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Optimal quantum parameter estimation in a pulsed quantum optomechanical system
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We propose that a pulsed quantum optomechanical system can be applied to the problem of quantum parameter
estimation, which targets yielding a higher precision of parameter estimation utilizing quantum resources than
using classical methods. Concentrating mainly on the quantum Fisher information with respect to the mechanical
frequency, we find that the corresponding precision of parameter estimation for the mechanical frequency can
be enhanced by applying applicable optical resonant pulsed driving to the cavity of the optomechanical system.
Further investigation shows that the mechanical squeezing resulting from the optical pulsed driving is the quantum
resource used in optimal quantum estimation of the frequency.
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I. INTRODUCTION

Quantum metrology [1] has been an active research field
in recent years. According to the quantum Cramér-Rao
inequality, the quantum Fisher information (QFI) plays a key
role in this subject [2–6], which bounds the minimal variance
of the unbiased estimator. The QFI gives the quantum limit on
the accuracy of the estimated parameter with any positive-
operator-valued measurement. One of the central ideas of
quantum metrology is to beat the shot-noise limit and approach
the Heisenberg limit by virtue of quantum resource, such as
quantum entanglement or squeezing. There have been many
studies on the precision of parameter estimation with a sub-
shot-noise limit in different physical systems, such as optical
interferometers [7–9], Bose-Einstein condensates [10], atomic
interferometers [11], and solid-state systems (e.g., nitrogen-
vacancy centers) [12,13]. To the best of our knowledge, only
a few papers [14–16] have been devoted to investigating the
quantum metrology in the newly developed novel quantum
optomechanical device.

With the rapid advance of technology, quantum cavity
optomechanics [17–19], in which the mechanical resonator is
coupled to the optical field by radiation pressure or photother-
mal force, has excited a burst of interest [20] for the following
two reasons: On one hand, the cavity optomechanical system
provides a new platform for investigation of the fundamental
questions on the quantum behavior of macroscopic sys-
tems [21] and even the quantum-to-classical transition [22,23];
on the other hand, it brings a novel quantum device for applica-
tions in ultrahigh-precision measurement [24–28], gravitation-
wave detection [29], quantum information processing [30], and
quantum illumination [31]. Much interesting research in cavity
optomechanical systems, such as optomechanically induced
transparency [32,33], ground-state cooling of the mechanical
resonator [34–38], optomechanical entanglement [39,40], and
optimal state estimation [41], has been reported. These studies
mainly rely on the enhanced coupling strength between the
phonic and the photic fields by strongly pumping the optical
cavity with a continuous-wave (CW) laser.

Differently from the above case of CW laser driving, so-
called pulsed quantum optomechanics [42], is also realized by
driving the optical cavity with (very) short optical pulses. Orig-
inally, this strategy was proposed in systems of qubits [43], and
recently it was extended to atomic ensembles [44] and levitated
microspheres trapped in an optical cavity [45]. Compared with
the CW-laser-driving case, the benefit of the pulsed scheme is
that it does not require the existence of a stable steady state for
the optomechanical system. The pulsed interaction has also
displayed its superiority in preparing and reconstructing the
quantum state of the mechanical resonator [46,47], enhancing
optomechaical entanglement [48,49] and EPR steering [50],
and cooling the mechanical mode [51,52].

Inspired by the experimental progress in pulsed quantum
optomechanical systems [42,49,51], it is a natural idea to inves-
tigate the high precision of parameter estimation by applying
optical pulsed driving to the cavity of the optomechanical
system. Here we investigate a special pulsed optomechanical
system, where the coupling between the mechanical mode
and the cavity field is quadratical to the mechanical motion
and the cavity field is resonantly driven with external optical
pulses. We mainly focus on the QFI with respect to the
mechanical frequency, which is equivalent to estimating the
mass of the mechanical resonator and could be used for mass
precision detection. With the Cramér-Rao inequality, a larger
QFI implies that the mechanical frequency can be estimated
with a higher precision. We show that the QFI can be greatly
enhanced when the period of the driving pulse matches that
of the mechanical motion. We also show that the mechanical
squeezing resulting from the resonant driving pulses is the
quantum resource strengthening the QFI.

