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Fock-space localization of polaritons in the Jaynes-Cummings dimer model
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We present a method to study the semiclassical dynamics of the Jaynes-Cummings dimer model, describing
two coupled cavities, each containing a two-level system (qubit). We develop a Fock-space WKB approach in the
polariton basis where each site is treated exactly while the intersite polariton hopping is treated semiclassically.
We show that the self-trapped states can be viewed as Fock-space localized states. We find that this picture
yields the correct critical value of interaction strength at which the delocalization-localization transition occurs.
Moreover, the validity of our WKB approach is supported by showing that the quantum spectrum can be derived
from a set of Bohr-Sommerfeld quantization conditions and by confirming that the quantum eigenstates are
consistent with the classical orbital motion in the polariton band picture. The underlying idea of our method is
quite general and can be applied to other interacting spin-boson models.
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I. INTRODUCTION

Interacting light-matter systems have opened new possibil-
ities in simulating various types of strongly correlated phases
ranging from the superfluid and Mott insulating states [1–14] to
the quantum Hall fluids [15–20]. The property that makes the
coupled light-matter systems unique compared to conventional
condensed matter systems is that they are equipped with optical
probes to manipulate arbitrary states, beyond the ground state,
as well as to monitor nonequilibrium dynamics. The strongly
correlated light-matter physics have been experimentally
realized in various implementations of cavity QED with atoms
[21,22], excitons [23–25], or superconducting qubits [26,27].
The building block of all these systems is the celebrated
Jaynes-Cummings (JC) model

HJC = νq

σ z

2
+ νca

†a + g(σ+a + a†σ−), (1.1)

which describes a two-level system (qubit) interacting with a
single mode of the electromagnetic field inside a cavity. The
qubit is characterized by the resonance frequency νq and the
pseudospin operators σ z, and σ± = (σx ± iσ y)/2. The cavity
field with frequency νc is described by the annihilation and
creation operators a and a†, which are linearly coupled to the
qubit via the coupling constant g. Throughout this paper, we
focus on the resonant case where νq = νc = ν. The cavity-
qubit coupling induces an anharmonicity in the spectrum of
the JC Hamiltonian that can be qualitatively regarded as an
effective interaction between photons. A tunnel-coupled array
of JC sites would then realize an ideal setup for strongly
correlated photons.

The Jaynes-Cummings dimer model (JCDM) is the sim-
plest, yet nontrivial, system to study interacting photons [28].
The model Hamiltonian

H = HJC,R + HJC,L − J (a†
RaL + a

†
LaR) (1.2)

describes two identical JC sites coupled through a tunneling
(kinetic) term in the photonic channels a and a†, where the sub-
script L (R) specifies the left (right) sites. As the cavity-qubit

*Deceased.

interaction is increased, the JCDM displays a transition from
a Josephson oscillating (delocalized) regime where photons
coherently tunnel between cavities to a self-trapped (localized)
regime where photons are frozen inside one cavity. A similar
transition caused by the Hubbard interaction has been studied
in a Bose-Einstein condensate double-well (BECDW) system
[29–34]. A theoretical study of this transition in JCDM was
originally done in the pioneering work of Schmidt et al. [28],
where a semiclassical picture and numerical exact solutions
were provided. They also proposed a superconducting circuit
implementation of the JCDM. This proposal was subsequently
realized experimentally and the transition was successfully
observed [35].

In this article we revisit the localization-delocalization
transition from a different point of view beyond just numerics.
We note that the JCDM conserves the total polariton number
N = nL + nR , where ns = σ+

s σ−
s + a

†
s as for s = L (R), left

(right) JC islands, i.e., [N,H ] = 0. We use this property to
develop an approach in the polariton basis where each JC site is
treated exactly while the hopping of polaritons between sites is
treated semiclassically. To this end, we introduce a Fock-space
picture in which the tunneling terms act like hopping operators
and map the Hamiltonian onto a one-dimensional tight-binding
model. The Schrödinger equation in this basis obeys a discrete
form and hence can be approximately solved by a discrete ver-
sion of the Wentzel-Kramers-Brillouin (WKB) approach [36].
Using our Fock-space representation, we show that the self-
trapping transition in the JCDM can be viewed as a localization
transition in Fock space [37]. This phenomenon has also been
discussed in the context of a BECDW [38,39]. In fact, we find
that the WKB approximation maps the JCDM into a four-band
one-dimensional tight-binding Hamiltonian. Each band looks
like a BECDW with a more complicated interaction. These
bands are associated with the four possible polariton states
of two JC sites: upper-upper, upper-lower, lower-upper, and
lower-lower polaritons. As we will see, the upper-upper and
lower-lower polariton bands are equivalent to a BECDW with
attractive and repulsive interactions, respectively.

