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Kinetic-energy-momentum tensor in electrodynamics
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We show that the Einstein-Laub formulation of electrodynamics is invalid since it yields a stress-energy-
momentum (SEM) tensor that is not frame invariant. Two leading hypotheses for the kinetic formulation of
electrodynamics (Chu and Einstein-Laub) are studied by use of the relativistic principle of virtual power,
mathematical modeling, Lagrangian methods, and SEM transformations. The relativistic principle of virtual
power is used to demonstrate the field dynamics associated with energy relations within a relativistic framework.
Lorentz transformations of the respective SEM tensors demonstrate the relativistic frameworks for each studied
formulation. Mathematical modeling of stationary and moving media is used to illustrate the differences and
discrepancies of specific proposed kinetic formulations, where energy relations and conservation theorems are
employed. Lagrangian methods are utilized to derive the field kinetic Maxwell’s equations, which are studied
with respect to SEM tensor transforms. Within each analysis, the Einstein-Laub formulation violates special
relativity, which invalidates the Einstein-Laub SEM tensor.
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I. INTRODUCTION

The momentum of light in media remains one of the
most controversial topics in physics [1–6]. The debate has
continued for more than a century since Minkowski and
Abraham formulated 4 × 4 energy-momentum tensors in the
early 1900s [7–9]. Attention has focused on differing forms of
the electromagnetic momentum density in media. Minkowski
proposed ḠM = D̄ × B̄ to be the momentum density, where D̄

is the electric displacement and B̄ is the magnetic induction [7].
Soon after, Abraham suggested a more symmetric approach,
yielding ḠA = Ē × H̄ /c2 as the momentum density, where Ē

and H̄ are the electric and magnetic fields, respectively, and c

is the speed of light in vacuum [8]. A number of experiments
have been reported seemingly in favor of one form or the other
[10–18].

In 2010, Barnett’s resolution to the photon momentum
controversy identified Abraham’s momentum as the kinetic
momentum and Minkowski’s momentum as the canonical
momentum [19]. Consequently, the Abraham momentum is
responsible for the overall center-of-mass translation of a
material, while the Minkowski momentum predicts transla-
tions within or with respect to the medium [4–6]. Equiv-
alence between the two is shown by determining the total
energy-momentum tensor since division into material and
electromagnetic components is believed arbitrary [2]. It is
the misinterpretation of such arbitrary divisions that can lead
to erroneous predictions. Therefore, a complete resolution
of the Abraham-Minkowski debate must include a complete
description of the kinetic subsystem of electromagnetics which
predicts center-of-mass translations due to electromagnetic
fields [6]. However, the Barnett resolution only identified the
kinetic- and canonical-momentum densities, whereas the orig-
inal debate is in regard to the 4 × 4 energy-momentum tensor.

In light of this, another well-known stress-energy-
momentum (SEM) tensor was also proposed in the first decade
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of the last century by Einstein and Laub [20]. The Einstein-
Laub tensor, like the Abraham and Minkowski tensors, utilizes
the Minkowski fields, and it shares the Abraham momentum
density. Significant theoretical work has been presented over
the last century pertaining to the electrodynamics of moving
media, and the focus of the analyses has clearly been biased
toward the relativistically invariant Minkowski, Chu (i.e.,
EH representation), and Amperian (i.e., EB representation)
formulations [21–24]. The question of relativistic invariance
of the Abraham formulation has only recently been answered
[25–27], while the same question regarding the Einstein-Laub
formulation has yet to be addressed. A cursory review of
recent literature reveals that the Einstein-Laub formulation
remains popular in scientific application [28–32]. This is, in
part, due to the indistinguishability of the various formulations
for computing total force and stress (i.e., material plus
electromagnetic) in the quasistationary limit [24].

In this paper, we employ the fundamental tenets of special
relativity to study the kinetic subsystem of macroscopic
electromagnetics. Using the mathematical framework of the
relativistic principle of virtual power (RPVP), we uniquely
derive and review the associated stress tensor and momentum
density from the shared-energy relations between the Einstein-
Laub and Chu formulations. It is shown that the kinetic-
momentum density and Chu stress tensor naturally derive
from the energy relations, where the Einstein-Laub does not.
The SEM tensors representing both formulations are analyzed
using Lorentz transformation laws while further investigating
the invariance properties with respect to field transformations.
Mathematical models for stationary and moving media are
derived, demonstrating the kinetic properties of the Chu,
Einstein-Laub, and Abraham formulations with respect to
energy relations and conservation theorems. Last, Lagrangian
methods in conjunction with scalar and vector potentials allow
for the derivation of the field kinetic subsystem, which is
recast into matrix form and studied relativistically. In each
of these demonstrations, it is shown that the Chu formu-
lations transform relativistically between inertial reference
frames.
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TABLE I. Leading formulations of electrodynamics.

Ḡ(r̄ ,t) ¯̄T (r̄ ,t) W (r̄,t) S̄(r̄ ,t)

Chua ε0μ0Ē × H̄ 1
2 (ε0Ē

2 + μ0H̄
2) ¯̄I − ε0ĒĒ − μ0H̄ H̄ 1

2 (ε0Ē
2 + μ0H̄

2) Ē × H̄

Einstein-Laubb ε0μ0Ē × H̄ 1
2 (ε0Ē

2 + μ0H̄
2) ¯̄I − D̄Ē − B̄H̄ 1

2 (ε0Ē
2 + μ0H̄

2) Ē × H̄

Abrahamb ε0μ0Ē × H̄ 1
2 (D̄ · Ē + B̄ · H̄ ) ¯̄I − D̄Ē − B̄H̄ 1

2 (D̄ · Ē + B̄ · H̄ ) Ē × H̄

aChu field transformations are used to describe moving contributions [21,22,36].
bMinkowski field transformations are used to describe moving contributions [21–23].

II. FRAMEWORK

In 1953, Balazs presented a simple gedanken experiment
to determine the kinetic momentum of a pulse of light by
considering center-of-mass-energy conservation [33]. This
was accomplished by considering an optical pulse with initial
free-space momentum pi = E/c incident upon an impedance-
matched slab (

√
μ/ε = √

μ0/ε0) of thickness d initially at
rest. The optical pulse is slowed with respect to an alternate
vacuum propagation path by the length L = (n − 1)d due
to the reduced velocity within the slab, having refractive
index n = c

√
εμ. Conservation principles require that the

slab acquire some linear momentum, giving rise to a material
momentum pm = E

c
(1 − 1

n
). Here, momentum conservation

requires the momentum of the pulse of the light be the Abraham
momentum p = 1

n
E

c
, corresponding to the kinetic-momentum

density ḠFk
= ε0μ0Ē × H̄ . Consequently, this result mathe-

matically excludes other forms, such as Liven’s momentum,
ḠL = ε0Ē × B̄, which is commonly tied to the Amperian
formulation [6,23,34], and the Minkowski momentum, ḠM =
D̄ × B̄, from being the kinetic momentum of light [4,6,19].
We emphasize that this assertion is only in regard to the
interpretation of the Amperian and Minkowski SEM tensors
and does not imply a lack of translational invariance.