This paper is organized as follows. The pulsed quantum
optomechanical model is discussed in Sec. II. We investigate
in Sec. III the QFI of the pulsed quantum optomechanical
system with respect to the mechanical frequency. Then we
demonstrate that quantum squeezing is the resource used in
optimal quantum estimation. Finally, a summary is given in
Sec. IV. The basic properties of the QFI, especially the QFI of
a single-mode Gaussian state, are reviewed in the Appendix.
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FIG. 1. Schematic the membrane-in-the-middle cavity optome-
chanical setup considered in this paper. The coupling between the
cavity field (with decay rate κ) and the mechanical resonator (with
resonance frequency ωm and damping rate γm) is quadratical to the
mechanical motion, and the driving field is composed of a series of
periodic pulses. The duration of one pulse is τp , and two consecutive
pulses have the time interval τ .

II. PULSED QUANTUM OPTOMECHANICS

Optomechanical systems have been implemented in many
physical systems, such as suspended mirrors in Fabry-
Pérot resonators [53], toroidal whispering gallery mode
resonators [54], trapped levitating nanoparticles [55], and
ultracold atomic clouds in cavities [56]. Here we focus on
a membrane-in-the-middle cavity optomechanical setup [57],
which has been used for quantum nondemolition measurement
of the phonon number state [58], cooling of the mechanical
resonator [59], and investigation of Landau-Zener-Stückelberg
dynamics [60]. Linear and quadratical optomechanical cou-
plings between the cavity mode and the mechanical resonator
can exist in this membrane-in-the-middle optomechanical
system. Very recently, optomechanical quadratical coupling
was also achieved in a crystal optomechanical system [61],
except for the membrane-in-the-middle setup.

The membrane-in-the-middle quadratical coupling setup
under consideration is shown in Fig. 1 and the corresponding
Hamiltonian is expressed as [62]

H = �ωm

2
(p̂2 + q̂2) + �ωcâ

†â + �g2â
†âq̂2

+ i�[E0(t)e−iωd t â† − H.c.]. (1)

Here ωm is the frequency of the mechanical resonator, p̂ and
q̂ are the dimensionless momentum and position operators
satisfying the relationship [q̂,p̂] = i, â is the annihilation
operator of the cavity mode with resonance frequency ωc and
decay rate κ , and g2 is the quadratic optomechanical coupling
strength. Finally, E0(t) = √

2P0(t)κ/(�ωc), with P0(t) the
optical input power. We further assume that the cavity is driven
resonantly with ωd = ωc.

For the mechanical resonator, by linearizing the optome-
chanical coupling, the corresponding quantum Heisenberg-
Langevin equation is obtained as

d

dt
q̂ = ωmp̂,

(2)
d

dt
p̂ = −ω̃m(t)q̂ − γmp̂ + ξ,

where ω̃m(t) = ωm + A(t), with A(t) = 2g2na(t) and na(t) =
〈â†â〉. Here γm is the mechanical damping rate, and ξ

denotes the Brownian noise with null mean and correlation
function satisfying 〈ξ (t)ξ (t ′)〉 = 2nthγmδ(t − t ′) in the high-
temperature limit kBT � �ωm. Here kB is the Boltzmann
constant, T is the temperature of the mechanical resonator, and
nth = [e�ωm/(kBT ) − 1]−1 ≈ kBT /(�ωm) is the mean thermal
phonon number.

From Eqs. (2), the dynamics of the second-order moments
of the mechanical system

−→v (t) ≡ (〈q̂2〉,〈p̂q̂ + q̂p̂〉/2,〈p̂2〉)T (3)

can be fully described by the equations

d

dt

−→v (t) = UA
−→v (t) + −→

N (4)

for an initial Gaussian state of the mechanical resonator (such
as the thermal equilibrium state with mean phonon number
nth). Here the superscript T represents the transposition. Also,

UA =
⎛
⎝ 0 2ωm 0

−ω̃m −γm ωm

0 −2ω̃m −2γm

⎞
⎠, (5)

and
−→
N = [0,0,(2nth + 1)γm]T.

