interferometry. The dispersion at 1535 nm was found to remain
highly normal for all the fibers, in the range 220–250 ps2/km
(similar to our numerical design in Fig. 2). As a result, the
wavelength position of XPMI band gaps (centered around the

zero-group-birefringence wavelength) will differ for each PCF
at a fixed input power, including or not the pump wavelength.
As an example, the XPMI band gap is expected to extend over
a few tens of nanometers for an input power of a few tens of
watts [see Fig. 3(c)]. The length of fiber segments used for
vector MI experiments was fixed to 12 m.

The first set of XPMI experiments was performed by
injecting a low peak power P0 = 38 W in the distinct fibers. For
such a power, the LSA predicts the existence of the following
wavelength ranges of the XPMI band gap: 1462–1510, 1517–
1560, and 1554–1590 nm for PCFs A, B, and C, respectively.
By consideration of our pumping wavelength located at
1535 nm, XPMI is expected to be suppressed only in PCF
B. The corresponding XPMI spectra recorded at fiber outputs
are shown in Fig. 6. We compare the experimental results
with numerical simulations based on the coupled NLSEs [see
Eq. (1)] and with a cw pumping. An excellent agreement is
obtained, thus confirming that XPMI is suppressed in fiber
B thanks to the pumping in the vicinity of the zero group
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FIG. 4. Output spectra after 12 m of propagation in the birefringence-engineered PCF obtained by numerical simulations based on the
coupled NLSEs [see Eq. (1)] and assuming a cw pump power of 40 W linearly polarized at 45◦ with respect to the fiber axes. (a)–(c) Results
obtained for a pump wavelength equal to 1550 nm outside the XPMI band gap. (d)–(f) Results obtained for a pump wavelength equal to
1500 nm inside the XPMI band gap. Red dashed lines correspond to the XMPI gain predicted by LSA [see Fig. 3(a)].

013857-4



CROSS-PHASE-MODULATION-INSTABILITY BAND GAP . . . PHYSICAL REVIEW A 93, 013857 (2016)

1450 1500 1550 1600
−5

0

5
x 10

−4

Wavelength (nm)

G

 

 

PCF A
PCF B
PCF C

FIG. 5. Group birefringence measurements for the different PCFs
used in the vector MI experiment.

birefringence (within the XPMI band gap). Note that measured
fiber loss ∼30 dB/km was introduced in the simulations. The
vector nature of XPMI sidebands was carefully checked at
the fiber output. As an example, Fig. 6(d) clearly shows the
orthogonally polarized sidebands obtained along each axis of
fiber C, which is a typical feature of XPMI.

To extend the XPMI band gap over our pump wavelength
in fibers A and C, we have to increase the input peak power
as discussed above in the theoretical section. With this aim,
the suitable higher peak power has to be P0 > 170 W, which
could not be reached with our present setup. However, a second
set of experiments was performed at intermediate powers, and
the corresponding experimental output spectra are reported in
Fig. 7. As expected from previous theoretical predictions, the
XPMI band gap does not overlap with our pumping so that
XPMI sidebands around the pump are still observed in fibers
A and C. A detailed analysis of XPMI sidebands measured in
fiber A confirms the slight decrease of their frequency shifts
relative to the pump from 0.65 to 0.61 THz when the input
power is increased. This can be readily related to the extension
of the XPMI band gap towards the pump wavelength which
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FIG. 6. Experimental XPMI spectra recorded at an input peak
power P0 = 38 W for the different fiber segments (a) PCF A, (b) PCF
B, and (c),(d) PCF C. Blue curves with markers correspond to the
numerical simulations based on the coupled NLSEs.
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FIG. 7. Experimental spectra recorded for two input peak power
ranges (left column) P0 ∼ 30–40 W and (right column) P0 ∼
60–80 W at the output of (a) PCF A, (b) PCF B, and (c) PCF C.
Note that a significant Raman Stokes pump induces the emergence
of new Raman-induced XPMI sidebands (indicated by blue dashed
arrows).

implies a lower frequency shift of XPMI sidebands (see Fig. 3).
Moreover our measurements reveal the emergence of new
sidebands strongly related to the presence of the strong Raman
Stokes band generated around 1650 nm by the pump itself.
When the Raman gain remains negligible or on the same order
of magnitude as the XPMI gain (i.e., at low powers), these new
sidebands do not appear, as shown in Fig. 7. For high powers, a
new pumping configuration arises in our fiber with two pumps
of different frequencies (i.e., the initial pump and the Raman
Stokes pump) aligned with each of the two principal fiber axes
(see the similar configuration in Ref. [22]), which allows novel
phase-matching possibilities depending on the group-velocity
mismatch between the two pumps (see the next section).

