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We study all-optical switches operating on a single four-level atom with the N -type transition configuration in
a two-mode nanofiber cavity with a significant length (on the order of 20 mm) and a moderate finesse (on the order
of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe
fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the D2

line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the
effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on
the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to
the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching
contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers of
the cavity driving field pulses. For a nanofiber cavity with fiber radius of 250 nm, cavity length of 20 mm, and
cavity finesse of 313 and a cesium atom at a distance of 200 nm from the fiber surface, we numerically obtain a
switching contrast on the order of about 67% for the first scheme and of about 95% for the second scheme. These
switching operations require small mean numbers of photons in the nanofiber cavity gate and probe modes.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) plays a central role
in studies of fundamental quantum processes of interaction
between light and atoms [1]. When a single mode of the
light field is selected by a high-finesse optical microcavity, the
coherent interaction between the field and an atom in the cavity
is significantly enhanced by the confinement of the field in the
small mode volume of the cavity. Due to the discrete nature
of the cavity mode structure, the transfer of quantum states
between the atom and the cavity field is intrinsically reversible.
Therefore, an atom coupled to an optical cavity field can
serve as a node for a quantum network [2–9], where quantum
information is generated, stored, processed, and transmitted
through. Controlled generation of single photons from such a
system has been realized [4–6]. Atom-photon entanglement [7]
and photon-photon entanglement [8] in an optical cavity
have been demonstrated. Cavity QED enables the realization
of remarkable nonlinear optical phenomena such as photon
blockade, photon-induced tunneling, and all-optical switching,
in which individual photons strongly interact with each other.

In photon blockade, the transmission of one photon through
a system hinders the transmission of subsequent photons [10].
Meanwhile, in photon-induced tunneling, the opposite behav-
ior is observed, that is, the probability of admitting subsequent
photons increases [11]. Photon blockade and photon-induced
tunneling are caused by the anharmonicity of the energy
levels of the coupled atom-cavity system. Photon blockade
and photon-induced tunneling in a cavity with a two-level
emitter have been reported [11–17]. Photon blockade based
on the coupling of four-level quantum emitters to a cavity has
been studied [10,18–24].

In an all-optical switch, one light beam can fully control
another light beam. It has been shown that the transmission

of light through an ensemble of atoms under conditions of
electromagnetically induced transparency (EIT) in an optical
cavity [25–30] may be controlled with few photons and
even by the electromagnetic vacuum field [28]. All-optical
switching in a four-level system has been studied [29–34].
All-optical switching at the level of a few hundred photons
in an ensemble of four-level atoms within a hollow fiber
has been demonstrated [33]. The cavity QED version [10]
of an all-optical few-photon switch [35] based on EIT in
an ensemble of four-level atoms has been achieved [34].
Single-photon switches operating on a quantum dot in a
cavity [36], on a single atom coupled to a fiber-coupled,
chip-based microresonator [37], or on Rydberg blockade in an
ensemble of atoms [38] have been realized. Switching of light
by a single emitter in a cavity [39], near a waveguide [35,40],
or in a tightly focused laser beam [41] has also been studied.

Similar to microcavities, vacuum-clad silica-core fibers
with diameters smaller than the wavelength of light can tightly
confine the field. Such thin fibers are called nanofibers. A
nanofiber can be produced as the waist of a tapered optical
fiber [42,43]. The adiabatic tapering technique [44] allows one
to match the mode of a conventional single-mode optical fiber
with the mode of the subwavelength-diameter tapered waist
region, thus ensuring high transmission and integrability of
the device. In a nanofiber, the original core is, due to tapering,
almost vanishing. The refractive indices that determine the
guiding properties of the nanofiber are the refractive index
of the original silica clad and the refractive index of the
surrounding vacuum. The nanofiber field is an evanescent wave
in the cross-section plane and propagates along the fiber.

A nanofiber cavity can be obtained by combining the
nanofiber technique with the fiber-Bragg-grating (FBG) cavity
technique [45–58]. In such a system, the atom-field interaction
is enhanced by the confinement of the field in the fiber
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cross-section plane and in the space between the built-in
FBG mirrors. The output field is in guided modes and can
therefore be transmitted over long distances for communi-
cation purposes. Various applications of nanofiber cavities
have been studied [45–49,51,57,58]. It has been shown that a
nanofiber cavity with a large length (on the order of 1–10 cm)
and a moderate finesse (less than 1000) can substantially
enhance the channeling of emission from an atom into the
nanostructure [46]. The deterministic generation of a single
guided photon has been studied [48]. The controlled generation
of entangled guided photons from an atom in a nanofiber
cavity has been investigated [49]. A significant enhancement
of the spontaneous emission rate into the nanofiber guided
modes has been demonstrated for single quantum dots in
a nanofiber cavity [57]. Very recently, a nanofiber cavity
with a single trapped atom in the strong-coupling regime has
been demonstrated and the vacuum Rabi splitting has been
observed [58]. The results of Ref. [58] make the study of
nanofiber cavity quantum electrodynamics very timely and
attractive.

In this paper, we study all-optical switches operating on
a single four-level atom with the N -type transition con-
figuration [10,29–34] in a two-mode nanofiber cavity with
a significant length and a moderate finesse under the EIT
conditions. We consider the case where both the gate field and
the target field are the quantum cavity fields excited by weak
classical pulses. We examine two different schemes where the
switching occurs due to different mechanisms.

The paper is organized as follows. In Sec. II, we describe the
model and present the basic equations. In Sec. III, we present
the analytical expressions for the dressed states of the coupled
atom-cavity system. In Sec. IV, we study the possibility to
switch a cavity mode under the EIT conditions using the effect
of the presence of a photon in the other mode on the EIT.
In Sec. V, we investigate the possibility to switch a cavity
mode by storing a photon of the other mode in the population
of an appropriate atomic level. Our conclusions are given
in Sec. VI.

II. MODEL

We consider a single four-level atom with the N -type
transition configuration in a two-mode nanofiber cavity (see
Fig. 1). The energy levels of the atom are labeled by the index
j = 1,2,3,4. The corresponding basis internal states of the
atom are denoted as |j 〉, with the associated energies �ωj .
The angular frequency of the atomic transition |j 〉 ↔ |j ′〉 is
ωjj ′ = ωj − ωj ′ . The cavity is formed by a nanofiber with
two built-in FBG mirrors [50–58]. We consider two cavity
modes whose resonant frequencies ωcav1 and ωcav2 are near
resonance with the atomic transition frequencies ω31 and
ω42, respectively. We label these cavity modes by the index
ν = 1,2. The cavity is driven by two weak classical guided
fields of frequencies ωp1 and ωp2 , which excite the cavity
modes 1 and 2, respectively. The cavity quantum fields in
modes 1 and 2 couple the atomic transitions |3〉 ↔ |1〉 and
|4〉 ↔ |2〉, respectively, with the coupling coefficients g1 and
g2, respectively. A strong external classical field with the
complex amplitude Ec and the angular frequency ωc is applied
to the atomic transition |3〉 ↔ |2〉. The corresponding Rabi
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FIG. 1. (a) Atom near a nanofiber with two FBG mirrors. The
atom lies in the zx plane, with y being the quantization axis
and z being the fiber axis. (b) Scheme of energy levels and
transitions of the atom. In our numerical calculations, we use the
sublevels |1〉 = |6S1/2,F = 3,M = 3〉, |2〉 = |6S1/2,F = 4,M = 4〉,
|3〉 = |6P3/2,F

′ = 4,M ′ = 4〉, and |4〉 = |6P3/2,F
′ = 5,M ′ = 5〉 of

the D2 line of atomic cesium. Two cavity quantum fields with resonant
frequencies ωcav1 and ωcav2 couple the atomic transitions |3〉 ↔ |1〉
and |4〉 ↔ |2〉, respectively, with the detunings δ and �, respectively.
The cavity is driven by two weak classical guided fields. A strong
external classical field of frequency ωc is applied to the atomic
transition |3〉 ↔ |2〉. The detunings of the classical cavity-driving
and atom-control fields are not shown. The external control field is
linearly polarized along the y axis, while the cavity guided modes are
quasilinearly polarized along the x axis.

frequency is �c = d32 · Ec/�, where d32 is the dipole matrix
element for the atomic transition |3〉 ↔ |2〉. The transitions
|4〉 ↔ |3〉, |4〉 ↔ |1〉, and |2〉 ↔ |1〉 are not allowed within
the electric-dipole approximation.

We use the Cartesian coordinate system {x,y,z} and
the associated cylindrical coordinate system {r,ϕ,z}, with z

being the fiber axis. We assume that the atom lies in the
zx plane, that is, the position of the atom is {x,0,z}. We
call the axes x and y the major and minor principal axes,
respectively. To be specific, we use the transitions between
the Zeeman sublevels of the D2 line of atomic cesium in
our numerical calculations. In order to specify the atomic
states, we use the minor principal axis y as the quantization
axis zQ. We use the atomic states |1〉 = |6S1/2,F = 3,M =
3〉, |2〉 = |6S1/2,F = 4,M = 4〉, |3〉 = |6P3/2,F

′ = 4,M ′ =
4〉, and |4〉 = |6P3/2,F

′ = 5,M ′ = 5〉. Here, F (and F ′) and
M (and M ′) denote the hyperfine and magnetic sublevels,
respectively. The effects of other Zeeman sublevels are
removed by applying an external magnetic field.
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A. Effective Hamiltonian

In the electric-dipole and rotating-wave approximations,
the Hamiltonian of the atom-cavity system is

H = �

4∑
j=1

ωjσjj + �

∑
ν=1,2

ωcavν
a†

νaν

− i�(g1a1σ31 − g∗
1a

†
1σ13) − i�(g2a2σ42 − g∗

2a
†
2σ24)

− �

2
(�ce

−iωctσ32 + �∗
ce

iωctσ23)

+ �

∑
ν=1,2

(
Epν

e−iωpν t a†
ν + E∗

pν
eiωpν t aν

)
. (1)

Here, σjj ′ = |j 〉〈j ′| are the atomic operators, aν and a†
ν are the

photon annihilation and creation operators, respectively, and
Epν

characterize the strengths of the classical pump fields for
the cavity.