Of the leading formulations [6], three formulations utilize
the prescribed kinetic-momentum-density model: the Abra-
ham formulation, the Einstein-Laub formulation, and the Chu
formulation. Table I lists the leading field kinetic formulation
candidates. However, when modeling the kinetic subsystem, it
is unknown which formulation generates the true physics of the
electromagnetic subsystem, thereby satisfying conservation
theorems,

f̄Fk
= � · [ ¯̄TFk

, − icḠFk

]
, (1a)

ϕFk
= � ·

[
− i

c
S̄Fk

,WFk

]
, (1b)

where ¯̄T = − ¯̄T as used in Refs. [6,23], � = [∇, ∂
∂ ic t

], and
subscript Fk denotes the field kinetic subsystem, rendering the
field kinetic SEM tensor as

TFk
=

[
¯̄TFk

−icḠFk

−i
S̄Fk

c
WFk

]
. (2)

Tensors lacking relativistic invariance cannot be energy-
momentum tensors. This fact is a fundamental tenet of modern
physics. For example, consider a region of space occupied
by ponderable media, which may be described locally by a
mass density and a velocity field. Regardless of how a system

of coordinates is assigned, the local momentum vector may
vary with position and time. In typical optical manipulation
experiments, this may be due to motion of a submerging fluid
and/or the presence of multiple particles or cells. The inability
to measure relativistic effects in any particular experiment by
our present instrument capabilities, however, does not preclude
the fundamental laws of physics from holding true. Relative
motion within media and the laboratory frame will generally
exist. We demonstrate such relative motion via mathematical
modeling in Sec. IV, and we maintain that it is essential
that the laws governing the physics of the system remain
invariant.

Recent reports have addressed the lack on relativistic
invariance while employing the Abraham energy-momentum
tensor [25–27]. This, consequently, is due to both the
Abraham and Minkowski energy-momentum tensors sharing
field expressions for power flux, energy density, and stress
tensor, while the momentum-density definitions differ. Simply
stated, this imposes that both formulations utilize identical
electromagnetic energy relations; however, each predicts
independent force expressions within the subsystem. At least
one of the two formulations cannot be a valid energy-
momentum tensor, and due to previous research, the Abraham
formulation demonstrates inconsistencies within relativistic
transformations [25–27]. Thus, we can dismiss the Abraham
formulation as a candidate for the kinetic SEM tensor.

Using the above rationale, we present a similar argument
for the Einstein-Laub and Chu formulations, where both share
definitions for the energy density W , power flux S̄, and
momentum density ḠFk

but differ in the definition of both
the stress tensor and electromagnetic field definitions. This
stems from the interpretation of Maxwell’s equations where
both formulations possess the following relations:

∇ × H̄ − ε0
∂Ē

∂t
= J̄e, (3a)

∇ × Ē + μ0
∂H̄

∂t
= −J̄m, (3b)

ε0∇ · Ē = ρe, (3c)

μ0∇ · H̄ = ρm. (3d)

The Einstein-Laub interpretation directly divides the
Minkowski formulation, composed of field values D̄M , B̄M ,
ĒM , and H̄M , into field and material components by field defi-
nitions D̄M = ε0ĒM + P̄M and B̄M = μ0(H̄M + M̄M ), where
subscript M denotes the Minkowski electromagnetic field
values. As a result, the Einstein-Laub effective electric and
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magnetic current and charge densities are given as [32,35]

J̄e = ∂P̄M

∂t
+ J̄f , (4a)

J̄m = μ0
∂M̄M

∂t
, (4b)

ρe = −∇ · P̄M + ρf , (4c)

ρm = −μ0∇ · M̄M, (4d)

where J̄f and ρf represent the free current and charge density
of the system. Thus, the electric and magnetic field components
are represented by the Minkowski ĒM and H̄M fields, which
comprise the Einstein-Laub electromagnetic formulation.

Alternatively, the Chu formulation, composed of field
values ĒC , H̄C , P̄C , and M̄C , idealizes interrelated electric
(E) and magnetic (H ) fields, where material bodies contribute
towards the prescribed electromagnetic fields by acting as
source values [21,36]. Thus, the Chu effective electric and
magnetic current and charge densities are given as

J̄e = ∂P̄C

∂t
+ ∇ × (P̄C × v̄) + J̄f , (5a)

J̄m = μ0
∂M̄C

∂t
+ μ0∇ × (M̄C × v̄), (5b)

ρe = −∇ · P̄C + ρf , (5c)

ρm = −μ0∇ · M̄C, (5d)

where subscript C denotes values from the Chu formulations.
Comparing the two formulations, the following questions are
raised:

(1) Which field and material interpretation is the true
physical electromagnetic interpretation?

(2) Which stress tensor and momentum density is tied to
the shared-energy relations prescribed by both formulations?

Consequently, this discrepancy clouds the idea of the true
kinetic representation of light within media. Thus, we present
a number of arguments to distinguish which of the two
leading kinetic formulations, Chu or Einstein-Laub, is the valid
interpretation of the electromagnetic system.

From here forward, we omit subscript notation for denoting
the Chu and Minkowski field definitions and instead state when
each field representation is used.

III. RELATIVISTIC ANALYSIS

A. Relativistic principle of virtual power

The relativistic principle of virtual power is derived from
the fundamental tenets of the principle of virtual work, where
the force of a system is derived via the amount of work
put forth along the path of a particle [21]. Expanding these
basic tenets, the relativistic principle of virtual power utilizes
prior knowledge of a system’s power flux, power density,
and energy density to derive the associated system dynamics.
The expressions for these relations must be valid even if
the material is accelerating and/or deforming. By using valid
transforms (i.e., Lorentz transformation) along with prescribed
definition and manipulations of the power expressions, the
force density, stress tensor, and momentum density are derived

for the corresponding subsystem. The relativistic principle of
virtual power is expressed mathematically as [21]

(∇ · S̄0)0 + S̄0

c
·
(

∂v̄

∂t

)0

+
(

∂W 0

∂t

)0

+ W 0(∇ · v̄)0 − ϕ0

= −T 0 : (∇v̄)0 − Ḡ0 ·
(

∂v̄

∂t

)0

, (6)

where the superscript 0 denotes values within the arbitrary
reference frame to the first-order velocity value [21]. Addi-
tionally, the operator : signifies the dyadic dot product, also
known as the double-dot product with respect to the dyadic
matrix.

As one would expect, transformation from one inertial
frame to another requires prescribed Lorentz transformation
laws. Here, we employ both Chu and Minkowski field
transformations (1) to not assume a specific electromagnetic
formulation and (2) to derive the system dynamics tied to the
shared-energy relations in the moving frame,

S̄0 = Ē0 × H̄ 0, (7a)

W 0 = 1
2 (ε0Ē

0 · Ē0 + μ0H̄
0 · H̄ 0). (7b)

Here, the question is which interpretation of the electromag-
netic fields correctly describes the electromagnetic subsystem
involving the given energy relations. In the following sections,
we apply each respective field transformation to uniquely de-
rive the electromagnetic stress tensor and momentum density
associated with each field representation.