The solution of Eq. (4) is formally expressed as

−→v (t) = eUAt−→v (0) +
∫ t

0
eUA(t−t ′)−→N dt ′

= MA(t)−→v (0) + −→v inh. (6)

Here MA(t) = eUAt and −→v inh = U−1
A [I3 − MA(t)]

−→
N , with I3

being a 3 × 3 unitary matrix.
Now we study the case where the driving field is pe-

riodic Gaussian pulses with duration τp and period τ ; i.e.
P (t) = P0

∑
n exp[−(t − nτ )2/τ 2

p]. Here we keep the condi-
tion 1/τp < c/2L (L is the cavity length), which means that
the optical driving pulses will not excite the near-cavity modes
except the desired one, and thus the cavity field can always be
considered a single-mode one. To retain the quadratic coupling
during the pulsed driving, the membrane should be locked
at a cavity node. Accordingly, the effective frequency of the
mechanical resonator is periodically modulated in time via the
optical driving pulses. An alternative scheme for achieving pe-
riodic modulation of the effective frequency of the mechanical
resonator is given in Ref. [63] with a two-tone drive.

Moreover, we assume that the system works in the following
parameter regimes: (i) 1/τ 
 κ , (ii) 1/τp 
 κ , and (iii) τp 

1/ωm. Condition (i) implies that the cavity is rapidly excited by
one pulse and damps to the vacuum state before the next pulse
arrives [46]. And condition (ii) means that the bandwidth of the
pulses is much smaller than that of the cavity, which guarantees
that the pulse enters the cavity spectrally. The last condition,
(iii), ensures that the free rotation of the mechanical resonator
is frozen in the process of the pulse-mirror interaction. In this
case, the intracavity photon number can be approximated as
a series of Dirac delta functions na(t) ∝ ∑

n=0 δ(t − nτ ) in
the typical evolution time of the mechanical resonator. As a
result, the entire dynamics of the optomechanical system is
divided into two steps: (i) one kick at time t = nτ , which can
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be described by the unitary operator UK = e−iθ q̂2
, with θ =

g2
∫
	t

na(t)dt being the kick strength (	t is the integral time
domain and is of the order of the typical time for a Gaussian
pulse), and thus corresponds to the linear transformation q →
q and p → p − 2θq; and (2) the free-evolution lasting time
τ between two adjacent kicks, whose corresponding evolution
is determined by Eq. (2) with A(t) = 0.

Combining these two evolving processes, the equation of
motion in a τ circle is given as [46]

−→v ((n + 1)τ ) = M0(τ )K−→v (nτ ) + −→v inh(τ ), (7)

where M0(τ ) ≡ MA=0(t)|t=τ and

K =
⎛
⎝ 1 0 0

−2θ 1 0
4θ2 −4θ 1

⎞
⎠, (8)

denoting the effect of the kick on the second-order moments.
That is, K is the representation of UK based on the second-order
moments. Making use of Eq. (7), the stroboscopic state of the
mechanical resonator at time t = nτ is obtained as

−→v (nτ ) = (M0(τ )K)n−→v (0)

+ [I3 − (M0(τ )K)n](I3 − M0(τ )K)−1−→v inh(τ ). (9)

III. QFI OF PULSED OPTOMECHANICS

After the detailed presentation of the pulsed quantum
optomechanical model in the previous section, here we
investigate the quantum parameter estimation via the related
QFI in this model. We also show that the quantum resource
used for parameter estimation is the squeezing produced by
pulsed driving.