Our article is organized as follows. In Sec. II we introduce
the Fock-space picture and find the wave functions in the
WKB limit. In Sec. III we derive a set of Bohr-Sommerfeld
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quantization conditions in the form of S(En) = ∮ p dq =
2πh(n + 1/2), which yields a quantized energy En in each
polariton band. The main results of the paper are in Sec. IV,
where we study the delocalization-localization transition using
the presented WKB picture. Finally, we discuss the conclu-
sions and possible applications of our methods in Sec. V.

II. FOCK-SPACE REPRESENTATION AND WKB
ANALYSIS

In this section we write the JCDM in the Fock space of
photons and show that the Hamiltonian is tridiagonal. Thus, it
can interpreted as a one-dimensional tight-binding model with
nonuniform nearest-neighbor hoppings. This representation
of the Hamiltonian is going to be the basis for the exact
diagonalization and the WKB analysis in the upcoming
sections.

As mentioned earlier, the total polariton number operator
N = nL + nR commutes with the Hamiltonian and we can
study this model in a subspace with a fixed N . The simplest
basis to span this subspace is a set of 4N orthonormal states
denoted by |nc,L,mL〉 ⊗ |nc,R,mR〉, which refers to a state
with nc,L (R) = a

†
L (R)aL (R) photons and mL (R) =↑ (↓), the up

(down) qubit on the left (right) site. The only constraint is
that the total polariton number must be N . Consequently, any
generic state can be decomposed into a superposition of these
states

|�〉 =
∑

A
nc,LmLnc,RmR

� |nc,L,mL〉 ⊗ |nc,R,mR〉.

The polariton imbalance of a state |�〉 is defined as the
expectation value of

Z = 〈�|(a†
LaL + σ+

L σ−
L ) − (a†

RaR + σ+
R σ−

R )|�〉 (2.1)

and the normalized imbalance is defined by x = Z/N . Note
that the integer Z ranges from −N to +N in increments of
2. In our WKB analysis the imbalance Z will play the role of
the position. We chose our basis in terms of the eigenstates of
imbalance operator |Z,mL,mR〉, where

|Z,↓,↓〉 = |(N + Z)/2,↓〉 ⊗ |(N − Z)/2,↓〉,
|Z,↓,↑〉 = |(N + Z)/2,↓〉 ⊗ |(N − Z)/2 − 1,↑〉,
|Z,↑,↓〉 = |(N + Z)/2 − 1,↑〉 ⊗ |(N − Z)/2,↓〉,
|Z,↑,↑〉 = |(N + Z)/2 − 1,↑〉 ⊗ |(N − Z)/2 − 1,↑〉,

(2.2)

provided |Z| < N . Note that for Z = ±N there are only two
states. In the absence of cavity-qubit coupling g, the states
|Z,mL,mR〉 are fourfold degenerate. This degeneracy is lifted
by g through the term

HZ = g
∑
mR

√
N + Z

2
(|Z,↑,mR〉〈Z,↓,mR| + H.c.)

+ g
∑
mL

√
N − Z

2
(|Z,mL,↑〉〈Z,mL,↓| + H.c.).

(2.3)

Therefore, for any fixed N the Hamiltonian in this basis can
be written as

H = −J

2

∑
Z,mL,mR

(
T

mLmR

Z,Z+2|Z,mL,mR〉〈Z + 2,mL,mR|

+ H.c.
)+

∑
Z

HZ, (2.4)

where the hopping terms are

T
↓↓
Z,Z+2 = [(N + Z + 2)(N − Z)]1/2,

T
↓↑
Z,Z+2 = [(N + Z + 2)(N − Z − 2)]1/2,

T
↑↓
Z,Z+2 = [(N + Z)(N − Z)]1/2,

T
↑↑
Z,Z+2 = [(N + Z)(N − Z − 2)]1/2

and the first two terms in Eq. (1.1) are dropped as their sum
is constant in the resonant case νc = νq . We represent wave
functions in terms of a four-component position-dependent
vector C(Z) = [C↓↓,C↓↑,C↑↓,C↑↑]T ,

|�〉 =
∑

Z,mL,mR

C
mLmR

(Z)|Z,mL,mR〉, (2.5)

and diagonalize the Hamiltonian in this basis. The spectral
map is then constructed by tracing out the spin degrees of
freedom as illustrated in Fig. 1; i.e., we compute |�(Z)|2 =∑