1. Minkowski field analysis

By use of Eqs. (7) and (1b), the Einstein-Laub energy
relations are employed to derive the electrodynamic forces via
the method of RPVP. Applying the first-order velocity vector
field transforms [21],

Ē0 = Ē + v̄ × B̄, (8a)

H̄ 0 = H̄ − v̄ × D̄, (8b)

B̄0 = B̄ − v̄ × Ē

c2
, (8c)

D̄0 = D̄ + v̄ × H̄

c2
, (8d)

the energy relations are rendered such that

S̄0 = Ē × H̄ + [(v̄ × D̄) × Ē] + [(v̄ × B̄) × H̄ ], (9a)

W 0 = 1
2 (ε0E

2 + μ0H
2) − v̄ · [ε0Ē × B̄ + μ0D̄ × H̄ ],

(9b)

where higher-order velocity terms have been omitted. Substi-
tuting Eqs. (9) into the left-hand side of Eq. (6) results in the
following relation:

Q0 = [∇ · {Ē × H̄ + [(v̄ × D̄) × Ē] + [(v̄ × B̄) × H̄ ]}]0

+ Ē0 × H̄ 0

c2
·
(

∂v̄

∂t

)0

+ Ē0 ·
(

∂ε0Ē

∂t

)0
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+ H̄ 0 ·
(

∂μ0H̄

∂t

)0

−
(

∂v̄

∂t

)0

· (ε0Ē
0 × B̄0

+μ0D̄
0 × H̄ 0) +

(
ε0

2
Ē0 · Ē0 + μ0

2
H̄ 0 · H̄ 0

)
(∇ · v̄)0

+ Ē0 · J̄ 0
e + H̄ 0 · J̄ 0

m. (10)

By use of vector properties in conjunction with Poynting’s
theorem, one finds Eq. (10) to render

¯̄T 0 =
[
D̄0 · Ē0 − ε0

2
Ē0 · Ē0 + B̄0 · H̄ 0 − μ0

2
H̄ · H̄ 0

]
¯̄I

− D̄0Ē0 − B̄0H̄ 0, (11a)

Ḡ0 = ε0Ē
0 × B̄0 + μ0D̄ × H̄ − ε0μ0Ē

0 × H̄ 0. (11b)

The resulting stress tensor and momentum density do not
transform to the Einstein-Laub formulation. Consequently,
we are unaware of any reported stress-energy-momentum
tensor that includes the stress-tensor and momentum-density
relations presented in Eq. (11). Furthermore, the transformed
momentum density is not consistent with the kinetic form of
the momentum density and cannot be considered a kinetic
representation of electrodynamics.

2. Chu field analysis

Here, we present an abbreviated analysis of the Chu field
while employing the RPVP methods. This allows for com-
parison between the Chu and Einstein-Laub interpretations.
However, the full treatment of the Chu analysis is given in
Ref. [21].

Using the Chu transformation laws to the first-order velocity
term [21],

Ē0 = Ē + v̄ × μ0H̄ , (12a)

H̄ 0 = H̄ − v̄ × ε0Ē, (12b)

the energy relations are rendered such that [21]

S̄0 = Ē × H̄ + [(v̄ × ε0Ē) × Ē] + [(v̄ × μ0H̄ ) × H̄ ],

(13a)

W 0 = 1

2
(ε0E

2 + μ0H
2) − 2v̄

c2
· [Ē × H̄ ], (13b)

where higher-order velocity terms have been omitted. Substi-
tuting Eqs. (13) into the left-hand side of Eq. (6) results in the
following relation [21]:

Q0 = [∇ · {Ē×H̄ + [(v̄ × ε0Ē)×Ē] + [(v̄×μ0H̄ )×H̄ ]}]0

+ Ē0 × H̄ 0

c2
·
(

∂v̄

∂t

)0

+ Ē0 ·
(

∂ε0Ē

∂t

)0

+ H̄ 0 ·
(

∂μ0H̄

∂t

)0

− 2

(
∂v̄

∂t

)0

·
(

Ē × H̄

c2

)0

+
(

ε0

2
Ē0 · Ē0 + μ0

2
H̄ 0 · H̄ 0

)
(∇ · v̄)0

+ Ē0 · J̄ 0
e + H̄ 0 · J̄ 0

m. (14)

By use of vector manipulations and Poynting’s theorem, one
finds Eq. (14) to render [21]

¯̄T 0 =
[
ε0

2
Ē0 · Ē0 + μ0

2
H̄ · H̄ 0

]
¯̄I − ε0Ē

0Ē0 − μ0H̄
0H̄ 0,

(15a)

Ḡ0 = ε0μ0Ē
0 × H̄ 0, (15b)

which is the Chu stress tensor and momentum density within
the arbitrarily moving reference frame. This indicates that the
Chu energy-momentum tensor transforms correctly between
inertial reference frames. However, further justification will
be presented in the next section, where we provide relativistic
analysis of the SEM tensors, further demonstrating the
mathematical differences between the Chu and Einstein-Laub
formulations.

B. Invariance of SEM components

It is well known that physical laws describing a system
are relativistically invariant and transform between inertial
reference frames. Here, we apply this concept to a generalized
SEM tensor while considering two frames of reference, S and
S ′, such that S ′ moves with velocity v along the x axis with
respect to S. The SEM tensor, represented in the rest or moving
frame S, takes the general form

Tαβ =

⎡
⎢⎣

Txx Txy Txz icGx

Tyx Tyy Tyz icGy

Tzx Tzy Tzz icGz

iSx/c iSy/c iSz/c W

⎤
⎥⎦. (16)

Transformation from the S frame to the moving frame S ′
invokes the following relations:

T ′
xx = γ 2[Txx + β(Sx/c + cGx) − β2W ], (17a)

T ′
yy = Tyy, (17b)

T ′
zz = Tzz, (17c)

T ′
xy = γ (Txy + βSy/c), (17d)

T ′
yx = γ (Txy + cβGyc), (17e)

T ′
xz = γ (Txz + βSz/c), (17f)

T ′
zx = γ (Txz + cβGz), (17g)

T ′
yz = Tyz, (17h)

T ′
zy = Tzy, (17i)

iS ′
x/c = −γ 2[icGx + iβ(Txx − W ) + iβ2Sx/c], (17j)

icG′
x = −γ 2[iSx/c + iβ(Txx − W ) + icβ2Gx], (17k)

iS ′
y/c = −iγ (Sy/c + βTxy), (17l)

icG′
y = −iγ (cGy + βTxy), (17m)

iS ′
z/c = −iγ (Sz/c + βTxz), (17n)

icG′
z = −iγ (cGz + βTxy), (17o)

W ′ = γ 2[W − β(Sx/c + cGx) − Txxβ
2], (17p)

where β = v/c and γ = (1 − β)−1/2. For the remainder of
this section, we review the prospective Einstein-Laub and
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Chu formulations with respect to the Lorentz transforms of
the Chu and Minkowski equations. This will demonstrate the
relativistic transformations of both formulations with regards
to each field interpretation, which ultimately demonstrates
the invariance of the force and power densities of each
formulation, corresponding to the energy and momentum
described by each formulation.

1. Chu field analysis

The Chu Lorentz transformation laws for field variables Ē,
H̄ , P̄ , and M̄ from the moving frame to the laboratory frame
are given by [21,36]

Ē′ = Ē‖ + γ (Ē⊥ + v̄ × μ0H̄ ), (18a)

H̄ ′ = H̄‖ + γ (H̄⊥ − v̄ × ε0Ē), (18b)

P̄ ′ = P̄‖ + γ

(
P̄⊥ − v̄ × (P̄ × v̄∗)

c2

)
, (18c)

M̄ ′ = M̄‖ + γ

(
M̄⊥ − v̄ × (M̄ × v̄∗)

c2

)
, (18d)

where v̄ is the velocity of the unprimed frame and v̄∗ is the
velocity of the electromagnetic material. Here, defining v̄ =
v̄∗ = x̂v, the Lorentz transformations of the Chu field values
are given as

Ex = E′
x, (19a)

Ey = γ (E′
y + cμ0βH ′

z), (19b)

Ez = γ (E′
z − cμ0βH ′

y), (19c)

Hx = H ′
x, (19d)

Hy = γ (H ′
y − cε0βE′

z), (19e)

Hz = γ (H ′
z + cε0βE′

y), (19f)

Px = P ′
x, (19g)

Py = γP ′
y, (19h)

Pz = γP ′
z, (19i)

Mx = M ′
x, (19j)

My = γM ′
y, (19k)

Mz = γM ′
z. (19l)

Considering the Chu formulation, the components of the SEM
tensor are

S̄ = Ē × H̄ , (20a)

Ḡ = S̄

c2
, (20b)