We use a rotating coordinate frame described by the unitary
operator U = e−iWt , where

W = ωp1a
†
1a1 + ωp2a

†
2a2 + ω1σ11 + (ωp1 − ωc + ω1)σ22

+ (
ωp1 + ω1

)
σ33 + (

ωp1 + ωp2 − ωc + ω1
)
σ44. (2)

Then, the original Hamiltonian (1) changes into the effective
Hamiltonian

H = U †HU + i�
dU †

dt
U. (3)

We find H = H0 + HP , where

H0 = �

4∑
j=2

(δj − �cav1 )σjj − ��cav2σ44

− �

∑
ν=1,2

�cavν
a†

νaν − i�(g1a1σ31 − g∗
1a

†
1σ13)

− i�(g2a2σ42 − g∗
2a

†
2σ24) − �

2
(�cσ32 + �∗

cσ23),

HP = �

∑
ν=1,2

(
Epν

a†
ν + E∗

pν
aν

)
. (4)

Here, we have introduced the notations

�cavν
= ωpν

− ωcavν
,

δ2 = ω21 − ωcav1 + ωc,

δ3 = ω31 − ωcav1 ,

δ4 = ω41 − ωcav1 − ωcav2 + ωc.

(5)

It is also convenient to use the notations δ = ω31 − ωcav1 and
� = ω42 − ωcav2 . In terms of these notations, we have δ3 = δ

and δ4 = � + δ2.
The effects of the cavity damping and atomic decay can be

taken into account by adding to (4) a non-Hermitian term

Hdamp = − i�

2

∑
ν=1,2

κνa
†
νaν − i�

2
(γ3σ33 + γ4σ44 + γ2dephσ22).

(6)
Here, the coefficients κν are the cavity damping rates for the
cavity modes ν, the coefficients γ3 and γ4 are the linewidths

of the levels |3〉 and |4〉, respectively, and the coefficient γ2deph

is twice the dephasing rate for the lower-level coherence.
The master equation for the density operator ρ of the atom-

cavity system is

ρ̇ = − i

�
[H,ρ] − i

�
(Hdampρ − ρH†

damp) + J ρ, (7)

where the operator

J ρ =
∑
ν=1,2

κνaνρa†
ν + γ31σ13ρσ

†
13 + γ32σ23ρσ

†
23

+ γ42σ24ρσ
†
24 + γ2dephσ22ρσ22 (8)

describes the jump. Here, the parameters γ31, γ32, and γ42 are
the spontaneous emission rates for the transitions |3〉 ↔ |1〉,
|3〉 ↔ |2〉, and |4〉 ↔ |2〉, respectively. In general, we have
γ3 � γ31 + γ32 and γ4 � γ42. In our numerical calculations,
we have γ3 > γ31 + γ32 and γ4 = γ42. The inequality γ3 >

γ31 + γ32 is a consequence of the fact that, in the case
of atomic cesium, the population of the upper level |3〉 =
|6P3/2,F

′ = 4,M ′ = 4〉 can decay not only to the lower levels
|1〉 = |6S1/2,F = 3,M = 3〉 and |2〉 = |6S1/2,F = 4,M = 4〉
but also to the other lower levels which are outside the
working level configuration and, therefore, are not shown in
Fig. 1. The equality γ4 = γ42 is a consequence of the fact
that, for atomic cesium, the population of the upper level
|4〉 = |6P3/2,F

′ = 5,M ′ = 5〉 can decay only to the lower
level |2〉 = |6S1/2,F = 4,M = 4〉.

B. Nanofiber cavity and coupling coefficients

We describe the nanofiber cavity field and derive the
expressions for the atom-cavity coupling coefficients. The
nanofiber cavity is a nanofiber with two built-in FBG mirrors
(see Fig. 1). The guided field in the nanofiber cavity is reflected
back and forth between the FBG mirrors. The nanofiber
has a cylindrical silica core of radius a and of refractive
index n1 = 1.45 and an infinite vacuum clad of refractive
index n2 = 1. In view of the very low losses of silica in the
wavelength range of interest, we neglect material absorption.
We also neglect the effects of the surface-induced potential,
the surface roughness, and the phonon heating on the atom.

In order to describe the field quantum mechanically, we
follow the continuous-mode field quantization procedures pre-
sented in [59]. First, we temporally neglect the presence of the
FBG mirrors. We assume that the single-mode condition [60]
is satisfied for a finite bandwidth around the characteristic
atomic transition frequency ω0. We label each fundamental
guided mode HE11 with a frequency ω in this bandwidth by
an index μ = (ω,f,l), where f = +,− denotes the forward
or backward propagation direction and l = +,− denotes
the counterclockwise or clockwise rotation of the transverse
component of the polarization with respect to the fiber axis
z. In the interaction picture, the quantum expression for the
electric positive-frequency component E(+)

gyd of the nanofiber
guided field is [61]

E(+)
gyd = i

∑
μ

√
�ωβ ′

4πε0
aμe(μ)e−i(ωt−fβz−lϕ). (9)
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Here, e(μ) = e(μ)(r,ϕ) is the profile function of the guided mode
μ in the classical problem, aμ is the corresponding photon
annihilation operator,

∑
μ = ∑

f l

∫ ∞
0 dω is the summation

over the guided modes, β is the longitudinal propagation
constant, and β ′ is the derivative of β with respect to ω. The
propagation constant β is determined by the fiber eigenvalue
equation [60]. The operators aμ and a†

μ satisfy the continuous-

mode bosonic commutation rules [aμ,a
†
μ′ ] = δ(ω − ω′)δff ′δll′ .

The explicit expression for the mode function e(μ) is given in
Refs. [60,61]. The normalization of the mode function is given
by the condition∫ 2π

0
dϕ

∫ ∞

0
n2

ref |e(μ)|2r dr = 1. (10)

Here, nref(r) = n1 = 1.45 for r < a, and nref(r) = n2 = 1 for
r > a.

Next, we take into account the effect of the FBG mirrors on
the mode functions. We assume that the two FBG mirrors are
identical, having the same complex reflection and transmission
coefficients R and T , respectively, for the guided modes in a
broad bandwidth around the characteristic atomic transition
frequency ω0. In general, we have |R|2 + |T |2 � 1, where the
equality (inequality) occurs for lossless (lossy) gratings. With-
out loss of essential physics, we assume that the gratings are
lossless, that is, |R|2 + |T |2 = 1. Let the mirrors be separated
by a distance L, from the point z = −L/2 to the point z = L/2.
The mode functions of the guided modes are modified by the
presence of the mirrors. We assume that the FBG mirrors do
not change the polarization of the field in the reflection and
transmission. The forms of the cavity-modified mode functions
are obtained, as usual in the Fabry-Pérot theory, by summing up
the geometric series of the contributions of multiple reflections
of the field from the mirrors [62–64]. Inside the cavity, the
mode functions of the cavity-modified guided modes are given
by

ẽ(ω,+,l) = e(ω,+,l) T

1 − R2e2iβL
+ e(ω,−,l) T Reiβ(L−2z)

1 − R2e2iβL
,

ẽ(ω,−,l) = e(ω,−,l) T

1 − R2e2iβL
+ e(ω,+,l) T Reiβ(L+2z)

1 − R2e2iβL
,

(11)

and, hence, the electric positive-frequency component of the
field in the cavity-modified guided modes is

E(+)
cav = i

∑
μ

√
�ωβ ′

4πε0
aμẽ(μ)e−i(ωt−fβz−lϕ). (12)

We emphasize that the quantization scheme presented
above has two steps, expressed by Eqs. (9) and (12).
Equation (9) describes the quantization of the guided field
in the absence of the FBG mirrors. Equation (12), which
contains the cavity-modified mode functions (11), describes
the quantization of the guided field in the FBG cavity. The
effect of the FBG mirrors on the mode structure and the state
density is ignored in Eq. (9) but is partially accounted for in
Eq. (12). The two-step quantization scheme described above
is an approximation. Indeed, the FBG mirrors may lead to the
coupling between different guided modes and between guided

modes and radiation modes of the bare fiber. The coupling
between guided modes leads to mode mixing that may result
in polarization changing and birefringence. The coupling
between guided modes and radiation modes leads to losses.
When the mode mixing and radiative losses, produced by the
FBG mirrors, are not significant, the two-step quantization
scheme holds. Otherwise, a numerical method based on the
Maxwell equations, the coupled-mode theory, or the transfer
matrix for a fiber with FBG mirrors must be used. We assume
in this paper that the mode coupling produced by the FBG
mirrors is not serious and therefore the two-step quantization
scheme can be used. We note that the mode matching between
the cavity field and the guided modes of the nanofiber is very
good in the experiments [51–58].

The resonant frequencies of the nanofiber cavity are deter-
mined by the minima of the absolute value of the denominator
1 − R2e2iβL in Eqs. (11), that is, by the condition βL + φR =
nπ , where φR is the phase of the reflection coefficient R and n

is an integer number characterizing the order of the resonance.
We assume that |R|2 � 1. In the single-mode regime, the
electric positive-frequency component of the field in a single
excited nanofiber cavity mode α is given, for quasicircular
polarization, by the expression

E(+)
α = i

√
�ωcav

ε0L
a[(r̂er + lϕ̂eϕ) cos βcav(z − z0)

+ iẑez sin βcav(z − z0)]eilϕe−iωcavt (13)

and, for quasilinear polarization, by the expression

E(+)
α = i

√
2�ωcav

ε0L
a[r̂er cos(ϕ − ϕ0) cos βcav(z − z0)

+ iϕ̂eϕ sin(ϕ − ϕ0) cos βcav(z − z0)

+ iẑez cos(ϕ − ϕ0) sin βcav(z − z0)]e−iωcavt . (14)

Here, a is the photon annihilation operator for the cavity mode.
The notations r̂ = x̂ cos ϕ + ŷ sin ϕ, ϕ̂ = −x̂ sin ϕ + ŷ cos ϕ,
and ẑ stand for the unit basis vectors of the cylindrical
coordinate system, where x̂ and ŷ are the unit basis vectors
of the Cartesian coordinate system for the fiber cross-section
plane xy. The notations er = er (r), eϕ = eϕ(r), and ez = ez(r)
stand for the cylindrical components of the profile function
e(ωcav,+,+)(r,ϕ) of the forward counterclockwise polarized
guided mode at the cavity resonant frequency ωcav [60,61]. The
parameter z0 in Eqs. (13) and (14) is given as z0 = mπ/2βcav,
where m is an integer number and βcav = β(ωcav) is the guided
mode propagation constant at the cavity resonant frequency.
The angle ϕ0 in Eq. (14) determines the orientation of the po-
larization vector of the quasilinearly polarized nanofiber cavity
mode. The prefactors in Eqs. (13) and (14) are determined by
the condition 2ε0

∫ L/2
−L/2 dz

∫
d2r n2

refE
(−)
α E(+)

α = �ωcava
†a.