i |Ci(Z)|2 for every eigenstate and show it as a false color
map. The white regions correspond to the classically forbid-
den regime where the eigenstates have exponentially small
probability. The localization occurs when the semiclassical
description corresponds to a particle in a double well with
the two wells separated by a barrier that the particle has
to tunnel through. The statement of localization is that the
tunneling time from one half to the other is exponentially
large. For instance, for a small ratio of couplings g/J as
in Fig. 1 (top) there is no barrier and the localization does
not occur, whereas for larger couplings as in Fig. 1 (bottom)
a barrier (white regions) emerges over some energy ranges
and localization is possible. The two wells correspond to
the photons being mostly on one of the two JC sites. When
the barrier is present, the tunneling time to the other site is
exponentially large in N . The spectral map consists of four
bands and each band is associated with a certain polariton
configuration. We shall explain this in more detail after
deriving the WKB solution. The delocalization-localization
transition of the BECDW problem has also been studied in the
Fock-space representation [38–40]. The important difference
here is that the BECDW Hamiltonian can be formulated fully
in terms of the imbalance and the relative phase between
two condensates, whereas our JCDM has two qubits as extra
degrees of freedom that ultimately lead to four bands in the
Fock-space representation.

An important remark is that the above Hamiltonian (2.4)
possesses a Z2 (left-right) parity symmetry whose operator
P is defined as P|Z〉 = |−Z〉; thus, the eigenstates must
respect this symmetry too. This means that, strictly speaking,
there is no localized eigenstate and the localization is purely
a dynamical effect in the following sense: If the system is
prepared with some initial nonzero imbalance the dynamics
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FIG. 1. Eigenstates and spectrum on the JC dimer model. Color
represents the amplitude squared of the eigenstates in Z space defined
by Eq. (2.5). The horizontal axis is normalized imbalance x = Z/N ,
while the vertical axis is a scaled eigenenergy. Here g/J

√
2N = 1.0

(top) and 2.0 (bottom) and N = 400.

would still preserve this nonzero imbalance for a long time.
The time scale at which the imbalance changes sign is
divergent as a function of system size.

Let us now work out a semiclassical framework to study
the Hamiltonian in Eq. (2.4) in the large-N limit. To this end,
we divide the Schrödinger equation by N ,

i

N

∂|�〉
∂t

= H |�〉,

and bring the 1/N factor into the definition of H . Using the
basis introduced in Eq. (2.5), we define the effective Planck
constant h = 1/N and the position (normalized imbalance)
x = Z/N and rewrite the Schrödinger equation as

ih
∂

∂t
�(x,t) = W (x)�(x) − B(x + h)�(x + 2h)

−B(x − h)�(x − 2h), (2.6)

where �(x,t) is the continuum version of the four-component
vector C(Z) [Eq. (2.5)] and we introduce matrices

B(x) = J

2
diag{[(1 + x + h)(1 − x + h)]1/2,

[(1 + x + h)(1 − x − h)]1/2,

[(1 + x − h)(1 − x + h)]1/2, (2.7)

[(1 + x − h)(1 − x − h)]1/2},
W (x) = g′√1 + xσx ⊗ I2 + g′√1 − x I2 ⊗ σx,

where I2 is a 2 × 2 identity matrix and the rescaled coupling is
g′ = g√

2N
. Let us introduce the conjugate operator to position

p̂ such that [p̂,x] = −ih. So the Schrödinger equation can be
recast into its continuum version as

ih
∂

∂t
�(x,t) = W (x)�(x,t) − eip̂B(x)eip̂�(x,t)

− e−ip̂B(x)e−ip̂�(x,t).

The next step is to find a semiclassical ansatz for the wave
function. A comprehensive discussion of solving the discrete
Schrödinger equation in the semiclassical WKB limit can be
found in [36]. A similar many-body WKB approach has been
applied to the BECDW problem [41–43]. A brief review of
this procedure is provided in Appendix C. Before we apply
the WKB approach to the JCDM, it is essential to write down
the matrices in the polariton basis given by the modes

|�1〉 = |N (1 + x)/2,+〉 ⊗ |N (1 − x)/2,+〉,
|�2〉 = |N (1 + x)/2,+〉 ⊗ |N (1 − x)/2,−〉,
|�3〉 = |N (1 + x)/2,−〉 ⊗ |N (1 − x)/2,+〉,
|�4〉 = |N (1 + x)/2,−〉 ⊗ |N (1 − x)/2,−〉,

where |n,±〉 = (|n,↓〉 ± |n − 1,↑〉)/√2 are called upper
(lower) polariton states, which are eigenstates of the JC
Hamiltonian in Eq. (1.1),