W = 1
2 (ε0Ē · Ē + μ0H̄ · H̄ ), (20c)

Tαβ = ε0EαEβ + μ0HαHβ − δαβW. (20d)

Due to the discrepancies between the stress tensors, we look
to transform the field values within the moving frame back to
the stationary frame, demonstrating the relativistic invariance
(or lack thereof) of the stress tensor of each formulation. Thus,

employing Eqs. (17a) and (20),

T ′
xx = γ 2

[
ε0ExEx + μ0HxHx + 2

β

c
(Ē × H̄ )x

− 1

2
(1 + β2)(ε0Ē · Ē + μ0H̄ · H̄ )

]
. (21)

Expanding the scalar and vector products,

ε0Ē · Ē + μ0H̄ · H̄ = ε0ExEx + ε0EyEy + ε0EzEz

+μ0HxHx + μ0HyHy + μ0HzHz,

(Ē × H̄ )x = EyHz − EzHy,

and employing the Lorentz fields in Eqs. (19), we find

ε0Ē · Ē + μ0H̄ · H̄

= ε0E
′
xE

′
x + μ0H

′
xH

′
x

+ γ 2[(1 + β2)(ε0E
′
yE

′
y + ε0E

′
zE

′
z + μ0H

′
yH

′
y

+μ0H
′
zH

′
z) + 4ε0μ0cβ(E′

yH
′
z − E′

zH
′
y)], (22a)

(Ē × H̄ )x
= γ 2[(1 + β2)(E′

yH
′
z − E′

zH
′
y) + cβ(ε0E

′
yE

′
y

+ ε0E
′
zE

′
z + μ0H

′
yH

′
y + μ0H

′
zH

′
z)]. (22b)

Substituting Eqs. (22) into Eq. (21) renders

T ′
xx = γ 2

[
1

2
(1 − β2)ε0E

′
xE

′
x + μ0H

′
xH

′
x − γ 2

2
(1 − β2)2

× (ε0E
′
yE

′
y + ε0E

′
zE

′
z + μ0H

′
yH

′
y + μ0H

′
zH

′
z)

]
= ε0E

′
xE

′
x + μ0H

′
xH

′
x + δxxW

′. (23)

As can be seen, the Chu stress tensor remains unchanged
when transformed to the S ′ frame, demonstrating relativistic
invariance. Here, we note that additional manipulation of
the remaining expressions in Eqs. (17) provides the desired
relativistic transformations.

For completeness, we repeat the previous derivation for
the Einstein-Laub formulation while employing the Chu
fields. However, we note that the Einstein-Laub formulation
was originally formulated with Minkowski fields. Thus, the
Einstein-Laub stress tensor under the Chu field representation
is given as

Tαβ = (ε0E + P )αEβ + μ0(H + M)αHβ − δαβW, (24)

where Sx , Gx , and W retain the form presented in Eqs. (20).
Using standard field definitions along with the Einstein-Laub
values renders Eq. (17a) as

T ′
xx = γ 2

[
(ε0Ex + Px)Ex + μ0(Hx + Mx)Hx + 2

β

c

× (Ē × H̄ )x − 1

2
(1 + β2)(ε0Ē · Ē + μ0H̄ · H̄ )

]
.

(25)

Plugging Eqs. (22) into Eq. (25) renders

T ′
xx = ε0E

′
xE

′
x + μ0H

′
xH

′
x + δxxW

′ + γ 2(P ′
xE

′
x + μ0M

′
xH

′
x).

(26)
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It is easily seen that the additional material components
included within the dyadic product of the Einstein-Laub stress
tensor do not transform relativistically, thereby proving that
the SEM tensor provided by the Einstein-Laub formulation is
an invalid representation of electrodynamics while using the
Chu fields.

2. Minkowski field analysis

The Lorentz transformation laws for Minkowski field
values Ē, H̄ , D̄, and B̄ are given as [21,37]

Ē′ = Ē‖ + γ (Ē⊥ + v̄ × B̄), (27a)

H̄ ′ = H̄‖ + γ (H̄⊥ − v̄ × D̄), (27b)

D̄′ = D̄‖ + γ

(
D̄⊥ + v̄ × H̄

c2

)
, (27c)

B̄ ′ = B̄‖ + γ

(
B̄⊥ − v̄ × Ē

c2

)
. (27d)

Asserting v̄ = x̂v, the Lorentz transforms for the
Minkowski fields are given as

Ex = E′
x, (28a)

Ey = γ (E′
y + cβB ′

z), (28b)

Ez = γ (E′
z − cβB ′

y), (28c)

Hx = H ′
x, (28d)

Hy = γ (H ′
y − cβD′

z), (28e)

Hz = γ (H ′
z + cβD′

y), (28f)

Dx = D′
x, (28g)

Dy = γ (D′
y + βH ′

z/c), (28h)

Dz = γ (E′
z − βH ′

y/c), (28i)

Bx = B ′
x, (28j)

By = γ (H ′
y − βE′

z/c), (28k)

Bz = γ (H ′
z + βD′

y/c). (28l)

Here, we utilize the previously defined SEM components (17a)
and (20a)–(20c), along with

Tαβ = DαEβ + BαHβ − δαβW, (29)

such that

T ′
xx = γ 2

[
DxEx + BxHx + 2

β

c
(Ē × H̄ )x

− 1

2
(1 + β2)(ε0Ē · Ē + μ0H̄ · H̄ )

]
. (30)

Expanding the scalar and vector products while employing the
Lorentz field transformation (28), we find

ε0Ē · Ē + μ0H̄ · H̄

= ε0E
′
xE

′
x + μ0H

′
xH

′
x

+ γ 2[(ε0E
′
yE

′
y + ε0E

′
zE

′
z + μ0H

′
yH

′
y + μ0H

′
zH

′
z)

+ c2β2(ε0B
′
yB

′
y + ε0B

′
zB

′
z + μ0D

′
yD

′
y + μ0D

′
zD

′
z)

+ 2cβ{(ε0Ē
′ × B̄ ′)x + (D̄′ × μ0H̄

′)x}], (31a)

(Ē × H̄ )x = γ 2[(Ē′ × H̄ ′)x + c2β2(D̄′ × B̄ ′)

+ cβ(H ′
yB

′
y + H ′

zB
′
z + E′

yD
′
y + E′

zD
′
z)].

(31b)

Plugging Eqs. (31) into Eq. (30) gives

T ′
xx = γ 2

[
E′

xD
′
x + H ′

xB
′
x + 2γ 2β

c
{(Ē′ × H̄ ′)x

+ c2β2(D̄′ × B̄ ′) + cβ(H ′
yB

′
y + H ′

zB
′
z + E′

yD
′
y

+E′
zD

′
z)} − 1

2
(1 + β2){ε0E

′
xE

′
x + μ0H

′
xH

′
x

+ γ 2[(ε0E
′
yE

′
y + ε0E

′
zE

′
z + μ0H

′
yH

′
y + μ0H

′
zH

′
z)

+ c2β2(ε0B
′
yB

′
y + ε0B

′
zB

′
z + μ0D

′
yD

′
y + μ0D

′
zD

′
z)

+ 2cβ{(ε0Ē
′ × B̄ ′)x + (D̄′ × μ0H̄

′)x}]}
]
, (32)

which does not transform to the Einstein-Laub formulation in
the moving frame using the Minkowski field values. However,
for the reader, it is easy to validate the expression given in
Eq. (32) as the Einstein-Laub formulation by taking β → 0,
which, as one would expect, renders Eq. (29). Additionally,
this result indicates that, while utilizing both the Chu and
Minkowski field values, the Einstein-Laub formulation is an
invalid interpretation of electromagnetics. This is due to un-
transformable SEM values, which constitute the force, power,
energy, and momentum of the electromagnetic subsystem.

