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Nonlinear Stokes-Mueller polarimetry
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The Stokes-Mueller polarimetry is generalized to include nonlinear optical processes such as second- and
third-harmonic generation, sum- and difference-frequency generations with Kleinman symmetry. The overall
algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by
column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear
Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded
by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the
conventional 4 × 1 Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix
depend on the order of the process being examined. In addition, the relations between components of nonlinear
susceptibility tensor and Mueller matrix are explicitly provided. The approach of combining linear and nonlinear
optical elements is discussed within the context of polarimetry.
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I. INTRODUCTION

Polarimetry techniques employ the measurement of po-
larization state of outgoing radiation from a medium for a
defined polarization of incoming radiation. Linear optical
polarimetry is a well-established measurement technique
that found applications in different research fields including
material science and biomedical imaging [1–7]. Polarimetry
can also be employed for nonlinear optical techniques,
such as second-harmonic generation (SHG), third-harmonic
generation (THG), and coherent anti-Stokes Raman scattering
(CARS) [8–15].

In an optical setup the polarization-dependent interaction
of light with matter can be described using Stokes-Mueller,
Poincaré, or Jones formalism [16–18]. Each formalism has
unique advantages conveniently applicable for different cir-
cumstance. In the linear Stokes-Mueller formalism, the light is
represented by a four-element Stokes vector, and its interaction
with matter is represented by a 4 × 4 Mueller matrix. The
Stokes vector can describe partially or completely polarized
light and operates with intensities, which are real numbers and
thus observables in an experiment. On the other hand, Jones
formalism is used to describe purely polarized states retaining
the phase relations of the electric fields and requires working
with complex variables.

Recently, attempts have been made to deal with the
nonlinear polarization measurements in a linear fashion. For
example, SHG signal from a sample as well as the incoming
fundamental beam radiation have been characterized by a 4×1
Stokes vector [19,20]. However, the characterization of the
sample remains unresolved, mainly because of the nonlinear
relationship between the incoming and outgoing radiations.
Meanwhile, the 4 × 1 Stokes vector has been used to describe
the polarization states of beams for nonlinear effects in the
pump-probe phenomena and for isotropic medium subjected
to a nonlinear dc electric field [21,22]. In ellipsometry, for two-
photon processes some nonlinear relationships have been de-
rived by using a quantum-mechanical framework and a Jones-
Stokes approach [23,24]. The Jones formalism can be used to
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describe nonlinear light-matter interaction using higher-order
susceptibilities and pure polarization states. However, often
media, including biological tissue, are highly heterogeneous
scattering materials; therefore, the Stokes-Mueller formalism
allows accounting for the scattering contribution in nonlinear
optical responses. These efforts demonstrate the need for a
unifying and general framework for nonlinear optical Stokes-
Mueller polarimetry.

The principles of linear polarimetry measurement tech-
niques can be applied for the nonlinear polarimetry experi-
ments. For example, the degree of polarization of an optical
radiation is a useful parameter to quantify the extent of scatter-
ing contribution to the radiation. In addition, various filtering
mechanisms exist to separate the polarized components of a
radiation from scattering contributions [25,26]. In this paper,
we develop the theoretical framework for nonlinear optical
polarimetry in Sec. II by using the classical description of
electric fields, nonlinear susceptibilities, and optical radiations
polarizations. In our approach to the multiphoton polarime-
try, the nonlinear Jones and Stokes-Mueller formalism is
analogous to the conventional linear polarimetry, where the
polarization state of light as well as the response of a material
is described with real-valued parameters. Higher-dimensional
Stokes-Mueller algebra is derived to describe the nonlinear
interactions of the optical radiations and the media. The
Mueller matrix for an ensemble of nonlinear susceptibility
tensor elements is also presented.

II. THEORY OF NONLINEAR STOKES-MUELLER
POLARIMETRY

The general nonlinear Stokes-Mueller equation, describing
the relationship between the generated nonlinear signal radia-
tion, the nonlinear properties of the media, and the incoming
radiations can be written as follows:

s ′(ωσ ) = M(n)S(ω1,ω2, . . . ,ωn), (1)

where s ′ is the 4 × 1 Stokes vector describing the polarization
of generated radiation at ωσ frequency and prime signifies
the measured outgoing signal, M(n) is the nonlinear Mueller
matrix of the nth-order light-matter interaction, while S is
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a (n + 1)2 × 1 vector representing the polarization states of
incoming fundamental radiations responsible for generation of
outgoing radiation via nonlinear interactions. Henceforth, the
s ′ and S are called the polarization state vectors for outgoing
and incoming radiations, respectively.