HJC|n,±〉 = (ν n ± g
√

n)|n,±〉. (2.8)

In the rest of this paper we refer to the states |�1〉, . . . ,|�4〉
by calling them upper-upper (first), upper-lower (second),
lower-upper (third), and lower-lower (fourth) polariton states
or by noting their respective polariton index shown inside
parentheses. Using this basis, the JC interaction W (x) is
diagonal

W (x) = g′diag[Ap + Am,Ap − Am,− Ap + Am,

−Ap − Am],

where Am = √
1 − x and Ap = √

1 + x. A perturbative ex-
pansion of B(x) in powers of h is

B(x) = B(0)(x) + hB(1)(x) + · · · ,

where

B(0) = J

2

√
1 − x2 I4 (2.9)
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and

B(1)(x) = J

2
√

1 − x2

⎛
⎜⎜⎜⎝

0 x+1
2

1−x
2 0

x+1
2 0 0 1−x

2
1−x

2 0 0 x+1
2

0 1−x
2

x+1
2 0

⎞
⎟⎟⎟⎠. (2.10)

Note that in contrast to the BECDW problem, we have four
polariton modes. The wave function takes the form

�(x,t) =

⎛
⎜⎜⎜⎝

α1(x,t)e(i/h)S1(x,t)

α2(x,t)e(i/h)S2(x,t)

α3(x,t)e(i/h)S3(x,t)

α4(x,t)e(i/h)S4(x,t)

⎞
⎟⎟⎟⎠

for the Schrödinger equation H� = ih ∂
∂t

�. The real and
imaginary parts of the Schrödinger equation are straightfor-
ward to compute. Since W (x) and B(0)(x) are diagonal, we get
four decoupled equations at zeroth order in h,

−∂tSi = −2B
(0)
ii cos (2∂xSi) + Wii(x).

From the zeroth-order equations, we can define classical
Hamiltonians associated with each polariton mode

H1 = g′(
√

1 − x + √
1 + x) − J

√
1 − x2 cos 2ϕ1,

H2 = g′(−√
1 − x + √

1 + x) − J
√

1 − x2 cos 2ϕ2,

H3 = g′(
√

1 − x − √
1 + x) − J

√
1 − x2 cos 2ϕ3,

H4 = g′(−√
1 − x − √

1 + x) − J
√

1 − x2 cos 2ϕ4,

where at the classical level in each mode ϕi = ∂S
(0)
i

∂x
and x

are canonical variables such that their Poisson bracket is
{x,ϕ} = 1. The four phase variables introduced above emerge
from the original angle variables associated with qubit degrees
of freedom; however, the angles defining qubit states (say, in
the Bloch representation) are coupled to each other and have
enormous quantum fluctuations, while the emergent angle
variables in the present polariton basis are decoupled from
each other in the classical limit and have exponentially small
(in system size) fluctuations in the strong-coupling (large-g)
limit. We introduce the classical velocity

vi = ∂Hi

∂ϕi

= 4B
(0)
ii (x) sin 2ϕi. (2.11)

For each Hamiltonian, one can define the allowed region
for classical solution bound by two turning points where the
velocity vanishes at 2ϕi = 0 and π with V l

i and V h
i ,

V
l(h)

1 (x) = g′(
√

1 − x + √
1 + x) ± J

√
1 − x2,

V
l(h)

2 (x) = g′(−√
1 − x + √

1 + x) ± J
√

1 − x2,
(2.12)

V
l(h)

3 (x) = g′(
√

1 − x − √
1 + x) ± J

√
1 − x2,

V
l(h)

4 (x) = g′(−√
1 − x − √

1 + x) ± J
√

1 − x2,

and the classical motion is constrained to be within the hard
barriers defined by the above expressions. Figure 2 illustrates
the allowed region for each polariton mode. It is helpful to view
the JCDM in this basis as a quantum particle confined inside

(a)

x
−1 0 1

−(2g + J)

−g
√

2
−J

J
g
√

2

(2g + J)

(b)

x
−1 0 1

−(2g + J)

−g
√

2

−J

J

g
√

2

(2g + J)

FIG. 2. Classically allowed regions (white area) of different
polariton components for (a) J/g′ = 1 and (b) J/g′ = 1/2. The
classical potentials (2.12) of the first and fourth polariton bands are
shown in blue and those of the second and third bands are shown in
red.

the classically allowed region. In fact, the bounded regions
in Fig. 1 coincide with the classical potentials in Fig. 2 (see
also an illustration of wave functions in Fig. 3). Note that
in the weakly interacting limit [Fig. 2(a)], all bands overlap
and there is no gap (forbidden region) in the middle (i.e., no
localization), while a forbidden region appears in the strong
coupling [Fig. 2(b)].