In order to derive the coupling coefficients, we consider
a two-level atom located at the position (r,ϕ,z). Let d =
〈+|D|−〉 be the matrix element of the electric dipole moment
operator D for the atomic transition between the upper level
|+〉 and the lower level |−〉. In general, the atomic dipole
vector d of a realistic atom is a complex vector. The interaction
between the atom and the quantum guided cavity field in the
dipole and rotating-wave approximations is described by the
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Hamiltonian

HAF = −i�(gaσ † − g∗a†σ ), (15)

where the coupling coefficient g is given, for quasicircular
polarization, as

g =
√

ωcav

ε0�L
d · [(r̂er + lϕ̂eϕ) cos βcav(z − z0)

+ iẑez sin βcav(z − z0)]eilϕ (16)

and, for quasilinear polarization, as

g =
√

2ωcav

ε0�L
d · [r̂er cos(ϕ − ϕ0) cos βcav(z − z0)

+ iϕ̂eϕ sin(ϕ − ϕ0) cos βcav(z − z0)

+ iẑez cos(ϕ − ϕ0) sin βcav(z − z0)]. (17)

Note that � = 2g is sometimes called the vacuum Rabi
frequency. In Eq. (15), σ = |−〉〈+| and σ † = |+〉〈−| are the
transition operators for a two-level atom.

We assume that the FBG mirrors do not reflect the radiation
modes. This assumption is reasonable in the case where the
distance L between the FBG mirrors is large as compared to
the fiber radius a and to the wavelength λ0 = 2π/k0, with
k0 = ω0/c being the characteristic wave number of the atomic
transitions. With this assumption, the mode functions of the
radiation modes are not modified by the presence of the FBG
mirrors. In other words, the radiation modes are not confined
by the FBG cavity. In this sense, the physics of the FBG cavity
is similar to that of one-dimensional cavities [62,65], and is
different from that of planar Fabry-Pérot cavities [1,63,64,66],
where off-axis modes reduce the quantum electrodynamic
(QED) effect of the cavity on spontaneous emission of the
atom [64,66]. We also note that the guided field in the FBG
cavity is confined not only in the axial direction between the
mirrors but also in the fiber cross-section plane. In this sense,
the physics of the FBG cavity is similar to that of curved Fabry-
Pérot cavities, which are often used in experiments on cavity
QED effects [1,3–5,39,67–73]. An advantage of a FBG cavity
based on a nanofiber is that the field in the guided modes can be
confined to a small cross-section area whose size is comparable
to the light wavelength [74]. For example, for a nanofiber
with radius of 250 nm, the effective cross-sectional mode
area Aeff = (

∫ |e(μ)|2dr)2/
∫ |e(μ)|4dr of the quasicircularly

polarized fundamental guided modes with the wavelength
λ = 852 nm is found to be Aeff � 0.5 μm2. The corresponding
mode radius is found to be reff = √

Aeff/π � 398 nm. This
value is much smaller than the typical values of 15 to 30 μm
for the waists of the Fabry-Pérot cavity modes used in the
experiments on cavity QED effects [1,3–5,39,67–73]. The
mode radius reff � 398 nm of a 250-nm-radius nanofiber is
a few times smaller than the mode waists between 1 and 2 μm
of fiber Fabry-Pérot cavities [75].

We drive the cavity by a classical light field propagating
along the fiber in a guided mode μp = (ωp,fp,ξp). Let P be the
incident power. The pumping is described by the Hamiltonian

Hp = �(Epa† + E∗
pa), where

Ep =
√

κ

2

P

�ωp

(18)

is the cavity pumping rate. We assume that the FBG mirrors
are lossless. Then, the cavity damping rate is

κ = (1 − |R|2)vg

|R|L , (19)

where vg = 1/β ′(ωcav) is the group velocity. The mean number
n̄ = 〈a†a〉 of photons in the cavity without atoms is given
by [76]

n̄ = |Ep|2
κ2/4 + (ωp − ωcav)2

. (20)

The power P (out) of the transmitted field is related to the mean
intracavity photon number n̄ via the formula [76] P (out)/�ωp =
κn̄/2. The mean output photon number is

n(out)(t) = 1

2

∫ t

−∞
κn̄(t ′)dt ′. (21)

The reflected field results from the interference of the field that
is directly reflected at the in-coupling mirror and the field that
issues from inside the cavity. The power P (ref) of the reflected
field depends on not only the mean intracavity photon number
n̄ but also the mean intracavity photon amplitude 〈a〉 via
the formula P (ref)/�ωp = κn̄/2 + 2|Ep|2/κ + i〈a†Ep − aE∗

p〉.
Information about the mean intracavity photon amplitude 〈a〉
can be obtained from the power P (ref) of the reflected field.
When the cavity is at exact resonance and the atom is not
present in the cavity or does not interact with the cavity field,
the reflected field is zero. For the switching operation in the
present paper, we are interested in the effect of the atom on the
intracavity field and the transmitted field.

The cooperativity parameter is defined as η = 4|g|2/γ0κ .
We note that the cooperativity parameter η does not depend on
the cavity length L.

As known [1], the regimes of the interaction between an
atom and a quantum field in an optical cavity are determined
by the atom-field coupling coefficient g, the cavity damping
rate κ , and the atomic decay rate γ0. In order to achieve the
strong-coupling regime, it is desirable to have a cavity with a
large g and a small κ . For the same set of the values of the
parameters g and κ , a nanofiber cavity and a microcavity used
in the experiments on cavity QED effects [1,3–5,39,67–73] can
be very different from each other in the cavity length L, the
free spectral range �FSR, and the cavity finesse F . Indeed, the
coupling coefficient g depends on the effective mode volume
Veff = AeffL via the formula g ∝ 1/

√
Veff . In order for g to

be large, Veff must be small. In a nanofiber-based cavity, the
nanofiber and the FBG mirrors confine the guided field in the
transverse plane and the longitudinal direction, respectively.
As already mentioned, the mode matching between the cavity
field and the guided modes of the nanofiber is very good
in the experiments [51–58]. Due to the tight confinement of
the guided field of the nanofiber, the effective cross-sectional
mode area Aeff is small. Therefore, Veff can be small and
consequently g can be large even when L is large. Since
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the cavity length L can be large, the free spectral range
�FSR = πvg/L can be small. This is desirable in order to
tune two longitudinal modes of the cavity into resonance with
two atomic transitions with the transition frequency difference
of about 9.2 GHz. Furthermore, the cavity damping rate
κ = �FSR/F = πvg/FL can be small even when the cavity
finesse F = �FSR/κ = π |R|/(1 − |R|2) is moderate. Since
the cavity finesse F can be moderate, the mirror reflectivity
|R|2 does not have to be very high and, therefore, the mirror
transmittivity |T |2 can be significant. This is good in order to
couple the intracavity field to the outside world. The above
features of the nanofiber-based cavity have been employed to
demonstrate the strong-coupling regime and the vacuum Rabi
splitting in an all-fiber cavity system with a single trapped
atom [58]. The evanescent-wave nature of the mode functions
of the guided field leads to the tight confinement in the fiber

transverse plane and to the efficient coupling. Another feature
of the nanofiber-based cavity is that the cavity guided field
can be transmitted over long distances for communication
purposes.

III. DRESSED STATES OF THE COUPLED
ATOM-CAVITY SYSTEM

The eigenstates of the Hamiltonian H0 are called the
dressed states of the atom-cavity system. We use the notation
|j,n1,n2〉 for bare states, where j is the atomic level index
and n1 and n2 are the numbers of photons in cavity modes
1 and 2, respectively. In terms of the bare states |1,n1,n2〉,
|2,n1 − 1,n2〉, |3,n1 − 1,n2〉, and |4,n1 − 1,n2 − 1〉, which
are the basis for the manifold (n1,n2), the Hamiltonian H0

can be presented as a matrix consisting of the blocks

H(n1n2)
0 = �

⎛
⎜⎜⎜⎝

−�cav1n1 − �cav2n2 0 ig∗
1
√

n1 0

0 δ2 − �cav1n1 − �cav2n2 −�∗
c/2 ig∗

2
√

n2

−ig1
√

n1 −�c/2 δ3 − �cav1n1 − �cav2n2 0

0 −ig2
√

n2 0 δ4 − �cav1n1 − �cav2n2

⎞
⎟⎟⎟⎠. (22)

Consequently, the dressed states belonging to the manifold
(n1,n2) are superpositions of the bare states |1,n1,n2〉, |2,n1 −
1,n2〉, |3,n1 − 1,n2〉, and |4,n1 − 1,n2 − 1〉. The dressed states
are denoted as |ψ (n1n2)

j 〉, where j = 1 for n1 = 0 and n2 � 0,
j = 1,2,3 for n1 � 1 and n2 = 0, and j = 1,2,3,4 for n1,n2 �
1. The energies of these eigenstates are denoted as �ε

(n1n2)
j . The

explicit expressions for the dressed states and their energies
have been derived for the case where the different atomic
transitions |3〉 ↔ |1〉 and |4〉 ↔ |2〉 interact with the same
cavity mode [22]. We extend the results of Ref. [22] for the case
where the different atomic transitions |3〉 ↔ |1〉 and |4〉 ↔ |2〉
interact with the different cavity modes.

1. Manifolds (0,n2) with n2 � 0

Each of the manifolds (0,n2) where n2 � 0 contains only
one state, namely |ψ (0,n2)

1 〉 = |1,0,n2〉. The energy of this state
is �ε

(0,n2)
1 = −��cav2n2.

2. Manifolds (n1,0) with n1 � 1

Each of the manifolds (n1,0) where n1 � 1 contains three
dressed states. The energies of these eigenstates can be written
as �ε

(n1,0)
j = �ε̃j − ��cav1n1, where ε̃j with j = 1,2,3 are the

roots of the cubic equation x3 + u2x
2 + u1x + u0 = 0. Here,

we have introduced the notations

u0 = |g1|2n1δ2,

u1 = −|g1|2n1 − |�c|2
4

+ δ2δ3,

u2 = −δ2 − δ3.

(23)

Using the explicit expressions for the roots [77], we find

ε̃1 = −1

3
u2 + (s1 + s2),

ε̃2 = −1

3
u2 − 1

2
(s1 + s2) + i

√
3

2
(s1 − s2),

ε̃3 = −1

3
u2 − 1

2
(s1 + s2) − i

√
3

2
(s1 − s2),

(24)

where

s1 = (r +
√

r2 + q3)1/3,

s2 = − q

(r +
√

r2 + q3)1/3
,

(25)

with

r = 1
6 (u1u2 − 3u0) − 1

27u3
2,

q = 1
3u1 − 1

9u2
2.