The following assumptions have been made regarding the
experimental applicability of the nonlinear Stokes-Mueller
polarimetry theory: (i) the nonlinear Stokes-Mueller polarime-
try formalism is applicable for nonionizing radiation in the
optical range, where the applied electric field strength is much
smaller than the characteristic atomic electric field strength
(i.e., Ilaser � Iatomic = 4 × 1020 W/m2) [27], (ii) the nonlinear
susceptibilities are independent of applied intensities; thus,
intensity-dependent susceptibilities are not considered, which
may take place at resonant frequencies of atomic and molecular
transitions, occurring, for example, due to the ground-state
depletion in saturable absorption effect [27]), (iii) the direction
of the light propagation is assumed to be perpendicular to the
polarization vector plane, (iv) only electric field components
of the radiation and dipolar effects are considered, (v) it is
assumed that the sample is thin, where the phase-matching
effects are ignored, (vi) the incoming radiation is coherent,
for example, from a laser source, (vii) the nonlinear Stokes-
Mueller polarimetry equations will be derived with harmonic
generation processes in mind (i.e., SHG and THG), but also are
valid for other nonlinear processes where Kleinman symmetry
is applicable. Otherwise, the value of n has to be increased
to account for the higher number of observable independent
susceptibility tensor components. However, the underlying
algebra for the derivations remains valid.

The electric field E of the incident radiation induces a non-
linear polarization P (n) in the material, which is characterized
by the nonlinear susceptibility tensor χ (n):

P
(n)
i = χ

(n)
ijk···mEjEk . . . Em = χ

(n)
iA ψ

(n)
A , (2)

where (Einstein) summation is assumed over the repeated
indices. The index, i, represents the orientation of the outgoing
radiation polarization and the remaining indices represent
the direction of polarization for incoming electric fields. The
incident electric fields can be described as the state function
ψA, where the relation between the index A and j,k, . . . ,m

is specific for a given nonlinear process. Essentially, for an
nth-order nonlinear optical phenomena, A runs from 1 to
n + 1, and i represents the two orthogonal vectors expanding
the plane of polarization perpendicular to the direction of light
propagation [28].

The Stokes vector can be obtained by measuring the light
intensities at different polarization orientations and depends
on the susceptibility of the materials and the polarization state
of the interacting electric fields according to the following
equation:

I ∝ PiP
∗
i ∝ χiAχ∗

iBψAψ∗
B (3)

where summation over repeated indices is assumed, and
the asterisks ∗ denotes the complex conjugate. Thus, by
comparing Eqs. (1) and (3) we see that the Stokes vector
and Mueller matrix components are composed of products
of electric fields vectors and products of susceptibilities
components, respectively. At the level of individual electric
fields, the outgoing field, denoted by the state vector �′, is

related to the products of incoming electric fields, denoted by
the state vector ψ (n), and the susceptibility χ (n):

�′(ωσ ) = χ (n)ψ (n)(ω1,ω2, . . . ,ωn). (4)

The state vector for the fundamental nonlinearly interacting
electric fields is

ψ (n)(ω1,ω2, · · · ,ωn) =

⎛
⎜⎜⎜⎝

ψ
(n)
1

ψ
(n)
2
...

ψ
(n)
n+1

⎞
⎟⎟⎟⎠. (5)

Each element of the state vector ψ
(n)
A (A = 1, . . . ,n + 1) is an

nth-order function of one or more electric fields oscillations
at particular frequencies, and the state vector has n + 1
components.

A. Outgoing radiation Stokes vector

The Stokes vector s ′ for the outgoing electric field E(ωσ )
is characterized by a 4 × 1 vector just as in the case for
conventional Stokes vector. Let C ′(ωσ ) = 〈�′(ωσ ) · �′†(ωσ )〉
be the coherency matrix composed from the dyad of �′, where
�′(ωσ ) is the state (or simply the electric field) vector of the
outgoing beam. The symbol dagger † denotes the complex
conjugation and transposition. 〈·〉 signifies a time average
over an interval long enough to make the time-averaging
independent of the interval and fluctuations. Then, in terms
of its coherency matrix and Pauli matrices the outgoing field
Stokes vector is [18,29]

s ′
t = Tr(C ′τt ) = C ′

ab(τt )ba = 〈�′
a�

′∗
b 〉(τt )ba = 〈�′†τt�

′〉,
(6)

where a and b each run from 1 to 2, representing the
orthogonal outgoing polarization orientations perpendicular
to the propagation direction. τt (t = 0 . . . 3) denotes the 2 × 2
identity and Pauli matrices:

τ0 =
(

1 0
0 1

)
, τ1 =

(
1 0
0 −1

)
,

τ2 =
(

0 1
1 0

)
, τ3 =

(
0 −i

i 0

)
.