We look for the stationary solution in form of ψi =
αi(x)e−(i/h)εt e(i/h)Si (x), where ψi is the ith polariton component
of �(x,t). Note that ε = E/N is the normalized energy, where
the original eigenvalues of the Hamiltonian is denoted by E.
In the parameter regime J/g′ � 2 − √

2, bands do not overlap
and the classical solutions in terms of energy ε can be found
easily [see Fig. 2(b)].

(i) g′√2 < ε < (2g′ + J ). Only the first polariton compo-
nent is allowed.

(ii) −g′√2 < ε < −J and J < ε < g′√2. Both second
and third polariton components are allowed. However, only
one component is allowed for each value of x. In other words,
they are not simultaneously nonzero over the same range of x.
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(a)

x
−1 0 1

−2g − J

−g
√

2

−2g + J

−0.2

0

0.2

Ψ
(x

)

−1 −0.5 0 0.5 1

−0.2

0

0.2

x

Ψ
(x

)

(b)

(c)

FIG. 3. (a) Classically allowed region for the lower-lower polari-
ton band. It is divided into the localized and delocalized regions. The
critical energy εc,4 = −2g′ + J (dash-dotted line) separates these two
regions. (b) Delocalized state ε < εc,4 and (c) localized state ε > εc,4.
The blue is exact diagonalization results and green is the WKB wave
function. Here J/g′ = 1/4 and N = 100.

(iii) |ε| < J . Both second and third polariton components
are allowed. There exists a common range of x in which both
components are nonzero.

(iv) −(2g′ + J ) < ε < −g′√2. Only the fourth polariton
component is allowed.

The WKB solution for the ith polariton mode in the
classically allowed regions is

ϕi = ∂xS
(0)
i = 1

2
arccos

(
ε − Wii(x)

−2B
(0)
ii (x)

)
(2.13)

and in the forbidden region it is

φi = ∂xQ
(0)
i = 1

2
cosh−1

(
ε − Wii(x)

−2B
(0)
ii (x)

)
, (2.14)

where we define Si(x) = iQi(x) to get an exponentially
growing or decaying wave function. We note that the solution

is oscillating in a classically allowed region, whereas it is
exponentially decaying in a forbidden region.

The first-order correction mixes different modes. For a
generic case, some modes are forbidden and some modes are
allowed, so one can write

∂xS
(1)
i =

∑
j B

(1)
ij (x)αj (x)e(i/h)(Sj −Si )cos

[
2∂xS

(0)
j (x)

]
2B

(0)
ii (x)αi(x)sin

[
2∂xS

(0)
i (x)

] .

(2.15)

It is important to keep in mind that for the classically forbidden
solutions S(0) is pure imaginary and sinusoidal functions must
be replaced by the hyperbolic functions.

III. BOUNDARY MATCHING AND
QUANTIZATION RULES

In this section we obtain quantization rules for the entire
energy spectrum in the strong-coupling regime. This is to
illustrate the usefulness of the semiclassical polariton band
picture to describe the quantum dynamics in terms of classical
orbits. For any given energy, one component is large and others
are exponentially small, except for the middle band, where both
second and third components are nonzero. As Fig. 4 shows,
the quantization rules agree with the quantum spectrum in all
regions as long as bands do not overlap or J/g′ < 2 − √

2. A

−2 −1 0 1 2
0

0.01

E
rr

or
 in

 W
K

B

/g

1.74 1.76−1.76 −1.74
0

0.05

0.1

E
rr

or
 in

 W
K

B

/g

(b)

(a)

FIG. 4. (a) Error in the Bohr-Sommerfeld quantization rules over
the entire quantum spectrum. Different symbols represent different
bands: blue circles are Eq. (3.1) and its analog for the upper-upper
band, green circles are Eq. (3.2) and its analog for the upper-upper
band, and red and black triangles are middle bands. The vertical
lines represent the following energy scales: red dashed, ε = ±(2g′ −
J ); black dotted, ε = ±g′√2; and green dash-dotted, ε = ±J .
(b) Zoomed figure around critical energies εc,4 = −2g′ + J (left) and
εc,1 = 2g′ − J (right). The red stars are the modified quantization
rules at the critical level given by Eq. (3.4) and its analog for the
upper-upper band; the other symbols are the same as in (a). Here
J/g′ = 1/4 and N = 400.
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detailed discussion of the validity of the WKB approximation
is provided in Appendix G. In short, the classical motion in
polariton bands is valid for a wide range of photon numbers
up to such small numbers as N = 6.