IV. MODELING

In this section, we utilize the Chu, Einstein-Laub, and
Abraham formulations to demonstrate the electromagnetic
force and power distributions, further illustrating the discrep-
ancies within the prospective kinetic formulations. In doing
so, we evaluate the electromagnetic interactions with a linear,
lossless, nondispersive magnetodielectric material for both
the stationary and moving material cases. This allows for
discussion with respect to each electromagnetic formulation,
where conservation theorems and the subsystem concept, as
presented in Refs. [21,22], are utilized.

A. Stationary analysis

Consider an electromagnetic wave normally incident from
vacuum onto a linear, lossless, nondispersive magnetodielec-
tric half-space, as seen in Fig. 1. Here, the incident, reflected,
and transmitted field values, along with the reflection and
transmission coefficients, are presented in Appendix A. The
material is stationary and is held at a constant velocity
v = 0 by an external mechanical force. We note that for the
stationary analysis, the field definitions for any representation
of electrodynamics are equivalent. With this, we employ the
time-average force and power relations via the subsystem
concept for each respective formulation,

〈F̄j 〉 =
˚

V

dV 〈f̄j 〉 = −
‹

a

dā · 〈 ¯̄Tj 〉, (33a)

〈Pj 〉 =
˚

V

dV 〈ϕj 〉 =
‹

a

dā · 〈S̄j 〉, (33b)
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FIG. 1. A plane wave normally incident on a magnetodielectric

half-space with refractive index n =
√

εμ

ε0μ0
, moving with velocity

v = xt .

where
∑

j f̄ = 0 and
∑

j ϕj = 0 for all system partitions j .
Utilizing Table I, the Abraham force at the boundary interface
is rendered as

〈F̄Abr〉 = −x̂U0[1 + R2 − εrT
2]

= −x̂
2U0

(
n2 − 2n2μr + μ2

r

)
(n + μr )2

, (34)

and the Einstein-Laub and Chu force is rendered as

〈F̄Chu〉 = 〈F̄EL〉 = −x̂U0

[
1 + R2 − 1

2

(
1 + n2

μ2
r

)
T 2

]
= x̂0, (35)

where εr and μr are the relative permittivity and permeability
of the magnetodielectric medium, with n = √

εrμr and U0 =
E2

0
2c2μ0

. Utilizing Eq. (33b) in a similar fashion yields

〈PAbr〉 = 〈PChu〉 = 〈PEL〉 = −cU0

[
1 − R2 − n

μr

T 2

]
= 0 (36)

for each kinetic formulation. These results are consistent with
previous related research [23,24,38] and global energy- and
momentum-conservation laws. However, closer inspection of
the stationary conservation statements reveals trivial results
for each electromagnetic formulation. This can be shown
by employing the standard power relation 〈F̄e〉 · v̄ = Pe with
v̄ = 0̄, validating any electromagnetic force expression, where
by conservation theorems 〈F̄mech〉 = −〈F̄e〉. Simply stated,
this relation holds because the stationary time-average electro-
magnetic power, as demonstrated in Eq. (36), always renders
zero net-power flow, where the electromagnetic force can be
arbitrarily defined and validate the system. This illustrates that
stationary media analysis alone is insufficient for determining
the kinetic subsystem [22,24]. Other conclusions from the

present stationary analysis are further discussed in the later
sections of this paper.

B. Moving analysis

Now, consider an electromagnetic wave normally incident
from vacuum onto a moving, linear, lossless, nondispersive
magnetodielectric half-space, as seen in Fig. 1. Here, the
constitutive relations of the moving material are transformed
from the moving frame to the laboratory frame, rendering
bianisotropic material parameters [23]. Employing the moving
material constitutive relations and the kDB system, wave
vector k̄ and the Minkowski fields are generated for relativistic
analysis, where the methods are demonstrated in Refs. [22,23]
and in Appendix B. Additionally, the Chu fields are generated
by using field transformation laws, along with the derived
Minkowski fields, and are expressed in Appendix B.

In evaluating the moving system, we employ the subsystem
concept [21] in conjunction with the jump condition provided
by kinematic theory [39]. This yields the time-average force
and power relations for moving media as

〈F̄j 〉 = −
‹

a

dā · {〈 ¯̄Tj 〉 − v̄〈Ḡj 〉} (37a)

〈Pj 〉 =
‹

a

dā · {〈S̄j 〉 − v̄〈Wj 〉}, (37b)

where
∑

j f̄j = 0 and
∑

j ϕj = 0 by conservation laws as
before. Within the analysis, two subsystem are considered:
electromagnetic and mechanical. Here, the electromagnetic
subsystem is individually modeled by each leading kinetic for-
mulation, where the mechanical subsystem retains a constant
material velocity as per relativistic constraints. Now, appli-
cation of Eqs. (37), formulation-specific SEM components,
and the associated field definitions in Appendix B render the
Abraham force and power as

〈F̄Abr〉 = −x̂[〈 ¯̄TAbr〉] + v〈ḠAbr〉] = −x̂
2U0(1 + β)

(1 − β)

×
{
n2 − 2nμ′

r [n + β(1 − n2)] + μ′2
r

}
(n + μ′

r )2
, (38a)

〈PAbr〉 = −[〈S̄Abr〉] + v[〈WAbr〉] = 2U0(1 + β)

(1 − β)

× cβ
(
n2 − 2nμ′

r + μ′2
r

)
(n + μ′

r )2
, (38b)

the Einstein-Laub force and power as

〈F̄EL〉 = −x̂[〈 ¯̄TEL〉] + v[〈ḠEL〉] = −x̂
2U0β

(1 − β)2(n + μ′
r )2

{
[2β2nμ′

r (1 − n2) + 2n(n2 − μ′
r (2 − μ′

r )]

−β
[
n4 + μ′2

r + n2
(
1 − 4μ′

r + μ′2
r

)]}
, (39a)

〈PEL〉 = −[〈S̄EL〉] + v[〈WEL〉] = 2U0cβ

(1 − β)2(n + μ′
r )2

[(
n2β + μ′2

r β
)
(β + 2n − n2β) − 2

(
n2 + μ′2

r

) − 2nμ′
r (β − 2n + n2β)

]
,

(39b)
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FIG. 2. The electromagnetic (a) force and (b) power versus
velocity for the leading kinetic formulations are presented for a
moving magnetodielectric half-space, with the normalized velocity
ranging from −1 to 1/n. Here, ε ′

r = 5, μ′
r = 3, n = √

ε ′
rμ

′
r , with

β = v

c
being the normalized velocity.

and the Chu force as

〈F̄Chu〉 = x̂[〈 ¯̄TChu〉] + v[〈ḠChu〉] = x̂0, (40a)

〈PChu〉 = −[〈S̄Chu〉] + v[〈WChu〉] = 0, (40b)

where a prime represents material parameters in the moving
frame. Plots of the force and power distributions for each for-
mulation are demonstrated in Fig 2. Here, the mechanical force
and power used in maintaining the system are 〈F̄mech〉 = −〈F̄e〉
and 〈Pmech〉 = −〈Pe〉 by conservation theorems. This implies
〈F̄e〉 · v̄ = 〈Pe〉 must hold for each individual electromagnetic
formulation. Applying this to each derived moving system,
however, demonstrates neither the Abraham nor Einstein-Laub
equations possess valid conservation expressions within the
system, as can be seen in Fig. 2(b). At least one of the

force or power expressions resulting from both the Abraham
and Einstein-Laub expressions is incorrect, leading to invalid
electrodynamic representations within the system. In contrast,
the Chu formulation provides valid results for the kinetic
force and power expressions, further demonstrating the correct
electrodynamics in all inertial reference frames.