(7)

Thus, the so-called degree of polarization P ′ is defined as
follows [30]:

P ′ =
√

s ′
1

2 + s ′
2

2 + s ′
3

2
/s ′

0. (8)

The values of P ′ range from 0 to 1, and the parameter can be
used to measure the amount of scattered light in the radiation.

B. Real-valued vector for incoming radiation

The incoming electric fields have a (n + 1) × (n + 1)
coherency matrix, which is defined as

ρ(n)(ω1,ω2, . . . ,ωn) = 〈ψ (n) · ψ (n)†〉

=

⎛
⎜⎝

〈
ψ

(n)
1 ψ

(n)∗
1

〉 · · · 〈
ψ

(n)
1 ψ

(n)∗
n+1

〉
...

. . .
...〈

ψ
(n)
n+1ψ

(n)∗
1

〉 · · · 〈
ψ

(n)
n+1ψ

(n)∗
n+1

〉

⎞
⎟⎠.

(9)
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For nonlinear interaction of electric fields, the coefficients
of expansion for the coherency matrix forms a real-valued
vector similar to the Stokes vector. The coherency matrix for
incoming radiation can be expanded by basis that have higher
dimensions than the Pauli’s matrices. Leaving aside the details
of the dimension for now, and simply denoting this set as η,
the vector for the incoming signal can be written as

SN = Tr(ρ η
N

) = 〈ψAψ∗
B〉(η

N
)BA = 〈ψ†η

N
ψ〉, (10)

where N = 1, . . . ,(n + 1)2 for each element of the incoming
radiation representing the nth-order electric fields. The η

matrices similar to Pauli’s expand higher dimension states.
A subset of properties of η matrices essential for describing
an nth-order process are as follows:

(1) They are square matrices with dimension (n + 1) ×
(n + 1).

(2) They are Hermitian: η† = η.
(3) There are (n + 1)2 of η matrices which form the basis.
(4) They obey the orthogonality Tr(ημην) = cηδμν where

cη is a constant and real number, and δμν is the Kronecker δ

(δμν = 1 when μ = ν, and 0 otherwise).
The constant cη can be chosen to be the same and equal to

2 for any order of interaction, similar to the linear case (for
Pauli matrices Tr(τμτν) = 2δμν). The recipe for finding these
matrices is given in the Appendix: η Matrices for nonlinear
polarimetry.

Similar to the linear Stokes parameters, the vector for the
incoming radiation generating the nonlinear signal obeys the
following relation [31]:

n S2
1 �

(n+1)2∑
N=2

S2
N, (11)

where the equality is valid for the purely polarized state.
Therefore, it is helpful to use the degree of polarization
P (2) parameter to characterize the scattered and polarized
contribution of the fundamental incoming radiation:

P (2)(ω1,ω2, . . . ,ωn) =

√√√√(n+1)2∑
N=2

S2
N/nS2

1 , (12)

where P (2) ranges from 0 to 1 for unpolarized to fully
polarized fundamental radiation, respectively.

C. Real-valued matrix for intervening medium

By substituting linear and nonlinear Stokes vector ex-
pressions [Eqs. (6) and (10), respectively] into the general
nonlinear polarimetry Eq. (1), the following expression is
obtained:

〈�′† τt �
′〉 = M(n)

tN 〈ψ† η
N

ψ〉. (13)

In this frame, each component of the vector �′ of the generated
electric field is proportional to the polarization of outgoing
field, which depends on the susceptibility tensor components
of the material and the polarization state of the radiation of
incoming electric fields. By substituting explicit expressions
of �′ and �′† into Eq. (13) in the elemental form the following
equation is obtained:〈

χ
(n)∗
aA ψ∗

A(τt )abχ
(n)
bB ψB

〉 = M(n)
tN 〈ψ∗

A (η
N

)AB ψB〉, (14)

where A and B = 1, . . . ,n + 1. Since Eq. (14) is written
in terms of individual elements, the state functions of the
fundamental radiation can be dropped and the nonlinear
Mueller matrix elements MtN can be written in terms of the
nth-order susceptibilities as