In order to derive the quantization rules, we write a standard
connection formula at each boundary between classically
allowed and forbidden regions; that is to match the WKB wave
functions with the exact solutions in the neighborhood of each
boundary (derived in Appendix D). For the remainder of this
section, we write down WKB wave functions for each band
and show that they completely match with the exact eigenstates
as a result of diagonalizing the Hamiltonian. We derive the
quantization rules as a function of energy and check that
they are consistent with the quantum spectrum. We only show
the resulting quantization rules for the lower-lower polariton
mode in the following; the derivation details can be found in
Appendix E. The same process can be carried out for other
modes, which leads to quite similar quantization conditions
(see Appendix F).

The lower-lower polariton band is defined for energies
−J − 2g′ � ε � −g′√2. This band is similar to a BECDW
with repulsive interaction. As shown in Fig. 3(a), there are three
regions in this band: (i) ε < J − 2g′, where the delocalized
wave functions center around x = 0 [Fig. 3(b)]; (ii) ε >

J − 2g′, where the localized wave functions form, in which
the probability density is maximum near the boundary points
x = ±1 separated by a barrier (classically forbidden region)
in the middle [Fig. 3(c)]; and (iii) the critical region close to
the bifurcation point εc,4 = J − 2g′, where the Schrödinger
equation will not be linear and as a result the quantization rule
will be different from the usual Bohr-Sommerfeld formulas.
Let us now discuss the quantization condition in these three
regions one by one.

(i) Delocalized states (ε < J − 2g′). The particle is con-
fined in a two-sided potential and the probability density is
large close to the center (x = 0). Given that the classically
allowed region is |x| < zl , where ±zl are turning points
ε = V l

4 (x = ±zl), the quantization condition in this case is
derived to be

1

h
�S4(ε) =

(
n + 1

2

)
π, (3.1)

where �S4 = ∫ zl

−zl
ϕ4(x) is the classical WKB phase and ϕ4(x)

is the canonical momentum in the fourth band given by
Eq. (2.13). As expected, this result is similar to the familiar
Bohr-Sommerfeld quantization for a particle confined in a
potential well [44]. Note that other modes contribute through
Eq. (2.14), which are exponentially small and are hence
neglected.

(ii) Localized states (J − 2g′ < ε < −g′√2). The potential
profile consists of two isolated classically allowed regions
close to x = ±1. Hence, there are two sets of turning points
zl and zh: One is bouncing off the ϕ4 = 0 potential, which
is similar to the previous case ε = V l

4 (x = zl), and the other
is bouncing off the 2ϕ4 = π potential, which is the solution
of ε = V h

4 (x = zh). Provided the classically allowed region is
zh < |x| < zl , the quantization rule is found to be

1

h
�S4(ε) = nπ ± 1

4
e−(1/h)�Q4(ε), (3.2)

where �S4 is to be integrated over the classically allowed
region and �Q4 is the WKB tunneling amplitude (see Ap-
pendix E for explicit expressions). Note that this condition is
similar to the usual Bohr-Sommerfeld except for the tunneling
term. The important message here is that the tunneling rate is
related to the energy splitting in the energy spectrum through

δε(split) = 1

2
e−(1/h)�Q4(ε)

∣∣∣∣d�S4

dε

∣∣∣∣
−1

, (3.3)

which is consistent with the quantum spectrum; i.e. for
energies in the range |ε| < 2g′ − J , there are pairs of eigen-
values that come exponentially close together as the system
size N = 1/h is increased. In the classical limit N → ∞,
tunneling is suppressed and we get pairs of fully localized
degenerate states. Figure 3 illustrates a few typical examples
that WKB solutions match well with the exact wave functions.