IV. DISCUSSION

Our experimental results reveal that the Raman Stokes
wave interacts with the pump to create a novel type of
XPMI sideband with orthogonal polarizations as in Ref. [22].
Since both pump and Raman Stokes wave remain equally
polarized at 45◦ with respect to the fiber axes, they provide
two distinct dual-frequency pump configurations. These are
first (i) a pump component polarized along the fast axis
associated with a Raman component polarized along the
slow axis, and conversely (ii) a pump component along
the slow axis and a Raman component along the fast axis.
Each configuration is expected to generate its own pair of
XPMI sidebands. In our case, the significant spectral width

013857-5



B. KIBLER, F. AMRANI, P. MORIN, AND A. KUDLINSKI PHYSICAL REVIEW A 93, 013857 (2016)

1525 1535 1545
Wavelength (nm)

S
pe

ct
ru

m
 (

20
dB

/d
iv

)

(a) Fast axis

0.62 THz

1.67 THz

1525 1535 1545
Wavelength (nm)

(b) Slow axis

−0.62 THz

−1.78 THz

FIG. 8. Experimental output spectra with orthogonal polariza-
tions (oriented along principal fiber axes) recorded for fiber A (P0 ∼
60 W). XPMI sidebands induced by the initial cw pump (with
balanced frequency shifts) are indicated by red solid arrows. The
Raman-induced XPMI sidebands (with unbalanced frequency shifts
relative to the pump) are indicated by blue dashed arrows.

of the Raman Stokes wave can mask some of the sidebands.
Raman-induced XPMI sidebands are usually characterized by
a narrow gain bandwidth and asymmetrical frequency shifts
relative to the pump, in strong contrast to those obtained in the
single-frequency cw pumping. As an example, Fig. 8 confirms
the features of Raman-induced XPMI sidebands observed in
fiber A. Note that such sidebands observed around the pump
also exhibit orthogonal polarizations. The anti-Stokes peak
is generated by the dual-pump configuration (ii), whereas
the Stokes peak is obtained from the configuration (i), as
previously described above.

In our present study, the distinct observations of Raman-
induced XPMI gain bands cannot be accurately confirmed by
the standard LSA of the steady states of coupled NLSEs similar
to Eq. (1) (as in Refs. [17,22]). The dual-pump configuration
here implies two different frequencies (i.e., pump and Raman
Stokes) in a fiber whose birefringence is strongly wavelength-
dependent (note that a birefringent step-index fiber was studied
in previous works [17,22]). As a consequence, the group-
velocity mismatch [i.e., related to G in Eq. (1)] between the two
pump waves has to be considered as a wavelength-dependent
parameter in our analysis. We present below numerical
simulations based on a coupled system of generalized NLSEs
taking into account the full propagation constants and Raman
scattering, in order to confirm again the XPMI spectral band
gap for the single-frequency pumping configuration and the
emergence of new Raman-induced XPMI sidebands. We used
the fiber properties derived from the numerical PCF design
provided in Sec. II, in particular the effective indices along
principal fiber axes shown in Fig. 1. Figure 9 shows the
numerical results obtained for two pump wavelengths 1535
and 1550 nm and a cw pump power P0 = 50 W (higher than
in Fig. 4) to generate a significant Raman Stokes wave in
both cases. We clearly observe the Raman-induced XPMI
sidebands with narrow gain and unbalanced frequency shifts
around the pump (about 0.05-0.06 THz difference between
Stokes and anti-Stokes shifts). Besides, the sideband shifts also
depend on the initial pumping wavelength (about 0.13 THz
difference between 1535- and 1550-nm pumping). All this
confirms that the group-velocity mismatch between the input
pump and the Raman Stokes pump plays a major role in
the XPMI phase matching. These numerical results look very
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FIG. 9. Numerical spectra after 12 m of propagation in the
birefringence engineered PCF designed in Sec. II and assuming a cw
pump power of 100 W linearly polarized at 45◦ with respect to the fiber
axes (i.e., P0 = 50 W). (a) Result obtained for a pump wavelength
equal to 1550 nm outside the XPMI band gap. (b) Result obtained
for a pump wavelength equal to 1535 nm inside the XPMI band gap.
The XPMI sidebands (with balanced frequency shifts relative to the
pump) are indicated by red solid arrows. The Raman-induced XPMI
sidebands (with unbalanced frequency shifts relative to the pump) are
indicated by blue dashed arrows.

similar to experimental spectra shown in Fig. 7 for fibers A
and B, since numerical parameters slightly differ from our
experimental fiber (in particular the shifted position of the
zero-group-birefringence wavelength). Note that when initial
pumping occurs in the XPMI spectral band gap predicted from
LSA in Sec. II (i.e., here only for λP = 1535 nm) we confirm
again that the balanced XPMI gain bands cease to occur [see
Fig. 7(b)].

V. CONCLUSION

To conclude, we theoretically and experimentally demon-
strated the existence of a XPMI spectral band gap in a
birefringence-engineered photonic-crystal fiber, in particular
when group birefringence cancels for orthogonally polarized
modes. When single-frequency pumping takes place in such a
spectral band gap, the XPMI gain is switched off. At high
powers the Raman Stokes wave, generated by the single-
frequency pump itself, is shown to generate another type
of XPMI sidebands in a dual-frequency pump configuration
with large group-velocity matching. All these results may
have important consequences for the design of PCF-based
devices that benefit from or overcome polarization-dependent
nonlinear effects. To predict the entire physical picture of
complex XPMI phase matchings in such fibers requires
the exact knowledge of wavelength-dependent propagation
constants.
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