A. Primary discussion

The parameter to be estimated in this paper is the frequency
ωm of the (harmonic) mechanical resonator. Choosing this
parameter is based on the following consideration. With the
relation ωm = √

km/M (km and M being the spring constant
and the mass, respectively), the QFI with respect to M is
proportional to that with respect to ωm, that is,

FM = μFωm
, (10)

where μ = km

4M3 is the scaling factor. As a result, the estimation
of M , just as done in the mass spectrometer [64], is equivalent
to the estimation of ωm. In principle, the parameters to be
estimated in this model can be those other than ωm (m). Here
we concentrate on the case of ωm via its related QFI, F ≡ Fωm

.
The numerical values of the parameters used in this paper

are based on the state-of-the-art experiments reported in
Ref. [65]. We choose the cavity decay as κ � 102 GHz and
driving pulses with duration τp = 0.1 ns. We also set the
mechanical frequency ωm = 0.5 × 106 Hz and the damping
rate γm = 102 Hz unless otherwise stated. By carefully choos-
ing the mechanical mass, reflectivity, and initial equilibrium
position, the kick strength θ is in the range of (0.01,10) for the
typical coupling strength g2.
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FIG. 2. Variation of (a) the QFI F and (b) the squeezing degree
r defined in Eq. (12) in terms of the pulse number n, respectively.
Different lines correspond to different values of the parameter k =
T0/τ (τ being the period of the pulses and T0 = 2π/ωm). The other
parameters are nth = 100 and θ = 1.0. The QFI F is in units of Hz−2.

B. Numerical results of the QFI

By substituting Eq. (9) into Eq. (A10), the QFI F can be ob-
tained straightforwardly. Fortunately, the last term in Eq. (A10)
vanishes since there is no first-order moment of the mechanical
motion. In what follows, we mainly explore F by numerical
simulations, as the analytical solution is too cumbersome.

With extensive numerical simulations, we find that the
evolution of F in terms of the pulse number n shows two
distinct behaviors, as shown in Fig. 2(a). In this figure, the
period of pulse τ matches that of the mechanical resonator T0

(≡ 2π/ωm) though τ = T0/k, with k taking the representative
values { 1

2 ,1,2,4,5,10} denoting the pulse number in one period
of the mechanical motion. With k � 4, the QFI F increases
very quickly at the initial pulse number n and arrives at a large
constant value in the large-n limit. However, with the increase
in k � 5, the QFI F shows the behaviors of initially increasing
with n and then gradually going down to 0 with large n. In this
case, the value of the QFI is very small compared to that of
k � 4. When the pulse period does not match the mechanical
period, e.g., k ≡ T0

τ
is an irrational number, we also find that

the value of QFI F becomes much smaller compared to the
case where the periods match. More importantly, it is shown in
Fig. 2(a) that the QFI F with k = 4 is optimal, and the reason
for this is discussed in Sec. III B.

The physics of these behaviors of the QFI F can be
understood as follows. Note that the parameter to be estimated
is the mechanical frequency ωm. If the period of the driving
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FIG. 3. The QFI F as a function of the pulse number n (a) at
different decay rates γm (in Hz) for θ = 1.0 and k ≡ T0/τ = 1 and
(b) at different kick strengths θ for γm = 102 Hz and τ = 10−7 s. The
other parameter is nth = 100. The QFI F is in units of Hz−2.

pulses τ matches that of the mechanical period T0, the
information of ωm can be extracted to the greatest extent.
As a result, the value of QFI F is large necessarily in the
matching cases. A constant value of the QFI in the large n

limit origins from the balance between the pulsed driving and
the mechanical damping.

The influence of the mechanical decay rate γm on the QFI F

is studied in the resonant driving regime, as shown in Fig. 3(a).
This figure displays that with an increase in γm, the value of
F decreases considerably. Moreover, F displays oscillation
behavior when γm is very small. The reason for this oscillation
is simple: the coherent evolution of the mechanical resonator,
determined by ωm, is dominated if the mechanics has a very
high quantity factor ωm

γm
.

The effect of the kick strength θ on the QFI F is shown
in Fig. 3(b). It is obvious that F also decreases considerably
with a decrease in θ . This can be easily understood: without
external driving, the mechanical damping will suppress its
coherence in the long-time limit. As a result, it is natural that
the QFI F decreases.

In order to show the advantage of our pulsed driving
estimation protocol, we illustrate in Fig. 4(a) the relationship
between the increasing part of the QFI F and the pulse number
n. We find that F ∝ nα by numerically fitting, with the index α

dependent on the parameter k, as shown in Fig. 4(b). Moreover,
we also checked numerically that this dependence of α on k is
independent of the parameters γm and θ .