(iii) Critical region (ε ∼ J − 2g′). Consider a small devia-
tion λ � 1 from the critical energy ε = J − 2g′ + λ/N . The
quantization formula is derived to be

arg

[
e−(2i/h)�S4

√
2π

�(1/2 − iχ )
− eπχ/2

]
= nπ + π/2, (3.4)

where �S4 is calculated over the classical region, �(x) denotes
the Gamma function, and χ = λ/

√
2J (g′ − 2J ). Notice that

the quantization condition in this case is more complicated
than the standard Bohr-Sommerfeld quantization [Eq. (3.1)]
and as we show later, this leads to smaller level spacing and
a larger density of states near the critical levels compared to
regular regions in the spectrum. This form of the quantization
rule close to energy levels dividing localized and delocalized
states was originally found for the BECDW problem in
Ref. [43]. As shown therein, an immediate implication of
this formula is that the quantum break times, at which the
classical and quantum solutions start to differ, near critical
regions grow logarithmically with N instead of algebraically.
This conclusion also applies to our case at two critical regions
of the spectrum for upper-upper and lower-lower bands.

Figure 4 summarizes the main results of this section.
We plug in the quantum eigenvalues of the Hamltonian to
the quantization condition for the appropriate polariton band
determined by the location of the eigenvalue and subtract
the integer multiple of π from it. The difference is shown
as the defect of WKB quantization. It is evident in Fig. 4(a)
that the WKB error is quite small except for the critical energy
levels εc = ±(2g′ − J ). Close to critical levels, we must use
the modified Bohr-Sommerfeld quantization rules (3.4), as
shown in Fig. 4(b). In Appendix G we investigate the validity
of the polariton band picture by introducing a quantum-to-
classical correspondence based on the Husimi distribution.
Using the phase-space distribution to extract the classical
aspects of the Hamiltonian eigenstates, we show that the
properties associated with polariton bands remain valid up
to such small total polariton numbers as N = 6. We also
note that the quantization conditions start to fail as we go
to a weak-coupling regime where the polariton bands start
to overlap and higher-order corrections become important.
Nonetheless, the quantization conditions stay valid away from
the overlapping regions in the spectrum (see Fig. 13 in
Appendix G).
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IV. LOCALIZATION TRANSITION

Before we discuss the localization transition in the polariton
band picture, let us make a few remarks about the transition
in the classical limit of the JCDM. In Appendix A, using
a coherent-state path-integral formalism in the large-photon-
number and large-spin limit, we show that the classical
dynamics of the JCDM is described in an eight-dimensional
phase space, two for photons and two for spins per JC site.
The resulting equations of motion are found to be the same as
the factorization of Heisenberg equations. The critical value
of coupling gc, above which localization occurs, is found to
be dependent on initial spin configurations and its minimum
value is analytically derived to be gc = 2J

√
N . This is

the same as the quantum mechanical value for gc found
numerically [28,35] and analytically (as shown below). This
result is in contrast with the previous numerical analysis of
[28], gc ≈ 2.8J

√
N , where only dynamics in a reduced four-

dimensional phase space was studied. In the same reference
it was argued that the difference between the classical and
quantum values of gc is related to large quantum fluctuations.
However, we see that the difference is an artifact of only
considering part of the classical phase space, and taking into
account the full phase space resolves this issue.

Now let us turn to the polariton band picture. As we have
seen in the previous section, the localized states appear at
energies close to where the upper-upper or the lower-lower
polariton bands meet the middle bands. As Fig. 5 suggests,
the localization can be understood by studying the changes
in the curvature of the V l

1 (x) or V h
4 (x) curve. Here we

investigate the localization transition for the upper-upper
polariton band in this section. The result is exactly the same for
the lower-lower band. For the purely classical solution, where
the particle is bound to be in the allowed regions, one can easily
obtain the period of motion for a given trajectory T = ∮ dx/v1

and the average imbalance 〈x〉 = (1/T )
∮

x dx/v1, where the
velocity v1 is given by Eq. (2.11) in terms of the initial position
x0, where ε = V l

1 (x0). Figure 6 (top) shows the average im-

V
l 1
(x

)

x
−1 0 1

g
√

2

FIG. 5. Evolution of the minimum potential curve V l
1 (x) of upper-

upper band (2.12) as J/g′ is tuned up from top to bottom as shown by
the arrow. The maximum potential curve V h

4 (x) of the lower-lower
band is just the mirror image of these curves with respect to the
horizontal line ε = 0. The red (dash-dotted) curve for J/g′ = 2 − √

2
is the critical point at which the minimum moves from x = 0 to
x = ±1.