χ∗
aA(τt )abχbB = MtN (η

N
)AB (15)

Note, in Eq. (15) the signal is assumed to be from a single
generator, and an ensemble of scatterers have a similar
derivation, which will be shown in later in this Section.
Multiplying both sides by (η

N ′ )BC
and after summation over

index B, and letting A = C:

1

cη

χ∗
aA(τt )abχbB(η

N
)BA = MtN (16)

where (Einstein) summation is implied over repeated indices
(i.e., a, b, A and B). cη is a real-valued constant and can be
set to equal to two as shown in the appendix η matrices for
nonlinear polarimetry. Finally, the expression of a real-valued
matrix element in terms of the susceptibilities is

MtN = 1

cη

Tr(τt χ η
N

χ †). (17)

This expression has a general form and is equivalent to the
linear Mueller matrix element expression if the matrices η are
replaced with Pauli matrices [from Eq. (7)]. In contrast to the
linear Mueller matrix elements, the nonlinear M is composed
of nonlinear susceptibilities and η matrices of higher dimen-
sion. Note that for linear polarimetry, the transformation matrix
J can also be represented by the linear susceptibility χ (1), in
which case the only difference between linear and nonlinear
Mueller matrix elements would be to replace one Pauli matrix
with an η matrix [18,32]. This familiar form of Mueller matrix
elements can be investigated similar to the linear case. All
elements of the matrix for the nonlinear interaction are real, a
fact that leads to a very useful and a much desired expression
for determining the nonlinear susceptibilities.

In a highly scattering media such as in biological tissue,
the system may not be completely coherent, and the source
of the signal may be an ensemble of scatterers. Therefore,
an ensemble average of individual elements with probability
pe may be more appropriate to consider [32]. The ensemble
average of the susceptibility values can be expressed as

∑
e

pe

(
χ

(n)∗
aA χ

(n)
bB

) = 〈
χ

(n)∗
aA χ

(n)
bB

〉
e
. (18)

Consequently, Eq. (16) for the nonlinear Mueller element in
the case of an ensemble becomes

M(n)
tN = 1

cη

〈
χ

(n)∗
aA χ

(n)
bB

〉
e
(τt )ab(η

N
)BA, (19)

where 〈〉e stands for the average over the e ensemble. The right-
hand side of Eq. (19) has a similar form to Eq. (16), except that
here an ensemble of χ (n) is considered (the order of variables is
a nonissue because both equations are in the elemental form).
The correlation matrix X forming from 〈χ (n)∗

aA χ
(n)
bB 〉

e
contains

all the information about the ensemble, and in the case of a
perfectly homogeneous medium reduces to a single source.

Note that since the generated light is no longer originating
from a single source but rather from an ensemble of sources
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that may not be necessarily coherent, then the outgoing
radiation may not be fully polarized. This result is desired
and provides a better representation of experimental data from
a heterogeneous medium.

D. Expression of susceptibilities in nonlinear polarimetry

Stokes polarimetry measures the Mueller matrix compo-
nents, while nonlinear properties of the material are often
described by χ (n) tensor component values. Thus, the next
step is to derive expressions for χ (n) products in terms of
M(n)

tN component values. For the derivation we will vectorize
the Pauli matrices, τ , as well as the η matrices. We use the
trace property Tr(AB) = vec(AT )T vec(B), where vec(A) =
[a1,1,...,as,1,a1,2,..,as,2,...,a1,t ,...,as,t ]T is the vectorization of
a s × t matrix A (in other words columns of a matrix are
stacked below one another), and its corollary Tr(AT BCDT ) =
vec(A)T (D ⊗ B)vec(C) on the (real) double Mueller elements
in Eq. (17) is

MtN = (MtN )∗ =
(

1

cη

Tr(τtχη
N
χ †)

)∗

= 1

cη

Tr
(
τT
t χ∗η∗

N
χT

)

= 1

cη

vec(τt )
T (χ ⊗ χ∗)vec(η∗

N
) (20)

where in going from the first line to the second we took
advantage of the Hermitian properties of the τ and η. By
letting

T ≡

⎛
⎜⎜⎝

vec(τ0)T

vec(τ1)T

vec(τ2)T

vec(τ3)T

⎞
⎟⎟⎠ =

⎛
⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞
⎟⎠, (21)

the matrix T is invertible and obeys T −1 = 1
2T †. By letting

H † = [vec(η∗
1), . . . ,vec(η∗

N )], we arrive at

M = T XH−1, (22)

where X = χ ⊗ χ∗. Therefore, H should be invertible and
obey H−1 = 1

cη
H †. Consequently, the susceptibility products

can be easily found as

X = T −1MH. (23)

The relationship between the nonlinear susceptibilities in
terms of Mueller matrix derived in Eq. (23) is useful when the
Mueller matrix is obtained by the polarimetry measurement
of a sample and the explicit values for the corresponding
susceptibilities are desired.