(26)

The expressions for the corresponding eigenstates are given
as ∣∣ψ (n1,0)

j

〉 = A
(n1,0)
j |1,n1,0〉 + B

(n1,0)
j |2,n1 − 1,0〉

+ C
(n1,0)
j |3,n1 − 1,0〉,

(27)

where

A
(n1,0)
j = (1 + |U1|2 + |U2|2)−1/2,

B
(n1,0)
j = U1A

(n1,0)
j ,

C
(n1,0)
j = U2A

(n1,0)
j ,

(28)

013849-6



NANOFIBER-BASED ALL-OPTICAL SWITCHES PHYSICAL REVIEW A 93, 013849 (2016)

with

U1 = − ig1
√

n1

�c/2

[
1 − ε̃j (ε̃j − δ3)

|g1|2n1

]
,

U2 = ε̃j

ig∗
1
√

n1
.

(29)

In the particular case where the two-photon detuning for
the transition |1〉 ↔ |2〉 is δ2 = 0, we find the eigenvalues

ε̃0 = 0,

ε̃± = 1
2δ3 ±

√
|g1|2n1 + 1

4 |�c|2 + 1
4δ2

3 .
(30)

The expressions for the corresponding eigenstates are∣∣ψ (n1,0)
0

〉 = A
(n1,0)
0 |1,n1,0〉 + B

(n1,0)
0 |2,n1 − 1,0〉,∣∣ψ (n1,0)

±
〉 = A

(n1,0)
± |1,n1,0〉 + B

(n1,0)
± |2,n1 − 1,0〉

+ C
(n1,0)
± |3,n1 − 1,0〉,

(31)

where

A
(n1,0)
0 = �c/2√

|g1|2n1 + |�c|2/4
,

B
(n1,0)
0 = − ig1

√
n1√

|g1|2n1 + |�c|2/4
,

(32)

and

A
(n1,0)
± = ig∗

1
√

n1√
|g1|2n1 + |�c|2/4 + |ε̃±|2 ,

B
(n1,0)
± = − �∗

c/2√
|g1|2n1 + |�c|2/4 + |ε̃±|2 ,

C
(n1,0)
± = ε̃±√

|g1|2n1 + |�c|2/4 + |ε̃±|2 .

(33)

The eigenstates |ψ (n1,0)
0 〉 do not contain any upper levels and

their energies are not shifted by the atom-field interaction.
These states are the dark states.

3. Manifolds (n1,n2) with n1,n2 � 1

Each of the manifolds (n1,n2) where n1,n2 � 1 contains
four dressed states. The energies of these eigenstates can
be written as �ε

(n1n2)
j = �ε̃j − ��cav1n1 − ��cav2n2, where

ε̃j with j = 1,2,3,4 are the roots of the quartic equation
x4 + b3x

3 + b2x
2 + b1x + b0 = 0. Here, we have introduced

the notations

b0 = |g1|2n1(|g2|2n2 − δ2δ4),

b1 = |g1|2n1(δ2 + δ4) + |g2|2n2δ3 + |�c|2
4

δ4 − δ2δ3δ4,

(34)

b2 = −|g1|2n1 − |g2|2n2 − |�c|2
4

+ δ2(δ3 + δ4) + δ3δ4,

b3 = −δ2 − δ3 − δ4.

Using the explicit expressions for the roots [77], we find

ε̃1,2 = − 1
4b3 + 1

2R ± 1
2P,

ε̃3,4 = − 1
4b3 − 1

2R ± 1
2Q,

(35)

where

R =
√

1
4b2

3 − 2
3b2 + S,

P =
√

1
2b2

3 − 4
3b2 − S + W,

Q =
√

1
2b2

3 − 4
3b2 − S − W.

(36)

The parameter S is defined as

S = (X +
√

X2 + Y 3)1/3 − Y

(X + √
X2 + Y 3)1/3

, (37)

where

X = 1
2b2

3b0 − 1
6b3b2b1 + 1

27b3
2 − 4

3b2b0 + 1
2b2

1,

Y = 1
3b3b1 − 1

9b2
2 − 4

3b0.
(38)

The parameter W is defined as

W =
{(

b3b2 − 2b1 − b3
3/4

)
/R if R �= 0,

2[(S + b2/3)2 − 4b0]1/2 if R = 0.
(39)

The expressions for the corresponding eigenstates are∣∣ψ (n1n2)
j

〉 = A
(n1n2)
j |1,n1,n2〉 + B

(n1n2)
j |2,n1 − 1,n2〉

+ C
(n1n2)
j |3,n1 − 1,n2〉

+ D
(n1n2)
j |4,n1 − 1,n2 − 1〉, (40)

where

A
(n1n2)
j

D
(n1n2)
j

= V1,
B

(n1n2)
j

D
(n1n2)
j

= V2,
C

(n1n2)
j

D
(n1n2)
j

= V3,

D
(n1n2)
j = (1 + |V1|2 + |V2|2 + |V3|2)−1/2, (41)

with

V1 = −g∗
1g

∗
2
√

n1n2

ε̃j�∗
c/2

[
1 − (ε̃j − δ2)(ε̃j − δ4)

|g2|2n2

]
,

V2 = i
ε̃j − δ4

g2
√

n2
, (42)

V3 = i
g∗

2
√

n2

�∗
c/2

[
1 − (ε̃j − δ2)(ε̃j − δ4)

|g2|2n2

]
.

The above analytical results remain valid for the eigenstates
and eigenvalues of the non-Hermitian Hamiltonian H0 +
Hdamp if we replace the cavity resonant frequencies ωcav1

and ωcav2 by ωcav1 − iκ1/2 and ωcav2 − iκ2/2, respectively,
and replace the atomic level frequencies ω2, ω3, and ω4 by
ω2 − iγ2deph/2, ω3 − iγ3/2, and ω4 − iγ4/2, respectively.

We use the above analytical results to calculate the
eigenstates and eigenvalues of the Hamiltonian H0 + Hdamp.
We use the energy levels of the D2 line of atomic cesium
specified in the caption of Fig. 1. The fiber radius is a =
250 nm and the distance from the atom to the fiber surface
is r − a = 200 nm [78]. The external control field is linearly
polarized along the y axis, while the cavity guided modes are
quasilinearly polarized along the x axis. The axial position of
the atom coincides with an antinode of the radial component
of the cavity field. The coupling coefficients g1 and g2 are
calculated from Eq. (17) for z = z0 and ϕ = ϕ0. The decay
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FIG. 2. Normalized energies Re(εj /γ0) of the dressed states in the
manifolds (n1 = 1,n2 = 1) (a) and (n1 = 1,n2 = 0) (b) as functions
of the cavity length L for |R|2 = 0.99. The atomic levels are specified
in the caption of Fig. 1. The intensity of the control field is Ic =
5 mW/cm2. The external control field is linearly polarized along the
y axis, while the cavity guided modes are quasilinearly polarized
along the x axis. The detunings are �cav1 = �cav2 = � = δ = 0. The
fiber radius is a = 250 nm. The distance from the atom to the fiber
surface is r − a = 200 nm. The axial position of the atom coincides
with an antinode of the radial component of the cavity field.

rates γ3 � 2π × 5.34 MHz and γ4 � 2π × 5.44 MHz are
obtained by using the results of Ref. [61]. Due to the presence
of the nanofiber, the values of γ3 and γ4 are slightly larger
than the natural linewidth γ0 � 2π × 5.2 MHz of the D2

line of atomic cesium [79,80]. The lower-level decoherence
rate is assumed to be γ2deph/2 = 2π × 50 kHz. This value is
comparable to the experimental value of about 2π × 32 kHz,
measured for the magnetic-field-insensitive transition M =
0 ↔ M ′ = 0 in the Vienna experiment [81]. The fields are at
exact resonance with the corresponding atomic transitions.

We plot the normalized energies Re(εj /γ0) of the dressed
states in the manifolds (n1 = 1,n2 = 1) and (n1 = 1,n2 = 0)
as functions of the cavity length L in Fig. 2 for the case
where the mirror reflectivity is |R|2 = 0.99. The figure shows
that the level splitting occurs when the cavity length L is
large enough. We observe from the lower part of Fig. 2 that,
among the eigenstates in the manifold (n1 = 1,n2 = 0), there
is always a state whose energy is not shifted by the atom-field
interaction. This state is the dark state |ψ (1,0)

0 〉, which does not
contain any upper levels and therefore is a long-lived state.
We observe from the upper part of Fig. 2 that the energies
of the eigenstates in the manifold (n1 = 1,n2 = 1) are shifted
by the atom-field interaction except for the region of small L

where the cavity damping rates and, consequently, the cavity
mode linewidths are much larger than the atom-field coupling
coefficients. The eigenstates |ψ (1,1)

j 〉 with j = 1, . . . ,4 in the
manifold (n1 = 1,n2 = 1) contain the upper levels and hence
are the bright states. The generation of the bright states |ψ (1,1)

j 〉
and the coupling between them by the cavity pump fields
include the possibility of simultaneous absorption of a photon
in mode 1 and a photon in mode 2. In addition, the bright states
are shorter lived than the dark state |ψ (1,0)

0 〉 of the manifold

(n1 = 1,n2 = 0). Therefore, the presence of a photon in cavity
mode 2 may reduce the possibility of having a photon in cavity
mode 1.

IV. SWITCH FOR CAVITY MODE 1

In this section, we show that we can switch the field in
cavity mode 1 by using the field in cavity mode 2. The switch
is realized by using the field in cavity mode 2 as a gate for the
conventional EIT scheme that is based on the atomic levels
|1〉, |2〉, and |3〉 with the field in cavity mode 1 as the probe
field and the external field Ec as the control field. A similar
all-optical switch has been experimentally demonstrated for
a small laser-cooled ensemble of atoms inside a hollow fiber
with running-wave gate and probe light fields [33].