From Fig. 4(b), it is clear that the QFI F with respect to the
pulse number n approaches the Heisenberg limit, with α = 2

0 3 6-30

-15

0

ln (n)

ln
[F

]

k=2
fitting, α=3.0
k=100
fitting, α=2.0
α=1

(a)

0 2 4 6 10 16 20

2

2.4

3

k
α

(b)

FIG. 4. (a) Fitting the increasing part of F with respect to the
pulse number n. The index α is determined by numerically fitting
F ∝ nα . Both the x axis and the y axis are scaled based on the natural
logarithm. The shot-noise limit (α = 1) is displayed as the lowest
(green) line. (b) The dependence of the index α on the parameter k.
The other parameters are the same as in Fig. 2. The QFI F is in units
of Hz−2.

for the relatively large k > 10, similar to the results obtained
previously in systems of a pulsed driving qubit [66,67]. For
k = 2, 4, the QFI shows the behavior beyond the Heisenberg
limit [68] with α = 3. The Heisenberg limit and beyond
displays that pulsed driving is an essential way to enhance
the precision of parameter estimation.

In the following, we discuss how to read out the mechanical
quadratures experimentally, which are required for the QFI of
the mechanical resonator. For a pulsed optomechanical system,
there exist at least two experimentally feasible schemes to
achieve this aim. The main idea of the first one [51] is
based on the homodyne detection of mixing between signal
pulses, which interact with the mechanical resonator, and
local oscillator pulses, as shown in Fig. 1(a) in Ref. [51]. The
second scheme is based on the beam-splitter interaction, where
mechanical quadratures are transferred into optical readout
pulses (latter injected), as displayed in Fig. 2 in Ref. [49].
Thus, the information on the mechanical resonator can be
gained from the output of the readout pulses.

IV. MECHANICAL SQUEEZING AS A QUANTUM
RESOURCE

Generally, it is well known that the squeezed state [69],
as an essential resource for quantum metrology [70,71], can
enhance the precision of parameter estimation. Motivated by
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this fact, we study the relationship between the QFI F and
mechanical squeezing in this section.

Any single-mode Gaussian state can be expressed as [72]

ρ = D̂(α)Ŝ(r,φ)ρth(n)Ŝ†(r,φ)D̂†(α), (11)

where D̂(α) = exp[αâ − H.c.] is the displacement operator
of bosonic mode â, Ŝ(r,φ) = exp[ r

2 (e−2iφ â2 − H.c.)] is the

squeezing operator, and ρth(m) = ∑∞
m=0

m2

(m+1)m+1 |m〉〈m|
denotes the thermal state, with m the mean particle number.
The squeezing strength r and the squeezing angle φ are
determined by

r = 1

2
arcsinh

[
1

2

(
γ

det �ϕ

) 1
2
]
, (12)

2φ =
⎧⎨
⎩

−arcsin
( 2�ϕ,12√

γ

)
if �ϕ,11 < �ϕ,22,

π + arcsin
( 2�ϕ,12√

γ

)
if �ϕ,11 > �ϕ,22,

(13)

with γ = (�ϕ,22 − �ϕ,11)2 + (2�ϕ,12)2. Here �ϕ,ij

(i,j = 1,2) is the element of the covariant matrix �ϕ

as defined in Eq. (A6).
By rearranging the second-order moments given in Eq. (9)

as the covariant matrix, the squeezing strength r and the
squeezing angle φ are obtained according to Eqs. (12) and (13).
Note that α = 0 for the mechanical resonator studied in this
paper. In Fig. 2(b), we plot the mechanical squeezing strength
r as a function of the pulse number n for k � 4. By combining
Figs. 2(b) and 2(a), it is apparent that both the mechanical
squeezing and the QFI are enhanced with an increase in k.
As a result, this squeezing as a quantum metrology resource
strengthens the QFI F . Although Fig. 2(b) only shows the case
k � 4, similar results were found for the other k values (not
displayed here).

Based on the correlation between the QFI and the mechan-
ical squeezing, we provide an intuitive way to understand the
QFI for k = 4 (corresponding to a free rotation time τ = T0/4)
being optimal with the kick strength θ = 1. Toward this aim, it
is useful to investigate the dynamics of the mechanical Wigner
function, obtained according to Eq. (A8).