In the elemental form Xij = 1
2T

†
itMtNHNj , where i =

(a − 1)2 + b and j = (A − 1)(n + 1) + B (a and b = 1,2; A

and B = 1, . . . ,n + 1). Since, χaAχ∗
bB = |χaA||χbB |ei(δaA−δbB ),

then the relative phase between any two susceptibility elements
χaA and χbB can be found according to

δaA − δbB =�aA,bB

= tan−1

(
−i

χaAχ∗
bB − χbBχ∗

aA

χaAχ∗
bB + χbBχ∗

aA

)

= tan−1

(
i
Xkl − Xij

Xkl + Xij

)

= tan−1

(
i
T †

ktMtNHNl − T †
itMtNHNj

T †
ktMtNHNl + T †

itMtNHNj

)
(24)

where k = (b − 1)2 + a and l = (B − 1)(n + 1) + A, and
summations over repeated indices are assumed. Equation (24)
is important because it shows that by measuring the material
matrix for a nonlinear interaction, and using matrices T in
Eq. (21) and H , the relative phase of the susceptibility elements
can be obtained.

In nonlinear polarimetry studies, it is customary to charac-
terize nonlinear optical properties of the material using suscep-
tibility values. Therefore, Eq. (23) provides a mechanism to
check and compare nonlinear polarimetry investigations with
similar previous studies using conventional nonlinear optics.
For example, the ratio of susceptibilities for cylindrically sym-
metric material can be calculated for a number of biological
structures [13,24,33–35].

E. Combining nonlinear and linear optical elements

For a setup, containing a nonlinear optical medium followed
by a train of linear optical components, the Mueller-Stokes
formalism can be used to relate vector of incoming radiation
to the outgoing radiation vector:

s ′(ωσ ) = Mt . . . M1M(n) S(ω1,ω2, . . . ,ωn), (25)

where M1 . . . Mt are the 4 × 4 linear Mueller matrices that
characterize the linear interactions, and M(n) is the 4 × 9 for
the second-order matrix, 4 × 16 for the third-order matrix,
and 4 × (n + 1)2 for the nth-order nonlinear interaction.
Therefore, linear and nonlinear Stokes-Mueller formalism
can be appropriately combined. As an example, we point
to derivation of the so-called polarization-in polarization-out
(PIPO) equation for SHG using the double Stokes-Mueller
polarimetry [29]. A similar relation also exists for THG
intensity equation, which we will show in an upcoming
publication.

III. DISCUSSION AND CONCLUSION

The general formalism for nonlinear Stokes-Mueller po-
larimetry is derived. The derivation stems from the basic
nonlinear relationship between the polarization density and the
resultant outgoing electric field from an intervening material
due to the incoming radiation. In nonlinear polarimetry all
three components of the expression including the incoming
radiation, the material under study, and the outgoing radiation
are characterized by real-valued parameters. The state of the
incoming radiations is characterized by (n + 1)2 × 1 vector;
the sample is represented by a 4 × (n + 1)2 matrix; and the
outgoing radiation is simply determined by a conventional
4 × 1 Stokes vector. States are described in terms of electric
fields and the conventional Stokes vectors. The matrix M(n)

for a nonlinear interaction is derived in terms of nonlinear
susceptibilities. The theoretical framework is comprehensive
(since it encapsulates all aspects of the polarization state
for the outgoing radiation) for a given material and an
incoming radiation. Previous successful nonlinear polarimetric
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studies such as polarization-in polarization-out equations are
particular cases of Stokes-Mueller nonlinear polarimetry,
where linear polarizations are employed in nonbirefringent and
nonabsorbing materials. The theory describes the polarimetry
of important two-photon effects such as SHG, SFG, and DFG,
as well as three-photon effects including THG and CARS.
The dimension of nonlinear Stokes-Mueller formalism for an
n th-photon process may be different than their corresponding
harmonic generation if Kleinman symmetry is not valid.
Nonetheless, for each case the polarization state of incoming
radiations as well as the nonlinear optical properties of the
intervening material can be described in terms of measurable
polarimetric quantities.