We apply the control field Ec and the driving pulses E1 and
E2 for cavity modes 1 and 2 in a time sequence shown in
Fig. 3. The external control field Ec is linearly polarized along
the y axis, while the guided driving fields E1 and E2 for the
cavity modes are quasilinearly polarized along the x axis. The
intensity of the control field Ec is constant for the whole process
and is chosen to be Ic = 5 mW/cm2. The guided driving field
E2 for cavity mode 2, which is used as the gate field, is either
on (red solid line) or off (red dashed line). In the case of gate
on, the power of E2 is P

(max)
2 = 10 pW in the time interval

(−T2,T2), where T2 = 10 μs. The ascending and descending
parts of E2 are of Gaussian shape, with a full width at half
maximum of 0.5 μs. The guided driving field for cavity mode

t (μs)

P ν
 (p

W
)

(a)

(b)

(c)
ν=1

ν=2I c (
m

W
/c

m
2 )

control

gate

probe

on

off

FIG. 3. Switch for cavity mode 1 by using the field in cavity
mode 2. The time dependencies of the intensity Ic of the control
field (a), the driving field power P2 for the gate mode (b), and the
driving field power P1 for the probe mode (c) are plotted. The external
control field is linearly polarized along the y axis, while the guided
driving fields for the cavity modes are quasilinearly polarized along
the x axis. The intensity of the control field is constant in the whole
process and is Ic = 5 mW/cm2. The driving field for cavity mode
2 is on (red solid line) or off (red dashed line). In the case of gate
on, the power of the driving field for mode 2 is constant and equal
to P

(max)
2 = 10 pW in the time interval (−T2,T2), where T2 = 10 μs.

The ascending and descending parts of the driving pulse for cavity
mode 2 are of Gaussian shape, with a characteristic width of 0.5 μs.
The driving field for cavity mode 1 is a Gaussian pulse with the peak
power P

(max)
1 = 1 pW and the full width at half maximum T1 = 5 μs.
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FIG. 4. Switching of the field in cavity mode 1 by using the
field in cavity mode 2. The time dependencies of the mean numbers
n̄2 (a) and n̄1 (b) of photons in the cavity gate and probe modes,
respectively, are plotted. The solid and dashed curves correspond to
the cases where the field in gate mode 2 is on and off, respectively.
The atomic levels are specified in the caption of Fig. 1, while the time
sequence, the durations, and the magnitudes of the control and cavity
driving fields are as in Fig. 3. The fiber radius is a = 250 nm. The
distance from the atom to the fiber surface is r − a = 200 nm. The
axial position of the atom coincides with an antinode of the radial
component of the cavity field. The reflectivity of the cavity mirrors
is |R|2 = 0.99. The cavity length is L = 20 mm. The detunings are
�cav1 = �cav2 = � = δ = 0.

1, which is used as the probe field, is a Gaussian pulse with the
peak power P

(max)
1 = 1 pW and the full width at half maximum

T1 = 5 μs. Note that the gate driving pulse contains about 880
photons on average, while the probe driving pulse contains
about 23 photons on average. The Rabi frequency of the control
field is �c/2π � 5.4 MHz �1.03γ0.

We illustrate in Fig. 4 the switching of the field in cavity
mode 1 by using the field in cavity mode 2. The time
dependencies of the mean numbers n̄2 and n̄1 of photons in
the cavity gate and probe modes, respectively, are plotted. The
atomic levels are specified in the caption of Fig. 1, while the
time sequence, the durations, and the magnitudes of the control
and cavity driving fields are as in Fig. 3. The fiber radius is
a = 250 nm. The distance from the atom to the fiber surface is
r − a = 200 nm. The axial position of the atom coincides with
an antinode of the radial component of the cavity field. The
reflectivity of the cavity mirrors is |R|2 = 0.99. The cavity
length is L = 20 mm. The corresponding value of the free
spectral range is �FSR/2π � 4.9 GHz. The cavity finesse is
F1 = F2 = F � 313. The cavity damping rates are κ1/2π =
κ2/2π = κ/2π � 15.8 MHz. The coupling parameters are
calculated from Eq. (17) for z = z0 and ϕ = ϕ0 and are
found to be |g1|/2π � 9.4 MHz and |g2|/2π � 14.6 MHz.
The cooperativity parameters for modes 1 and 2 are η1 � 4.3
and η2 � 10.3, respectively. These values indicate that the
strong-coupling regime (η > 1) can be realized even though
the cavity is long and the cavity finesse is moderate [46].
Comparison between the solid (gate-on) and dashed (gate-off)
curves of Fig. 4(b) shows that the turn on and turn off of the
field in cavity mode 2 significantly affect the magnitude of the

FIG. 5. Time dependencies of the mean output photon numbers
n̄

(out)
2 (a) and n̄

(out)
1 (b) in the cases where cavity mode field 2 is on

(solid lines) or off (dashed lines). The parameters used are as for
Figs. 3 and 4.

field in cavity mode 1. The switching action can occur even
though the mean numbers n̄2 and n̄1 of photons in the gate
and probe modes, respectively, are smaller than 1. The ratio
between the peak values of the mean number n̄1 of photons in
probe mode 1 in the gate-off and gate-on cases [see the blue
dashed and blue solid lines in Fig. 4(b)] is equal to about 4.29.

In order to get deep insight into the switching operation,
we plot in Fig. 5 the time dependencies of the mean output
photon numbers n̄

(out)
2 and n̄

(out)
1 in the cases where cavity

mode field 2 is on (solid lines) or off (dashed lines). The ratio
ξ1 between the long-time limiting values of the mean number
n̄

(out)
1 of photons in the output of probe mode 1 in the switch-

off and switch-on cases [see the blue dashed and blue solid
lines in Fig. 5(b)] is equal to about 5. The switching contrast,
given as (ξ1 − 1)/(ξ1 + 1), is about 67%. It is clear that the
transmission reduction factor ξ1 for the scheme considered
here cannot exceed the transmission reduction factor (1 + η1)2

for cavity mode 1 interacting with a two-level atom at exact
resonance [76,82]. Here, η1 � 4.3 is, as already stated, the
cooperativity parameter for mode 1 in the case considered.
We note that the mean output photon number n̄

(out)
2 for gate

mode 2 shown in Fig. 5(a) is rather large. The reason is that the
gate-mode driving field E2 is kept constant for a time interval
(−T2,T2), where T2 = 10 μs. This time interval is larger than
the full width at half maximum T1 = 5 μs of the probe pulse
E1. We can reduce n̄

(out)
2 by reducing T1 and T2. However, we

should not reduce T1 and T2 too much. If T1 is too small, the
EIT for the field in probe mode 1 in the case of gate off will
be significantly reduced and so is the switching contrast.

As already mentioned in the discussion below Eq. (21),
information about the mean intracavity photon amplitude can
be obtained from the power of the reflected field. However, for
the purpose of the switching operation, we are interested in
the effect of the atom on the mean intracavity photon number
and the mean number of transmitted photons.

We plot in Fig. 6 the time dependencies of the populations
ρjj of the atomic energy levels |j 〉 with j = 1,2,3,4 and the
sum population ρsum of the four working levels. We observe
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FIG. 6. Time dependencies of the populations ρjj of the atomic
energy levels |j〉 with j = 1 (a), 2 (b), 3 (c), and 4 (d) and the sum
population ρsum of the four working levels (e) in the cases where cavity
mode field 2 is on (solid lines) or off (dashed lines). The parameters
used are as for Figs. 3 and 4.

from the dashed lines of Fig. 6 that, in the case where the gate is
off, the interaction of the atom with the probe and control fields
leads to a coherent adiabatic population transfer between the
lower levels |1〉 and |2〉. In this process, the atom adiabatically
follows its dark state, and the excitation of the upper level
|3〉 is very weak. This is the situation of EIT in its broad
meaning [26]. Strictly speaking, the case of the dashed lines
of Fig. 6, where the coherent adiabatic population transfer
between the lower levels is significant, is different from the
conventional EIT process, where the atom practically remains
in its ground state |1〉 [26]. We note that, when we reduce the
peak power P

(max)
1 of the driving pulse for probe mode 1 to

0.1 pW as done in the case of Fig. 12(a), the atom in the absence
of the gate field will practically remain in the ground state |1〉.

A close inspection of the curves of Fig. 6(a) shows that, in
the time region t < 0, the population ρ11 in the case of gate on
(solid curve) is larger than in the case of gate off (dashed curve).
This means that the simultaneous absorption of a gate photon
and a probe photon by the atom is not the only mechanism for
the suppression of n̄1. Another important mechanism for the
switching action is the photon blockade [10,18–24] caused by
the presence of a photon in cavity mode 2. We observe from
Fig. 6(e) that the total population ρsum = ∑4

j=1 ρjj of the four
working levels |j 〉 with j = 1, . . . ,4 is not conserved in the
evolution process. The reason is that we have γ3 > γ31 + γ32.
This formula is a consequence of the fact that, in the case
of atomic cesium, the population of the upper level |3〉 can
decay not only to the lower levels |1〉 and |2〉 but also to
some other lower levels which are outside of the working
level configuration and, therefore, are not shown in Fig. 1. The
deviation of ρsum from the unity is substantial in the case of
gate on, where the coupled atom-cavity system is excited to
bright states, but is negligible in the case of gate off, where
the system adiabatically follows the dark state under the EIT
conditions.

We plot in Fig. 7 the dependencies of the mean output
photon numbers n̄

(out)
2 and n̄

(out)
1 on the detuning �cav1 of the

FIG. 7. Dependencies of the mean output photon numbers n̄
(out)
2

(a) and n̄
(out)
1 (b) on the detuning �cav1 of the probe driving pulse

E1 with respect to the resonant frequency of cavity mode 1 in the
cases where cavity mode field 2 is on (solid lines) or off (dashed
lines). The outputs are integrated from the beginning of the interaction
process to the time t = 20 μs after the peak time of the probe driving
pulse E1. Other parameters are as for Figs. 3 and 4. In particular, the
resonance condition �cav2 = 0 for the pump for mode 2 and the two-
photon resonance condition δ2 = 0 for the atom-cavity interaction are
maintained.

probe driving pulse E1 with respect to the resonant frequency
of cavity mode 1 in the cases where cavity mode field 2 is on
(solid lines) or off (dashed lines). The resonance condition
�cav2 = 0 for the pump for mode 2 and the two-photon
resonance condition δ2 = 0 for the atom-cavity interaction
are maintained. The blue dashed curve in Fig. 7(b) shows
clearly the existence of a narrow cavity EIT peak in the
frequency dependence of the output of cavity mode field
1 in the case where cavity mode field 2 is off. Under
the conditions γ3γ2deph � |�c|2 � |g1|2, the width κEIT of
the central cavity EIT window can be estimated as κEIT =
γ2deph + κ|�c|2/4|g1|2 [30]. The blue solid curve in Fig. 7(b)
shows that there is no cavity EIT peak in the case where cavity
mode field 2 is on. Thus, the excitation of the field in cavity
mode 2 destroys the EIT for the field in cavity mode 1. We
note that the side peaks in Fig. 7(b) are the signature of the
vacuum Rabi splitting of the cavity transmission spectrum of
the field in probe mode 1 [25,82].