The kick operator K produces the mechanical squeezing,
which remains invariant under free rotation M0(τ ) (neglect-
ing the mechanical damping). After the first kick acts on
the mechanical resonator, the initial mechanical therm’al
state translates into a squeezed state with squeezing angle
φ(n = 1) � π/8, as shown in Fig. 5(a). Here φ is defined
as the angle between the q axis and the direction of the
squeezed quadrature. Then the squeezed state is rotated by
ϑ = ωmT0/4 = π/2 along the clockwise direction by the free
evolution M0(τ = T0/4). Under the effect of the following
kicks, the squeezing strength of the mechanical resonator
progressively increases, as displayed in Figs. 5(b) and 5(c).

Moreover, the squeezing angle also gradually approaches
φ � π/4 under some (e.g., n ≈ 102) repetitive kicks (as well
as the free evolution between kicks). Once the squeezing
angle becomes φ = π/4, which coincides with the counterpart
angle produced by the squeezing action Ũθ=1 = exp[−i(â2 +
H.c.)/2] in the kick operator UK, we find numerically that it
will remain unchanged for the large-n limit. We would like to
point out that here the matching between the squeezing angle
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FIG. 5. The contours of Wigner functions of the mechanical
resonator before (after) the nth kicked pulses are labeled A (B). The
pulse number n = 1 (a), n = 3 (b), and n = 103 (c). It is obvious that
here the mechanical squeezing can be strengthened by the kicks. The
parameters are k = 4, nth = 100, and θ = 1.0.

by kick and the free rotation angle plays an essential role in
strengthening the mechanical squeezing. As a consequence,
the QFI of the mechanical resonator is also enhanced.

We also show the mechanical Wigner function for the
case k = 5 in Fig. 6, which corresponds to a free rotation
angle ϑ = ωmT0/5 = 2π/5. Thus, after the free rotation
(and considering the mechanical damping) represented by
the operator M0(τ = T0/5), the mechanical resonator cannot
evolve into the squeezed state with the squeezing angle
φ = π/4 by the kick operator UK in the long-time limit.
This enables the kicks to squeeze the mechanical resonator
ineffectively, as displayed in Fig. 6(c).
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FIG. 6. The same as Fig. 5 except for the parameter k = 5,
corresponding to the free rotation angle ϑ = 2π/5. In this case, the
kicks cannot effectively produce mechanical squeezing.

V. CONCLUSION

In summary, the quantum pulsed optomechanical system
is proposed for application to the quantum metrology in
the context of quantum parameter estimation by focusing on
investigating the QFI. We find that the mechanical frequency
can be estimated with a very high precision if the mechanical
period matches that of the driving pulses. We also demonstrate
that the mechanical squeezing is the quantum resource used in
optimal quantum estimation of the frequency. In the future, it
will be interesting to utilize coherence of the multimode cavity
optomechanics [73,74] to enhance the accuracy of quantum
parameter estimation.
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APPENDIX: QFI OF A SINGLE-MODE GAUSSIAN STATE

In order to be complete in this paper, here we review the
main aspects of local quantum estimation theory, especially
focusing on the QFI of a single-mode Gaussian state. Note
that the mechanical resonator studied in this paper stays in a
single-mode Gaussian state.

Let ϕ denote a single parameter to be estimated and p(ζ |ϕ)
be the probability density with measurement outcome {ζ } for
a continuous observable W conditioned on the fixed parameter
ϕ. The value of the parameter ϕ can be inferred from the esti-
mator function ϕ̂ = ϕ̂(ζ1, . . . ,ζN ), based on the measurement
results ζ1, . . ., ζN of N replicas of the system. Usually, this
is achieved by the maximum likelihood estimation. With the
definition of the classical Fisher information [75]

Hϕ =
∫

dζp(ζ |ϕ)

[
∂

∂ϕ
ln p(ζ |ϕ)

]2

, (A1)

the classical Cramér-Rao inequality [76] gives the bound of
the variance Var(ϕ̂) for an unbiased estimator ϕ̂:

Var(ϕ̂) � 1

Hϕ

, (A2)

Extending from the classical to the quantum regime, the
conditional probability p(ζ |ϕ) is determined by the positive-
operator-valued measure operator {Êζ } for a parameterized
quantum state ρϕ , p(ζ |ϕ) = Tr[Êζ ρϕ]. To determine the
ultimate bound on precision posed by quantum mechanics,
the Fisher information must be maximized over all possible
measurements [77].