The nonlinear Stokes-Mueller polarimetry assumes
intensity-independent susceptibilities. Hence, the incident
radiation intensity range under which the Stokes-Mueller
polarimetry is valid can be tested by measuring the Mueller
matrix elements values at different incident intensities. The test
has a particular importance at incident radiation frequencies
near atomic and molecular transitions.

The coherency matrix is constructed from a vector com-
posed of electric fields of the incoming radiation. The expan-
sion of the coherency matrix is facilitated by a set of matrices
with unique properties and form the basis for development of
the polarization state vector as well as the susceptibility matrix.
Elsewhere the η matrices are shown to be the generalized
matrices for group SU(n + 1), where an (n + 1)-dimensional
quantum system is described by (n + 1) × (n + 1) density
matrix [36]. Therefore, these matrices may be used for
quantum-mechanical derivation of nonlinear polarimetry. For
an nth-order process the overall formalism is the same as
long as the Kleinman symmetry is valid. For example, the
material matrices for SFG, DFG, and SHG assume similar
forms. Similarly, the matrix for three-photon-polarimetry
shares the same form for THG and CARS processes. It is

conceivable that a similar approach can be taken to express
the state for various other frequency mixing techniques
including two-photon absorption, coherent Stokes-Raman
scattering (CSRS), and stimulated Raman scattering (SRS).
For each of these techniques the polarization states needs to
be expressed in terms of the electric fields that nonlinearly
interact and result in the nonlinear polarization density. For
higher-order techniques such as fourth and fifth harmonics the
corresponding higher dimension η matrices may be used.
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APPENDIX: η MATRICES FOR NONLINEAR
POLARIMETRY

The polarization state of incoming radiation S [Eq. (10)]
as well as the matrix representing the nonlinear medium M
[Eq. (17)] require the (n + 1) × (n + 1) η matrices in order
to be defined from the coherency and susceptibility matrices,
respectively. The recipe for generating η matrices has two
steps: In step 1 the matrix η′′

jk is defined such that only the
value of element jk of the matrix η′′

jk is 1, and 0 for all other
elements (both j and k run from 1 to n + 1). This creates
a two-dimensional set of matrices, where each element of
the set is a (n + 1) × (n + 1) matrix. Note that the η′′ are
also independent basis and can expand the coherency matrix.
However, they are not Hermitian and therefore the resulting
Stokes vector and Mueller matrix will be complex. To obtain
the desired Hermitian matrices for an nth-order process the
following relation can be used:

η′
jk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η′′
jk + η′′

kj , if j < k

i(η′′
jk − η′′

kj ), if j > k√
2

j 2+j

[(∑j

m=1 η′′
mm

) − jη′′
j+1,j+1

]
, if 1 � k = j < (n + 1)

√
2

n+1In+1, if j = k = (n + 1)

(A1)

where In+1 is the (n + 1) × (n + 1) identity matrix. In the
first case (when j < k) the new matrices η′

jk = η′′
jk + η′′

kj

are real valued; in the second case (when j > k) the new
matrices η′

jk = i(η′′
jk − η′′

kj ) are complex valued and have
similar nonzero elements as to their real-value counterparts in
the first case. In the third case (when 1 � j = k < n + 1), the
new matrices are diagonal and real valued. Finally, in the last
case an identity matrix is used. In step 2 the two-dimensional
η′ set is converted to a one-dimensional set of matrices [37]:
η′

jk → ηN .
These matrices satisfy all the requirements as desired for

expanding the coherency matrix for the nonlinear polarimetry.
In addition, the new matrices defined in Eq. (A1) ensure
that η obey Tr(ημην) = 2δμν . For linear polarimetry n =

2 and η corresponds to Pauli matrices. For second-order
process n = 3 and therefore the generated matrices are those
of Gell-Mann. For the case of three photon polarimetry
n = 4, and there are sixteen 4 × 4 matrices, which will
be shown in a separate manuscript [38], and so forth. A
useful relation between these matrices and Stokes-Mueller
formalism is the following: The real-valued η generate the
Stokes vector components that depend on linear polarization,
while the complex valued ones are responsible for circular
components. Also, the real-valued ones are in part responsible
for nonzero Mueller matrix elements, while the Mueller matrix
component constructed from a complex-valued η matrix
may be zero if the involved nonlinear susceptibilities are
real.
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