We plot in Fig. 8 the dependencies of the mean output
photon numbers n̄

(out)
2 and n̄

(out)
1 on the detuning �cav2 of the

gate driving pulse E2 with respect to the resonant frequency of
cavity mode 2 in the cases where the field in this mode is on
(solid lines) or off (dashed lines). The resonance condition
�cav1 = 0 for the pump for mode 1 and the two-photon
resonance condition δ2 = 0 for the atom-cavity interaction are
maintained. Figure 8(b) shows that the cavity EIT for mode
1 is suppressed by the field in mode 2 in a wide region of
the detuning �cav2 . The size of this region is determined by
the vacuum Rabi frequency of cavity gate mode 2, that is,
by the coupling coefficient |g2|/2π � 14.6 MHz.
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FIG. 8. Dependencies of the mean output photon numbers n̄
(out)
2

(a) and n̄
(out)
1 (b) on the detuning �cav2 of the driving gate pulse

E2 with respect to the resonant frequency of cavity mode 2 in the
cases where the field in this mode is on (solid lines) or off (dashed
lines). The outputs are integrated from the beginning of the interaction
process to the time t = 20 μs after the peak time of the probe driving
pulse E1. Other parameters are as for Figs. 3 and 4. In particular, the
resonance condition �cav1 = 0 for the pump for mode 1 and the two-
photon resonance condition δ2 = 0 for the atom-cavity interaction are
maintained.

We illustrate in Figs. 9 and 10 the switching operations for
two different values of the cavity length L and two different
values of the FBG mirror reflectivity |R|2, respectively.
Comparison between the left and right columns of the figures
shows that the mean cavity-mode photon numbers n̄2 and n̄1

in the right column, where L = 40 mm in the case of Fig. 9
and |R|2 = 0.995 (F � 627) in the case of Fig. 10, are larger

FIG. 9. Switching of the field in mode 1 by using the field in mode
2 for the cavity length L = 4 mm (left column) and L = 40 mm (right
column). The solid and dashed curves correspond to the cases where
the field in gate mode 2 is on and off, respectively. Other parameters
are as for Figs. 3 and 4.

FIG. 10. Switching of the field in mode 1 by using the field in
mode 2 for the FBG mirror reflectivity |R|2 = 0.95 (left column) and
|R|2 = 0.995 (right column). The solid and dashed curves correspond
to the cases where the field in gate mode 2 is on and off, respectively.
Other parameters are as for Figs. 3 and 4.

than those in the left column, where L = 4 mm in the case of
Fig. 9 and |R|2 = 0.95 (F � 61) in the case of Fig. 10. The
reason is that the values of the damping rate κ in the case of the
right column is smaller than that in the case of the left column.
We observe from Figs. 9 and 10 that the switching contrast,
that is, the suppression of the mean number n̄1 of photons
in the probe mode, increases with increasing cavity length or
increasing mirror reflectivity. We observe that the effect of
the cavity length L on the switching contrast is weak, while
the effect of the reflectivity |R|2 on the switching contrast is
strong. These features are the consequence of the fact that the
suppression of the probe field is mainly determined by the
cooperativity parameter η1 = 4|g1|2/γ0κ , which depends on
|R|2 but does not depend on L.

FIG. 11. Switching of the field in mode 1 by using the field in
mode 2 for different values of P

(max)
2 . The solid and dashed curves

correspond to the cases where the field in gate mode 2 is on and off,
respectively. Other parameters are as for Figs. 3 and 4.
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FIG. 12. Switching of the field in mode 1 by using the field in
mode 2 for different values of P

(max)
1 . The solid and dashed curves

correspond to the cases where the field in gate mode 2 is on and off,
respectively. Other parameters are as for Figs. 3 and 4.

Figure 11 illustrates the switching operations for different
values of the peak power P

(max)
2 of the driving pulse for cavity

gate mode 2. We observe from the figure that, when we increase
the power P

(max)
2 , the suppression of the mean photon number

n̄
(out)
1 of cavity probe mode 1 first increases and then decreases.

This feature indicates that the interaction process in the cavity
is nonlinear.

Figure 12 illustrates the switching operations for two
different values of the peak power P

(max)
1 of the pump pulse

for cavity probe mode 1. We observe from the figure that the
suppression of the mean photon number n̄

(out)
1 of cavity probe

mode 1 decreases with increasing power P
(max)
1 . This decrease

of the suppression factor is a result of the power broadening
effect.

When the driving field for gate mode 2 is far detuned from
the atomic transition |4〉 ↔ |2〉, the main effect of the cavity
field in gate mode 2 on the atom is to produce light shifts of
the energy levels |4〉 and |2〉. If the light shifts are comparable
to or greater than the width of the cavity EIT window, the
transmission of the field in probe mode 1 is suppressed,
as the cavity is switched off resonance by the presence of
the field in gate mode 2. An EIT-based light switch using ion
Coulomb crystals in an optical cavity with a gate field in the
dispersive regime has recently been demonstrated [29,30]. If
the light shift of the level |2〉 is within the cavity EIT window
for probe mode 1, the EIT is not destroyed. However, due to
the steep dispersion of the atom-field interaction in the vicinity
of the EIT window, the phase shift of the field in probe mode
1 can be significant. This phase shift is proportional to the
number of photons in gate mode 2. We illustrate the dispersive
regime of the operation of the switch in Fig. 13, where cavity
gate mode 2 and the driving field for this mode are equally
detuned from the atomic transition |4〉 ↔ |2〉 by a detuning
�/2π = −100 MHz with �cav2 = 0. In this figure, we plot the
mean photon number n̄2 of mode 2, the mean photon number
n̄1 of mode 1, and the phase φ1 of the complex amplitude 〈a1〉
of mode 1 at the probe pulse peak time t = 0 as functions of the

FIG. 13. Operation of the switch in the dispersive regime.
Cavity gate mode 2 and the corresponding driving field are equally
detuned from the atomic transition |4〉 ↔ |2〉 by a detuning �/2π =
−100 MHz with �cav2 = 0. The peak power of the driving field for
cavity probe mode 1 is P

(max)
1 = 0.1 pW. Other parameters are as for

Figs. 3 and 4. The mean photon number n̄2 of mode 2, the mean photon
number n̄1 of mode 1, and the phase φ1 of the complex amplitude 〈a1〉
of mode 1 at the probe pulse peak time t = 0 are plotted as functions
of P

(max)
2 (solid lines). For comparison, the results for the case of gate

off are shown by the dashed curves.

peak power P
(max)
2 of the gate driving pulse. The peak power of

the driving field for cavity probe mode 1 is P
(max)
1 = 0.1 pW.

Other parameters are as for Figs. 3 and 4. Figure 13 shows
that, when we increase P

(max)
2 from 0 to 2 pW, at the probe

pulse peak time t = 0, the mean photon number n̄2 of mode 2
increases linearly from 0 to �0.17, the mean photon number n̄1

of mode 1 decreases slightly from �0.008 to �0.006, and the
phase φ1 of the complex amplitude 〈a1〉 of mode 1 decreases
linearly from � − 1.57 to � − 1.87 rad. Comparison between
Figs. 13(a) and 13(c) shows that the phase shift per intracavity
gate photon is �1.76 rad/photon.

V. SWITCH FOR CAVITY MODE 2

In this section, we show that we can switch the field in cavity
mode 2 by manipulating the field in cavity mode 1. In other
words, we can use the fields in cavity modes 1 and 2 as the
gate and probe fields, respectively. For this purpose, we adopt
the scheme demonstrated experimentally by Chen et al. for
an ensemble of atoms inside a high-finesse (F � 6.3 × 104)
optical cavity [34].

The time sequence for the application of the pulses is shown
in Fig. 14. First, we apply an external field Ec to create the EIT
conditions for the field in cavity mode 1 and then send in a
weak guided field Ep1 to excite cavity mode 1. Around the
arrival time of the peak of the gate pulse Ep1 [around the time
t = 0 in Fig. 14(b)], we ramp down the control field Ec to
store a gate photon in the atomic lower level |2〉 [83–85]. At a
later time [around the time t = 4 μs in Fig. 14(a)], we retreat
this photon by reapplying the control field Ec. In between
the storage and retrieval stages [around the time t = 2 μs in
Fig. 14(c)], we send in a weak guided field Ep2 to excite cavity
mode 2. The population of the atomic state |2〉 created by the
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FIG. 14. Switch for cavity mode 2 by storing a photon of cavity
mode 1 in the atomic lower level |2〉. The time dependencies of
the control field intensity Ic (a), the driving field power P1 for the
gate mode (b), and the driving field power P2 for the probe mode
(c) are plotted. The external control field is linearly polarized along
the y axis, while the guided driving fields for the cavity modes are
quasilinearly polarized along the x axis. The intensity of the control
field is Ic = 5 mW/cm2 in the time regions t < 0 and t > 4 μs. The
control field is ramped down at t = 0 and is reapplied to reach the
previous intensity value Ic = 5 mW/cm2 at t = 4 μs. The descending
and ascending parts of the control field are of Gaussian shape, with
a characteristic width of 0.2 μs. The driving field for cavity mode
1 is either on (blue solid line) or off (blue dashed line). It has a
Gaussian shape with the full width at half maximum T1 = 0.5 μs and
the peak power P

(max)
1 = 10 pW. The driving field for cavity mode 2

is a Gaussian pulse with the full width at half maximum T2 = 0.5 μs,
the peak time t2 = 2 μs, and the peak power P

(max)
2 = 1 pW.

stored gate photon reduces the transmission of the probe pulse
Ep2 through the cavity. The magnitude of the reduction factor
in the case of a two-level atom at exact resonance is given
by the quantity 1/(1 + η2)2, where η2 = 4|g2|2/γ0κ2 � 10.3
is the cooperativity parameter for mode 2 [76,82].

As illustrated in Fig. 14, we use the control field Ec with a
constant intensity Ic = 5 mW/cm2 in the time regions t < 0
and t > 4 μs. The driving field E1 for cavity mode 1, which
is used as the gate field, is either on (blue solid line) or off
(blue dashed line). When is turned on, the driving pulse E1

has a Gaussian shape with the full width at half maximum
T1 = 0.5 μs and the peak power P

(max)
1 = 10 pW. The driving

field for cavity mode 2, which is used as the probe field, is
a Gaussian pulse with the full width at half maximum T2 =
0.5 μs, the peak time t2 = 2 μs, and the peak power P

(max)
2 =

1 pW. The external control field is linearly polarized along the
y axis, while the guided driving fields for the cavity modes are
quasilinearly polarized along the x axis. The Rabi frequency
of the control field is �c/2π � 5.4 MHz �1.03γ0. Note that
the gate driving pulse contains about 23 photons on average,
while the probe driving pulse contains about 2.3 photons on
average.