By introducing the symmetric logarithmic derivative Lϕ

determined by

∂ρϕ

∂ϕ
= 1

2
(ρϕLϕ + Lϕρϕ),

the so-called quantum Cramér-Rao inequality gives a bound
on the variance of any unbiased estimator [78],

Var(ϕ̂) � 1

Hϕ

� 1

Fϕ

, (A3)

where

Fϕ = Tr
[
ρϕL2

ϕ

]
(A4)

is the QFI.
The two bounds on the precision of parameter estima-

tion [79] have been found, the so-called shot-noise limit 1/
√

N

and the Heisenberg limit 1/N . Usually, here N is the total
particle number contributed to quantum estimation.

It is not easy to give the explicit formula of the QFI for a
general system. Fortunately, the QFI is related to the Bures
distance [78] through

D2
B[ρϕ,ρϕ+dϕ] = 1

4
Fϕdϕ2, (A5)
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where the definition of the Bures distance between two
quantum states, ρ and σ , is [80]

DB[ρ,σ ] = [2(1 − Tr
√

ρ1/2σρ1/2)]1/2.

The Wigner function for an arbitrary given state ρ, defined
as

W (q,p) = 1

2π

∫ ∞

−∞
dse−ips〈q − s|ρ|q + s〉,

can be used to equivalently represent the corresponding
quantum state ρ, as there is a one-to-one correspondence
between them. The Gaussian state, as a specific kind of
continuous-variable state, has wide applications in actual
quantum information processing [81]. They can be reproduced
efficiently and unconditionally in the experiment. The uncon-
ditionedness is one advantage of the continuous-variable state,
which is hard to achieve with a qubit-based discrete variable.

A state is said to be Gaussian when its Wigner function is
Gaussian. A Gaussian state can be completely characterized

by the first-order moment and the second-order moment:

Xi = 〈X̂i〉,
�ϕ,ij = 1

2
〈(X̂iX̂j + X̂j X̂i)〉 − 〈X̂i〉〈X̂j 〉

=
∫

W ( �X)XiXjd
2 �X. (A6)

Here

�̂X ≡ (q̂,p̂), 〈· · · 〉 ≡ Tr(ρϕ . . . ), (A7)

and ϕ is the parameter to be estimated in the quantum state ρϕ .
The Wigner function is related to the second-order moments
as (setting the first-order moments to 0)

W ( �X) = 1

2π
√

Det�ϕ

exp

(
− 1

2
�X�ϕ

−1 �XT

)
. (A8)

Based on the fidelity between the arbitrary single-mode
Gaussian states ρ1 and ρ2,

f (ρ1,ρ2) = 2 exp
[ − 1

2	XT (�1 + �2)−1	X
]

√|�1 + �2| + (1 − |�1|)(1 − |�2|) − √
(1 − |�1|)(1 − |�2|)

, (A9)

and making use of Eq. (A5), the QFI of the single-mode
Gaussian state is found to be [82,83]

Fϕ = Tr
[
�−1

ϕ �′2
ϕ

]
2
(
1 + P 2

ϕ

) + 2
P ′2

ϕ

1 − P 4
ϕ

+ 	 �X′T
ϕ �−1

ϕ 	 �X′
ϕ. (A10)

Here 	 �X = 〈 �X1 − �X2〉 is the mean relative displacement,
Pϕ = |�ϕ|−1/2 denotes the purity of the state, and

	 �X′
ϕ = d〈 �Xϕ+ε − �Xϕ〉/dε|ε=0. (A11)

We note that the quantum Cramér-Rao bound of two-mode
Gaussian states [84] was investigated previously.
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