V. LAGRANGIAN

Hamilton’s variational principle provides a systematic
process for deriving the equations of motion and conservation
laws for a physical system from a postulated Lagrangian
density, where the use of a generalized Lagrangian produces
consistent dynamics within a closed system. The Lagrangian
density is formulated by [40,41]

L = LF + LI + LM, (41)

where LF , LI , and LM are the electromagnetic field, field-
matter interaction, and matter Lagrangian densities, respec-
tively. The energy and coenergy functions are defined in
terms of the electric and magnetic field vectors Ē and H̄ ,
consistent with the shared-energy and momentum relations,
which leads to the invariant expression for the electromagnetic
field Lagrangian density [21],

LF = ε0

2
|Ē|2 − μ0

2
|H̄ |2. (42)

To allow for accurate partitioning of field and material
subsystems, we reserve discussion of the matter Lagrangian
density LM to a future publication. In general, however,
LM will depend upon the model used for the material, and
examples of causal material models have been given for
dielectrics [42] and magnetodielectrics [43]. With a vector
potential structure previously applied to describe systems with
magnetic monopoles [44] and to model radiation using the
equivalence principle [45]

Ē = −∇
e − 1

ε0
∇ × Āe − ∂Ām

∂t
, (43a)

H̄ = −∇
m + 1

μ0
∇ × Ām − ∂Āe

∂t
, (43b)

the field-matter interaction Lagrangian density is defined to
include electric and magnetic interaction terms

LI = −ρe
e + J̄e · Ām + ρm
m + J̄m · Āe, (44)

where J̄e and J̄m are the effective electric and magnetic current
densities, ρe and ρm are the effective electric and magnetic
charge densities, 
e and 
m are the electric and magnetic
scalar potentials, and Āe and Ām are the electric and magnetic
vector potentials.

The Euler-Lagrange equation [41] is given by the relation

d

dt

∂L
∂ẋj

= ∂L
∂xj

− d

dXK

∂L
∂(∂xj/∂XK )

, (45)

where the Lagrangian density is used to derive the dynamics
of the subsystem. Thus, substituting the kinetic Lagrangian
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density,

LFk
= ε0

2

(
−∇
e − 1

ε0
∇ × Ām − ∂Āe

∂t

)2

− μ0

2

(
−∇
m + 1

μ0
∇ × Āe − ∂Ām

∂t

)2

− ρe
e + J̄e · Āe + ρm
m + J̄m · Ām, (46)

into Eq. (45), the kinetic form of Maxwell’s equations
are derived. For the electric scalar potential, we find the
Lagrangian with respect to 
e by

d

dt

∂L
∂(∂
e/∂t)

= ∂L
∂
e

− d

dzj

∂L
∂
e,j

(47)

to yield

0 = −ρe + ε0
d

dzj

Ē,

ρe = ε0∇ · Ē. (48)

Similarly, we find the Lagrangian with respect to the magnetic
scalar potential 
m by yielding

0 = ρm − μ0
d

dzj

H̄ ,

ρm = μ0∇ · H̄ . (49)

Application of the Lagrangian with respect to the electric
vector potential Āe renders

− ε0
d

dt
Ē = Jei

− (−αkji)
d

dzj

H̄ ,

∇ × H̄ − ε0
∂Ē

∂t
= J̄e, (50)

where the permutation symbol αklm is used. Last, the La-
grangian in terms of the magnetic vector potential Ām is found
such that

− μ0
d

dt
H̄ = Jmi

+ (−αkji)
d

dzj

Ē,

∇ × Ē + μ0
∂H̄

∂t
= −J̄m. (51)

Collection of Eqs. (48)–(51) yields Maxwell’s equations in
terms of the Ē and H̄ fields, as seen in Eq. (3). Here, we must
point out that the material contributions J̄e, J̄m, ρe, and ρm that
uniquely define the electromagnetic subsystem have yet to be
defined. This means that specific field definitions that render
the physical interpretation and formulation of electrodynamics
cannot be completely known. However, the electromagnetic
framework has been derived, allowing for generalized field
analysis of the electromagnetic subsystem.

Equations (3) are easily recast into matrix representation
such that

Fαβ =

⎡
⎢⎣

0 Hz −Hy −icε0Ex

−Hz 0 Hx −icε0Ey

Hy −Hx 0 −icε0Ez

icε0Ex icε0Ey icε0Ez 0

⎤
⎥⎦, (52a)

Gαβ =

⎡
⎢⎣

0 −Ez Ey −icμ0Hx

Ez 0 −Ex −icμ0Hy

−Ey Ex 0 −icμ0Hz

icμ0Hx icμ0Hy icμ0Hz 0

⎤
⎥⎦, (52b)

where Greek subscripts α,β have their usual meaning [21].
Applying the generalized relativistic transformation matrix
[21] such that S ′ is traveling with velocity v̄ = x̂v with respect
to S, the field tensors transform to

F ′
αβ =

⎡
⎢⎢⎣

0 H ′
z −H ′

y −icε0E
′
x

−H ′
z 0 H ′

x −icε0E
′†
y

H ′
y −H ′

x 0 −icε0E
′†
z

icε0E
′
x icε0E

′†
y icε0E

′†
z 0

⎤
⎥⎥⎦, (53a)

G ′
αβ =

⎡
⎢⎢⎣

0 −E′
z E′

y −icμ0H
′
x

E′
z 0 −E′

x −icμ0H
′
y

−E′
y E′

x 0 −icμ0H
′
z

icμ0H
′
x icμ0H

′†
y icμ0H

′†
z 0

⎤
⎥⎥⎦,

(53b)

with the primed matrix values given as

E′
x = Ex,

E′
y = γ (Ey − cμ0βHz),

E′†
y = γ (cμ0Hz − βEy),

E′
z = γ (Ez + cμ0βHy),

E′†
z = γ (cμ0Hy + βEz),

H ′
x = Hx,

H ′
y = γ (Hy + cε0βEz),

H ′†
y = γ (cε0Ez + βHy),

H ′
z = γ (Hz − cε0βEy),

H ′†
z = γ (cε0Ey − Hzβ),

where the transformation made no assumption towards any
field representation. In deriving the shared-energy relations
and kinetic-momentum density, the relativistic SEM tensor is
found such that

T′
αβ = 1

2μ0F ′
αβF ′

βγ + 1
2ε0G ′

αβG ′
βγ , (54)

where Eq. (54) represents the combination of Eqs. (17),
(18), and (20). Here, we note that this demonstrates the Chu
formulation as the relativistically invariant electromagnetic
system tied to Eqs. (3).