We illustrate in Fig. 15 the switching of the field in
cavity mode 2 by using the field in cavity mode 1. The time
dependencies of the mean numbers n̄1 and n̄2 of photons in
the cavity gate and probe modes, respectively, are plotted.

FIG. 15. Switching of the field in cavity mode 2 by using the
field in cavity mode 1. The time dependencies of the mean numbers
n̄1 (a) and n̄2 (b) of photons in the cavity gate and probe modes,
respectively, are plotted. The solid and dashed curves correspond to
the cases where the field in gate mode 1 is on and off, respectively.
The atomic levels are specified in the caption of Fig. 1, while the
time sequence, the durations, and the magnitudes of the control and
driving fields are as in Fig. 14. The fiber radius is a = 250 nm. The
distance from the atom to the fiber surface is r − a = 200 nm. The
axial position of the atom coincides with an antinode of the radial
component of the cavity field. The reflectivity of the cavity mirrors
is |R|2 = 0.99. The cavity length is L = 20 mm. The detunings are
�cav1 = �cav2 = � = δ = 0.

The atomic levels are specified in the caption of Fig. 1, while
the time sequence, the durations, and the magnitudes of the
control and driving fields are as in Fig. 14. As in the previous
section, the fiber radius is a = 250 nm, the distance from
the atom to the fiber surface is r − a = 200 nm, the axial
position of the atom coincides with an antinode of the radial
component of the cavity field, the reflectivity of the cavity
mirrors is |R|2 = 0.99, and the cavity length is L = 20 mm.
For these parameters, we obtain, as already mentioned in the
previous section, the free spectral range �FSR/2π � 4.9 GHz,
the cavity finesse F1 = F2 = F � 313, the cavity damping
rates κ1/2π = κ1/2π = κ/2π � 15.8 MHz, the coupling
parameters |g1|/2π � 9.4 MHz and |g2|/2π � 14.6 MHz,
and the cooperativity parameters η1 � 4.3 and η2 � 10.3.
Comparison between the solid (gate-on) and dashed (gate-off)
curves of Fig. 15(b) shows that the turn on and turn off of the
field in cavity mode 1 significantly affect the magnitude of the
field in cavity mode 2. The switching action can occur even
though the mean numbers n̄1 and n̄2 of photons in the gate and
probe modes, respectively, are small (less than one). The ratio
between the peak values of the mean number n̄2 of photons
in probe mode 2 in the switch-off and switch-on cases [see
the red solid and red dashed lines in Fig. 15(b)] is equal to
about 35. The inset in Fig. 15(a) shows the retrieval of the gate
photon stored in the atomic lower level |2〉.

We plot in Fig. 16 the time dependencies of the mean
output photon numbers n̄

(out)
1 and n̄

(out)
2 in the cases where

cavity mode field 1 is on (solid lines) or off (dashed lines).
The ratio ξ2 between the long-time limiting values of the mean
number n̄

(out)
2 of photons in the output of probe mode 2 in the
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FIG. 16. Time dependencies of the mean output photon numbers
n̄

(out)
1 (a) and n̄

(out)
2 (b) in the cases where cavity mode field 1 is on

(solid lines) or off (dashed lines). The parameters used are as for
Figs. 14 and 15.

switch-off and switch-on cases [see the red dashed and red
solid lines in Fig. 16(b)] is equal to about 38.5. The switching
contrast, given by (ξ2 − 1)/(ξ2 + 1), is about 95%. The
significant reduction of n̄

(out)
2 is due to the interaction between

the atom and cavity field mode 2 in the strong-coupling
regime. We note that the magnitude of the reduction factor
is not in perfect agreement with the semiclassical estimate
(1 + η2)2 � 128 [76,82], where η2 = 4|g2|2/γ0κ2 � 10.3 is
the cooperativity parameter for mode 2. One reason is that
the population of the level |1〉 is not completely transferred to
the level |2〉. Another reason is that a nonzero dephasing rate
γ2deph/2 = 2π × 50 kHz is used in our numerical calculations.
In addition, the semiclassical approximation used in deriving
the transmission reduction factor 1/(1 + η2)2 is not well
justified for the parameters used.

The inset in Fig. 16(a) shows that the mean output photon
number n̄

(out)
1 varies quickly from 19.7 to 20.1 around the

time t = 4 μs, when the control field is reapplied. Taking into
account the fact that the nanofiber cavity is a two-sided cavity,
we find that the mean number of retreated photons is equal to
about 0.8.

We plot in Fig. 17 the time dependencies of the populations
ρjj of the atomic energy levels |j 〉 with j = 1,2,3,4 and the
sum population ρsum of the four working levels. The solid
curves of Figs. 17(a)–17(c) show that, in the region around the
time t = 0, when the storage is performed, the population of
the atom is almost completely transferred from the level |1〉
to the level |2〉. This means that a gate photon is stored in the
population of the level |2〉 of the atom with a high probability.
The solid curves of Figs. 17(b) and 17(d) show that, in the
region around the time t = 2 μs, when the probe pulse is sent
in, a fraction of the population of the atom moves from the level
|2〉 to the level |4〉 and then returns to the level |2〉. The peak
magnitude of the transferred population is about 0.02. This
quantity is significant even though the corresponding peak
value of the mean photon number n̄2 is very small (about
0.0025) [see the inset of Fig. 15(b)]. The solid curves of
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FIG. 17. Time dependencies of the populations ρjj of the atomic
energy levels |j〉 with j = 1 (a), 2 (b), 3 (c), and 4 (d) and the sum
population ρsum of the four working levels (e) in the cases where cavity
mode field 1 is on (solid lines) or off (dashed lines). The parameters
used are as for Figs. 14 and 15.

Figs. 17(a)–17(c) show that, in the region around the time
t = 4 μs, when the retrieval is performed, the population of
the level |2〉 is transferred back to the level |1〉. We observe
from Fig. 17(e) that the total population ρsum = ∑4

j=1 ρjj of
the four working levels |j 〉 with j = 1, . . . ,4 is not conserved
in the case where the gate is on. The reason is that, as already
mentioned in the previous section, we have γ3 > γ31 + γ32.

We plot in Figs. 18 and 19 the dependencies of the mean
output photon numbers n̄

(out)
1 and n̄

(out)
2 on the detuning �cav1

of the gate driving pulse E1 (with respect to the resonant
frequency of cavity mode 1) and the detuning �cav2 of the
probe driving pulse E2 (with respect to the resonant frequency
of cavity mode 2) in the cases where cavity gate mode field 1
is on (solid lines) or off (dashed lines). The blue solid curve
in Fig. 18(a) shows that a nearly perfect transparency and
a notably narrowed spectrum are obtained in the frequency
dependence of the output of cavity mode field 1. These features
are due to the cavity EIT effect with one atom and have been
observed experimentally [25]. Figure 18(b) shows that the field
in probe mode 2 is suppressed by the field in gate mode 1 in
a wide region of the detuning �cav1 . The size of this region
is determined by the vacuum Rabi frequency of mode 1, that
is, by the coupling coefficient |g1|/2π � 9.4 MHz. The red
solid curve in Fig. 19(b) shows that there are two peaks which
are the signature of the vacuum Rabi splitting of the cavity
transmission spectrum of probe mode 2 [82].

We illustrate in Figs. 20 and 21 the switching operations for
two different values of the cavity length L and two different
values of the FBG mirror reflectivity |R|2, respectively.
Comparison between the left and right columns of the figures
shows that, similar to the results of the previous section,

013849-14



NANOFIBER-BASED ALL-OPTICAL SWITCHES PHYSICAL REVIEW A 93, 013849 (2016)

FIG. 18. Dependencies of the mean output photon numbers n̄
(out)
1

(a) and n̄
(out)
2 (b) on the detuning �cav1 of the gate driving pulse E1

with respect to the resonant frequency of cavity mode 1 in the cases
where cavity mode field 1 is on (solid lines) or off (dashed lines). The
outputs are integrated from the beginning of the interaction process
to the time t = 3 μs, which is 1 μs after the peak time of the probe
driving pulse E2. Other parameters are as for Figs. 14 and 15.

the mean cavity-mode photon numbers n̄1 and n̄2 in the
right column, where L = 40 mm in the case of Fig. 20 and
|R|2 = 0.995 (F � 627) in the case of Fig. 21, are larger
than those in the left column, where L = 4 mm in the case
of Fig. 20 and |R|2 = 0.95 (F � 61) in the case of Fig. 21.
The reason is that, as already stated in the previous section,
the values of the damping rate κ in the case of the right
column is smaller than that in the case of the left column.
We observe from Figs. 20 and 21 that, similar to the results of

FIG. 19. Dependencies of the mean output photon numbers n̄
(out)
1

(a) and n̄
(out)
2 (b) on the detuning �cav2 of the probe driving pulse E2

with respect to the resonant frequency of cavity mode 2 in the cases
where cavity mode field 1 is on (solid lines) or off (dashed lines). The
outputs are integrated from the beginning of the interaction process
to the time t = 3 μs, which is 1 μs after the peak time of the probe
driving pulse E2. Other parameters are as for Figs. 14 and 15.

FIG. 20. Switching of the field in mode 2 by using the field in
mode 1 for the cavity length L = 4 mm (left column) and L = 40 mm
(right column). The solid and dashed curves correspond to the cases
where the field in gate mode 1 is on and off, respectively. Other
parameters are as for Figs. 14 and 15.

the previous section, the suppression of the mean number n̄2

of photons in the probe mode increases with increasing cavity
length or increasing mirror reflectivity. We note that, similar
to the results of the previous section, the effect of the cavity
length L on the suppression factor is weak, while the effect of
the reflectivity |R|2 on the suppression factor is strong. These
features are the consequence of the fact that the suppression
of the probe field is mainly determined by the cooperativity
parameter η2 = 4|g2|2/γ0κ , which depends on |R|2 but does
not depend on L.

FIG. 21. Switching of the field in mode 2 by using the field in
mode 1 for the FBG mirror reflectivity |R|2 = 0.95 (left column) and
|R|2 = 0.995 (right column). The solid and dashed curves correspond
to the cases where the field in gate mode 1 is on and off, respectively.
Other parameters are as for Figs. 14 and 15.
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FIG. 22. Switching of the field in mode 2 by using the field in
mode 1 for different values of P

(max)
1 . The solid and dashed curves

correspond to the cases where the field in gate mode 1 is on and off,
respectively. Other parameters are as for Figs. 14 and 15.