VI. DISCUSSION

In Secs. III–V, we studied the relativistic nature of two
perspective kinetic formulations. Employing such analytic
methods as the principle of virtual power and Lagrangian
analysis, as well as utilizing Lorentz invariance arguments
and relativistic modeling, both the Chu and Einstein-Laub
electromagnetic subsystems were studied with reference to
relativistic frameworks. In this section, we review our finding
while discussing related contributions, thereby revealing the
discrepancies between the two formulations.
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Field kinetic research has utilized several leading formula-
tions in modeling the center-of-mass translation with respect
to electromagnetic material interactions [6]. Each prospective
formulation attempts to reformulate or divide Maxwell’s equa-
tions into pure field and material responses, which constitute
the electromagnetic subsystem. Within the literature, two lead-
ing formulations used in modeling the kinetics of light are the
Chu and Einstein-Laub formulations, where both formulations
correspond to partitioning Maxwell’s equations such that the
material is modeled as electric and magnetic dipoles [20]. Al-
though similar, the two formulations differ in the expressions
of the force density, stress tensor, and electromagnetic field
interpretations. A review of recent literature reveals both for-
mulations are used in modeling the field kinetic subsystem for
multiple computational experiments, as well as theoretical dis-
cussion [38,46–49]. The problem with this is that, for station-
ary media (which much of the literature models), both formu-
lations simultaneously satisfy momentum conservation using
different force-density expressions, where the power-density
expressions remain equivalent and unchanged. This is a con-
sequence of rearranging terms in the conservation equations

f̄Fk
= −∇ · ¯̄TFk

− ∂

∂t
(ε0μ0Ē × H̄ ), (55)

such that the force density and stress tensor are ambiguously
defined, allowing for multiple mathematically valid
force-density expressions representing the kinetic subsystem.
To demonstrate, we employ vector calculus identities [24]

− (∇ · P̄ )Ē = (P̄ · ∇)Ē − ∇ · (P̄ Ē), (56a)

−μ0(∇ · M̄)H̄ = μ0(M̄ · ∇)H̄ − μ0∇ · (M̄H̄ ) (56b)

to rearrange the Chu stress tensor and force-density values to
yield the Einstein-Laub force density

[ρ + (P̄ · ∇)]Ē + (μ0M̄ · ∇)H̄ +
(

J̄ + ∂P̄

∂t

)
× μ0H̄

−μ0
∂M̄

∂t
× ε0Ē = − ∂

∂t
[ε0μ0Ē × H̄ ]

−∇ ·
[

1

2
(ε0Ē · Ē + μ0H̄ · H̄ ) ¯̄I − D̄Ē − B̄H̄

]
. (57)

This augmentation is similar to that used in describing the
Abraham force, which alters the Minkowski formulation
rendering the Abraham formulation while sharing Minkowski
energy definitions [24]. However mathematically correct, such
mathematical exercises should not be taken as a basis for
defining physical systems and should instead be tested against
known mathematical and physical constructs (one such being
invariant forces).

To uniquely resolve the analytic electrodynamics ex-
pressions, one can employ RPVP while utilizing a priori
energy relations along with respective field transformations
to derive the related stress tensor and momentum density
valid for all inertial reference frames. This was accomplished
in Sec. III A, where both the Chu and Minkowski fields
were applied to produce the associated stress-tensor and
momentum-density values. Here, only one analysis, the Chu
analysis, demonstrated in Eqs. (15), rendered invariant results
for the force-density, stress-tensor, and momentum-density

expressions, which corresponds to previous research on the
kinetic subsystem [33]. In contrast, the Einstein-Laub analysis,
demonstrated in Eqs. (11), did not produce the kinetic-
momentum density and resulted in unreported expressions for
both the stress tensor and momentum density. In Sec. III B,
further analysis using relativistic SEM tensor and vector field
transformations demonstrated relativistic invariance of the
Chu stress tensor between inertial reference under Chu field
transforms. The Einstein-Laub stress tensor, however, failed
to transform under both Chu and Minkowski field definitions.
This indicates that the Einstein-Laub formulation, in general,
cannot constitute a valid electromagnetic subsystem. This is
due to the prescribed electrodynamics changing from one
inertial reference frame to another, which, according to special
relativity, cannot be true.

In Sec IV, the Chu, Einstein-Laub, and Abraham formu-
lations were used in modeling the field kinetic subsystem
for stationary and moving media. First, considering the
electromagnetic models in the stationary system, the Abraham
momentum, as presented is Eq. (34), is equivalent to that of the
Minkowski momentum Ref. [38], which requires the Abraham
kinetic formulation to produce a pulling force equivalent to
the canonical Minkowski force. This comes as no surprise
because the stress-tensor definitions of both formulations,
which, in the stationary frame, are used to derive the time-
average force-density expression, are equivalent (i.e., ¯̄TM =
¯̄TA). Alternatively, the Chu and Einstein-Laub formulations
demonstrate null quantities for the electromagnetic momentum
normally incident at the boundary interface. This is due to
both formulations modeling the transmitted electromagnetic
momentum flow within the material and the free-space
momentum flow outside the material as equal and opposite
electromagnetic momentum contributions. For each case
considered, the electromagnetic system satisfies global energy-
and momentum-conservation laws, where the quasistationary
approximation ensures conservation by limiting the materials’
physical quantities (velocity v → 0 and mass m → ∞) such
that the momentum vector remains nonzero [6,24]. For the
moving media analysis, however, this is not the case. Instead
one can use the electromagnetic energy flow of the incident,
reflected, and transmitted waves to analyze the moving
system, thus providing validation of global conservation laws
[22,50]. Considering the moving electromagnetic models,
the Abraham and Einstein-Laub formulations demonstrate a
buildup of electromagnetic energy in front of the moving
magnetodielectric slab, causing a material attraction or pulling
force towards the incident light. This indicates that the
mechanical force supplied to keep the material moving at a
constant velocity must be balanced to sustain the system by
the relation 〈F̄mech〉 · v̄ = −〈Pe〉. By conservation theorems,
the electromagnetic force and mechanical force must have
equal and opposite contributions, allowing for the material
to move at a constant velocity. The relations presented by
Eqs. (38a) and (39a) demonstrate a pulling force but at
different rates than what is prescribed by the mechanical force
expression. This indicates that the Einstein-Laub and Abraham
formulations predict incorrect force and/or power distributions
for moving systems. In contrast, the Chu formulations retain
the interpretation as presented in the stationary frame, where
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the free-space and transmitted contributions cancel, rendering
invariant results in the moving frame.

In 1918, Dallenbach wrote Einstein about inherent prob-
lems within the Einstein-Laub force-density expression. After
several exchanges, Einstein wrote in response to Dallenbach
[35], “It has long been known that the values I had derived
with Laub at the time are wrong; Abraham, in particular, was
the one who presented this in a thorough paper. The correct
strain tensor has incidentally already been pointed out by
Minkowski.” It has since been shown that additional torque
terms P̄ × Ē + μ0M̄ × H̄ must supplement the usual r̄ × f̄

form of the torque density in the Einstein-Laub formulation.
Such an augmentation can be criticized on the basis that
mathematical manipulation requires an equal augmentation
to the interaction term to preserve the angular momentum
continuity equation. Of course, this changes the division
and interpretation of the subsystems. The same argument
applies to the so-called hidden-momentum term which is often
applied to the Amperian momentum to achieve the kinetic-field
momentum [24]. In light of this, recent research [19] has
shown a relation between the canonical and kinetic momenta.
Thus, energy and momentum conservation demonstrates that
the sum of the field and material contributions of the kinetic
subsystem is equal to the field and material contributions of
the canonical subsystem. This indicates that partitioning the
total electrodynamic system leads to a material and kinetic
subsystem; the kinetic subsystem demonstrates field and
material responses and is consistent with global energy and
momentum conservation.

VII. CONCLUSION

In conclusion, we have studied the Einstein-Laub and Chu
formulations by use of the relativistic principle of virtual
power, relativistic invariance, mathematical modeling, and
Lagrangian methods. Within each analysis, both formula-
tions are compared in determining which electromagnetic
formulation is tied to the kinetic-momentum density and
the shared-energy relations. The outcome of each analysis
demonstrated inconsistencies within the Einstein-Laub for-
mulation, which were revealed when transforming between
inertial reference frames. Conversely, the Chu formulation
presented invariant forms for RPVP and SEM transforms, as
well as in mathematical modeling. In deriving field kinetic
values independent of formulation-specific field definitions,
Lagrangian methods were employed in which field values
were replaced by prescribed scalar and vector potentials.
Defining the Lagrangian density in energy and coenergy
expressions [21], along with including any theoretically
possible interaction values, the Lagrangian analysis yielded the
field kinetic (E,H ) form of Maxwell’s equations. To validate
the electrodynamics in all inertial reference frames, the field
kinetic Maxwell’s equations were recast into Minkowski space
and transformed using a generalized Lorentz transformation.
The energy-momentum tensor of the field kinetic subsystem
was shown to be Lorentz invariant when deriving the kinetic-
momentum density and shared-energy relations, where the
transformed SEM tensor is consistent with the one derived
by Chu [21,36]. Thus, the Chu formulation is relativistically
invariant in a medium with a local velocity field v̄ given that the

charge and current densities describing material response are
described by Eqs. (5). This was demonstrated in Sec. IV, where
the Chu formulation, unlike the Einstein-Laub and Abraham
formulations, demonstrated consistent and invariant results
for the electromagnetic force and power within the moving
system. The analysis presented herein demonstrates that the
Chu formulation is the correct physical interpretation tied to
Eqs. (3), thereby disproving the Einstein-Laub formulation of
electromagnetics. Additionally, we note that the derivations, as
presented in Secs. III A and V, made no a priori assumption for
the force density, momentum density, or stress tensor, thereby
strengthening our conclusions.
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APPENDIX A: STATIONARY FIELDS AND COEFFICIENTS

Consider an electromagnetic wave normally incident from
vacuum onto a stationary (v = 0), linear, lossless, nondis-
persive magnetodielectric half-space, as seen in Fig. 1. The
incident fields are rendered as

Ēi = ẑE0e
−ik1x, (A1a)

H̄i = ŷ
E0

cμ0
e−ik1x, (A1b)

the reflected fields are rendered as

Ēr = ẑE0Reik1 , (A2a)

H̄r = −ŷ
E0

cμ0
Reik1x, (A2b)

and the transmitted fields are rendered as

Ēt = ẑE0T e−ik2x, (A3a)

H̄t = ŷ
E0

cμ0

n

μr

T e−ik2x, (A3b)

where the wave vectors and wave numbers for the respective
regions are rendered as

k2
1 = ω2ε0μ0,

k2
2 = ω2εμ,

k̄i = −x̂k1,

k̄r = x̂k1,

k̄t = −x̂k2.

Application of the tangential boundary conditions, Ē1 −
Ē2 = 0 and H̄1 − H̄2 = J̄ = 0, reveals the expressions for the
reflection and transmission coefficients such that

R = μr − n

μr + n
, (A4a)

T = 2μr

μr + n
. (A4b)
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APPENDIX B: MOVING FIELDS AND COEFFICIENTS

Here, we present the field values for the transformed
Minkowski and Chu formulations. Both field transformations
take on bianisotropic material parameters, where the constitu-
tive relations have been transformed from the moving frame
to the laboratory frame such that [22,23]

¯̄C = ¯̄L−1
6 · ¯̄C ′ · ¯̄L6, (B1)

where

¯̄C ′ =
[ ¯̄P ′ ¯̄L′

¯̄M ′ ¯̄Q′

]
, (B2)

with ¯̄P ′ = cε′ ¯̄I , ¯̄L′ = ¯̄M ′ = ¯̄0, ¯̄Q = ¯̄I
cμ′ , along with ¯̄L6 and

¯̄L
−1
6 being the standard and inverse Lorentz transformation

matrices [23]. Using constitutive relation transformations and
the kDB system, the wave-vector relations along the x̂ direction
are [22,23]

k̄+ = x̂
n + β

1 + nβ

ω

c
, (B3a)

k̄− = −x̂
n − β

1 − nβ

ω

c
, (B3b)

where superscripts +,− denote the wave-vector solutions in
the positive and negative directions within the material.

1. Minkowski representation

Consider a plane wave normally incident on a moving
magnetodielectric half-space, as seen in Fig 1. The incident
Minkowski fields in the laboratory frame are

Ēi = ẑE0e
−i(kix+ωi t), (B4a)

H̄i = ŷ
E0

cμ0
e−i(kix+ωi t), (B4b)

where the incident wave vector is k̄i = −x̂ ωi

c
. The reflected

Minkowski fields in the laboratory frame are

Ēr = ẑE0Rei(krx−ωr t), (B5a)

H̄r = −ŷ
E0

cμ0
Rei(krx−ωr t), (B5b)

where the reflected wave vector is k̄r = x̂ ωr

c
. The transmitted

Minkowski fields observed from the laboratory frame are

Ēt = ẑE0e
−i(kt x+ωi t), (B6a)

B̄t = ŷ
E0

c

n − β

1 − nβ
T e−i(kt x+ωi t), (B6b)

D̄t = ẑ
E0

c2μ0

n(n − β)

μ′
r (1 − nβ)

T e−i(kt x+ωi t), (B6c)

H̄t = ŷ
E0

cμ0

n

μ′
r

T e−i(kt x+ωi t), (B6d)

where the transmitted wave vector within the moving material
is k̄t = −x̂nt

ωt

c
and nt = (n−β)

(1−nβ) .

Employing moving tangential boundary conditions Ē +
v̄ × B̄ = 0 and H̄ − v̄ × D̄ = J̄ = 0, we derive the expres-
sions

(1 + β) + R(1 − β) = T

(
1 − β2

1 − nβ

)
,

(1 + β) − R(1 − β) = T
n

μ′
r

(
1 − β2

1 − nβ

)
,

which, after manipulation, result in the reflection and trans-
mission coefficients

R = (μ′
r − n)

(μ′
r + n)

(1 + β)

(1 − β)
, (B7a)

T = 2μ′
r

(μ′
r + n)

(1 − nβ)

(1 − β)
. (B7b)

2. Chu representation

Here, we transform the Minkowski fields presented to the
Chu fields by the transformations [21]

ĒC = ĒM +
v̄ × {[

ĒM − (
D̄M

ε0

)] × v̄
}

c2(1 − β2)

+ v̄ × (B̄M − μ0H̄M )

(1 − β2)
, (B8a)

H̄C = H̄M +
v̄ × {[

H̄M − (
B̄M

μ0

)] × v̄
}

c2(1 − β2)

− v̄ × (D̄M − ε0ĒM )

(1 − β2)
, (B8b)

P̄C = D̄M − ε0ĒM + v̄ × {(D̄M − ε0ĒM ) × v̄}
c2(1 − β2)

− ε0v̄ × (B̄M − μ0H̄M )

(1 − β2)
, (B8c)

μ0M̄C = B̄M − μ0H̄M + v̄ × {(B̄M − μ0H̄M ) × v̄}
c2(1 − β2)

−μ0v̄ × (D̄M − ε0ĒM )

(1 − β2)
. (B8d)

In vacuum, the field representations for the Chu and
Minkowski fields are equivalent and are demonstrated in
Eqs. (B4) and (B5). The transmitted Chu fields are

ĒCt
= ẑ

μ′
r − nβ

μ′
r (1 − nβ)

E0T e−i(kt x+ωt t), (B9a)

H̄Ct
= −ŷ

n − μ′
rβ

μ′
r (1 − nβ)

E0

cμ0
T e−i(kt x+ωt t), (B9b)

P̄Ct
= ẑ

n2 − μ′2
r

μ′
r (1 − nβ)

E0

c2μ0
T e−i(kt x+ωt t), (B9c)

μ0M̄Ct
= −ŷ

n(μ′
r − 1)

μr (1 − nβ)

E0

c
T e−i(kt x+ωt t). (B9d)

In determining the reflection and transmission coefficients,
application of the Chu fields and boundary conditions results
in a relation identical to that previously defined in Eqs. (B7).
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