We show in Fig. 22 the switching operations for different
values of the peak power P

(max)
1 of the driving pulse for cavity

gate mode 1. We observe from the figure that the suppression
of the mean photon number of cavity probe mode 2 increases
with increasing power P

(max)
1 . This increase of the suppression

factor is a result of the increase in the efficiency of the transfer
of the atomic population from the level |1〉 to the level |2〉.
Comparison between the curves of Fig. 22(b) shows that, when
P

(max)
1 is high enough, the effect of an increase in P

(max)
1 on n̄2 is

not significant. This feature is a consequence of the saturation
of the population transfer.

We show in Fig. 23 the time evolution of the mean number
n̄2 of photons in cavity probe mode 2 for different values
of the peak power P

(max)
2 of the driving pulse for this cavity

mode. We observe from the figure that the suppression of
the mean photon number of cavity probe mode 2 decreases

FIG. 23. Switching of the field in mode 2 by using the field in
mode 1 for different values of P

(max)
2 . The solid and dashed curves

correspond to the cases where the field in gate mode 1 is on and off,
respectively. Other parameters are as for Figs. 14 and 15.

FIG. 24. Switching of the field in mode 2 by using the field in
mode 1 in the case where the input fields E1 and E2 for cavity modes
1 and 2, respectively, are single-photon-energy classical pulses. The
shape of the input pulse for gate mode 1 is optimized by using the
procedure of Ref. [86] and is shown in (a). The solid and dashed
curves correspond to the cases where the field in gate mode 1 is on
and off, respectively. Other parameters are as for Figs. 14 and 15.

with increasing power P
(max)
2 . This decrease of the suppression

factor is a result of the power broadening effect.
We show in Fig. 24 the switching operation in the case

where the driving pulses E1 and E2 for cavity modes 1
and 2, respectively, are single-photon-energy classical pulses,
whose energies are equal to the energy of a single photon.
Other parameters are as for Figs. 14 and 15. We note that
a single-photon-level classical pulse, whose pulse energy is
equal to or smaller than the energy of a single photon, can be
produced by attenuating a coherent laser pulse. The probability
of having two photons in such a pulse is small compared to the
probability of having one or no photon. When we discard the
events with no photon involved, the results can be considered
as approximate results for single-photon pulses.

In order to achieve the maximum efficiency of the storage
of light in the atom and consequently the maximum efficiency
of the switching, the shape of the input pulse for gate mode
1 is optimized [see Fig. 24(a)] by using the procedure of
Ref. [86]. This optimization procedure is based on successive
time-reversal iterations. When applied to an ensemble of atoms
in a traveling-wave ring cavity or in free space, the steps of the
procedure are as follows. The atoms are initially prepared in the
level |1〉. Then, for a given writing control field E (write)

c , a trial
input pulse E (in)

1 is mapped into the spin wave of the lower-level
coherence ρ21 of the atoms. Both E (write)

c and E (in)
1 are taken to

be nonzero over the time interval (−T0,0). After a storage
period T , a reading control field E (read)

c (t) = E (write)∗
c (T − t),

which is a time-reversed version of the writing control field
E (write)

c (t), is used to map the lower-level coherence ρ21 back
into an output pulse E (out)

1 . The input pulse for the next
iteration is then generated with a shape corresponding to a
time-reversed version of the previous output pulse, and with
an amplitude normalized to a fixed energy. These steps are
repeated iteratively, using the same writing and reading control
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fields, until the shape of the output pulseE (out)
1 (t) coincides with

the time-reversed profile E (in)∗
1 (T − t) of the corresponding

input pulse E (in)
1 (t). We extend the above procedure to the case

of a single atom in a cavity. We use the control field and
the time sequence of Fig. 14(a). The trial input gate pulse
E (in)

1 has a Gaussian shape with the same full width at half
maximum T1 = 0.5 μs as that of the gate driving pulse in
Fig. 14(b), but with a peak power P

(max)
1 � 0.44 pW, which

makes the energy of the pulse equal to that of a single photon.
The optimized intensity profile of the input gate pulse E1 is
shown in Fig. 24(a). The corresponding profiles of the mean
photon numbers of the gate and probe modes are shown in
Figs. 24(b) and 24(c), respectively. In Fig. 24(b), the first and
second pulse structures correspond to the writing and reading
stages, respectively. Comparison between the solid (gate-on)
and dashed (gate-off) curves of Fig. 24(c) shows that a weak
driving pulse with energy of a single photon for cavity mode
1 can suppress the transmission of a driving pulse with energy
of a single photon for cavity mode 2. The ratio between the
peak values of the mean number n̄2 of photons in probe mode
2 in the gate-off and gate-on cases is equal to about 1.47. The
corresponding value of the switching contrast is about 19%.
Thus, the probe suppression and consequently the switching
contrast are not small but not significant.

The efficiency of storage is defined as the ratio between
the number of stored excitations, which is given in the case
of a single atom by the value of ρ22 at the end of the writing
stage, and the number of incoming photons. Our additional
calculation for ρ22 in the case of Fig. 24 shows that the value
of the storage efficiency is f � 0.32. This value is substantially
higher than the value of 0.04 for the storage efficiency in the
case of Figs. 14–17. However, it is smaller than the limiting
optimal value f 1s

max � 0.81, which is obtained from the formula
f 1s

max = η1/(1 + η1) [86]. Here, η1 � 4.3 is the cooperativity
parameter for cavity mode 1. The difference between our
obtained value f � 0.32 and the limiting optimal value f 1s

max �
0.81 arises from the fact that the formula f 1s

max = η1/(1 + η1)
is valid for an ensemble of atoms in a traveling-wave ring (one-
sided) cavity under the assumption that most of the atoms are in
their ground state |1〉 at all times. Meanwhile, the estimate f �
0.32 stands for a single atom with a significant stored excitation
magnitude ρ22 in a symmetric Fabry-Pérot (two-sided) cavity.
Our additional calculations show that, when we reduce the
peak power P

(max)
1 to a value on the order of or smaller than

1 fW and perform the optimization procedure, we obtain the
optimal storage efficiency f � 0.4. This value is in agreement
with the estimate f 2s

max = f 1s
max/2 = 1

2η1/(1 + η1) � 0.4 for

the optimal storage efficiency using atoms in a symmetric
Fabry-Pérot cavity with the cooperativity parameter η1 � 4.3.
Note that, when η1 → ∞, we have f 2s

max → 50%. It is clear
that we can improve the optimal storage efficiency by using a
one-sided cavity or an asymmetric Fabry-Pérot cavity instead
of an asymmetric one, and also by increasing the cooperativity
parameter η1.

VI. SUMMARY

We have studied all-optical switches operating on a single
four-level atom with the N -type transition configuration in a
two-mode nanofiber cavity with a significant length (on the
order of 20 mm) and a moderate finesse (on the order of 300)
under the EIT conditions. In our model, both the gate field and
the target field are the quantum nanofiber cavity fields excited
by weak classical pulses, and the parameters of the D2 line
of atomic cesium are used. We have presented the analytical
expressions for the dressed states of the coupled atom-cavity
system. We have examined two different schemes for the
switching operations. The first scheme is based on the effect of
the presence of a photon in the gate mode on the EIT conditions
for the probe mode. The second scheme is based on the use of
EIT to store a photon of the gate mode in the population of an
appropriate atomic level, which leads to the reduction of the
transmission of the field in the probe mode. We have inves-
tigated the dependencies of the switching contrast on various
parameters, such as the cavity length, the mirror reflectivity,
and the detunings and powers of the cavity driving field pulses.
We have shown that, for a nanofiber cavity with fiber radius of
250 nm, cavity length of 20 mm, and cavity finesse of 313 and
a cesium atom at a distance of 200 nm from the fiber surface, it
is possible to achieve a switching contrast on the order of about
67% in the first scheme and of about 95% in the second scheme.
These switching operations require small mean numbers of
photons in the nanofiber cavity gate and probe modes. The
advantage of the nanofiber-based all-optical switches is that
these switches do not require high-finesse cavities. In addition,
the nanofiber cavity modes are integrated into the guided
modes of the fibers. Consequently, nanofiber-based all-optical
switches can find potential applications for quantum informa-
tion processing and quantum communication networking.

ACKNOWLEDGMENT

F.L.K. acknowledges support by the Austrian Science Fund
(Lise Meitner Project No. M 1501-N27) and by the European
Commission (Marie Curie IIF Grant No. 332255).

[1] For reviews on cavity quantum electrodynamics see, for exam-
ple, in Cavity Quantum Electrodynamics, edited by P. R. Berman
(Academic, New York, 1994); Spontaneous Emission and Laser
Oscillations in Microcavities, edited by H. Yokoyama and
K. Ujihara (CRC, New York, 1995).

[2] A. Kuhn, M. Hennrich, T. Bondo, and G. Rempe, Appl. Phys. B
69, 373 (1999).

[3] M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev.
Lett. 85, 4872 (2000).

[4] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89,
067901 (2002).

[5] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R.
Buck, A. Kuzmich, and H. J. Kimble, Science 303, 1992
(2004).

013849-17

http://dx.doi.org/10.1007/s003400050822
http://dx.doi.org/10.1007/s003400050822
http://dx.doi.org/10.1007/s003400050822
http://dx.doi.org/10.1007/s003400050822
http://dx.doi.org/10.1103/PhysRevLett.85.4872
http://dx.doi.org/10.1103/PhysRevLett.85.4872
http://dx.doi.org/10.1103/PhysRevLett.85.4872
http://dx.doi.org/10.1103/PhysRevLett.85.4872
http://dx.doi.org/10.1103/PhysRevLett.89.067901
http://dx.doi.org/10.1103/PhysRevLett.89.067901
http://dx.doi.org/10.1103/PhysRevLett.89.067901
http://dx.doi.org/10.1103/PhysRevLett.89.067901
http://dx.doi.org/10.1126/science.1095232
http://dx.doi.org/10.1126/science.1095232
http://dx.doi.org/10.1126/science.1095232
http://dx.doi.org/10.1126/science.1095232


FAM LE KIEN AND A. RAUSCHENBEUTEL PHYSICAL REVIEW A 93, 013849 (2016)

[6] T. Wilk, H. P. Specht, S. C. Webster, G. Rempe, and A. Kuhn,
J. Mod. Opt. 54, 1569 (2007).

[7] T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, Science 317,
488 (2007).

[8] B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke,
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