FIG. 6. Shown on top is the classical average imbalance (color
code) as a function of J/g′ for various initial conditions [ε = V l

1 (x0)].
The bottom shows the expectation value of the imbalance [Eq. (2.1)]
as the color code for the eigenstates of the Hamiltonian close to the
touching point between upper-upper and middle bands. The dashed
line is the classical phase boundary given by Eq. (4.1).

balance for various values of the J/g′. The phase boundary is
given by

g

J
√

2N
=
⎛
⎝1 −

√
1 − x2

0

2x2
0

⎞
⎠

−1/2

. (4.1)

Interestingly, the critical value for x0 → 1 becomes gc/J =
2
√

N precisely the same as the exact quantum simulations in
[28,35]. The phase boundary in Eq. (4.1) above is derived as
follows: As we see in Fig. 5, for coupling strengths in the range
1/2 < J/g′ < 1/

√
2, there always exists a local maximum at

xm(J/g′) = {]4(J/g′)2 − 1]/4(J/g′)4}1/2. This gives rise to
a barrier for the bound states confined within xm � x � 1.
Therefore, the initial condition determines whether the particle
is localized or not by being greater or smaller than xm; hence
x0 = xm(J/g′) gives the expression for the boundary between
localized and delocalized states in Eq. (4.1). Moreover, when

013845-7



HASSAN SHAPOURIAN AND DARIUS SADRI PHYSICAL REVIEW A 93, 013845 (2016)

−2 0 2
0

50

100

/g

D
O

S

−2 0 2
0

50

100

/g

D
O

S

−2 0 2
0

50

100

/g

D
O

S

−100 0 100
0

50

100

/g

D
O

S

(c)

(a) (b)

(d)

FIG. 7. Density of states for different values of coupling g: (a)
J/g′ = 100, (b) J/g′ = 1, (c) J/g′ = 0.5, and (d) J/g′ = 0.25. The
vertical lines are explained in the caption of Fig. 4.

J/g′ � 1/2 the maximum occurs at x = 0 and any initial
condition with energies g′√2 < ε < −J + 2g′ is classically
localized.

Let us compare the above result with the quantum spectrum.
At the quantum level, we can study the localization of
eigenstates after adding an infinitesimal symmetry-breaking
term

Himb = ε(nL − nR),

where nL (R) is polariton number on the left (right) site. In
order to compare the quantum results with their classical
counterparts, we define an equivalent classical trajectory for a
given eigenstate of energy εn with initial position εn = V l

1 (xn0).
A comparison with the classical phase boundary is illustrated
in Fig. 6 (bottom). For any value of J/g′, each eigenstate
is represented by a point whose horizontal position is xn0

and whose color reflects the quantum expectation value of
imbalance defined in Eq. (2.1). In this figure we draw the
classical phase boundary using the criterion whether xn0

is greater or smaller than xm. The agreement between the
quantum results and classical picture in polariton bands is
quite remarkable.

A signature of the delocalization-localization transition
may also be illustrated as changes in the density of states
(DOS) (see Fig. 7). In the weakly interacting limit g � J , the
system is linear and the DOS is completely uniform [Fig. 7(a)].
As the coupling g is increased, anharmonicities emerge in the
DOS and eigenvalues start to accumulate near two critical
levels εc,1 = 2g′ − J and εc,4 = −2g′ + J [Fig. 7(b)]. As we
continue increasing the ratio g/J [Fig. 7(c)], more eigenvalues
are depleted at two regions near touching points of the first and
fourth bands with the middle bands, where ε = ±g′√2, and
eventually a gap opens in the DOS [Fig. 7(d)]. Using our WKB
quantization conditions near the critical levels (3.4), it is easy
to see that the DOS in this region is indeed logarithmically
diverging in the system size (total polariton number). The level
spacing can be generically computed from the quantization

condition through

δε = εn − εn−1 � π

N

(
d�S

dε

)−1

.

Away from the critical levels, the spectrum is harmonic and
the density of states is uniform D(ε) ∼ 1/δε ∼ N . Near the
critical points ε = εc,i + λ/N we have d�S/dε ∼ S(1) ∼
ln N (see Appendix E for details) and the DOS scales as
D(ε) ∼ N ln N , which is greater than the regular DOS by
a factor of ln N . The fact that δε ∼ 1/N ln N also implies
that the quantum break times, the time scale at which the
quantum and classical dynamics start to differ [43], scale
logarithmically with N . This result is also consistent with
the N th-order degenerate perturbation theory for the energy
splitting, discussed in [28], which gives a long-time frequency
of � ∼ J (J/g)N−1 for quantum oscillations, the characteristic
time of which scales logarithmically with N .

The anharmonicity observed in the DOS is translated
into a chaotic behavior at the classical level (see Fig. 10 in
Appendix B). At the quantum level, the signatures of quantum
chaos can be characterized further in terms of level statistics
and the Brody parameter [45,46]. This quantum-to-classical
correspondence of the JCDM is beyond the scope of the
present paper. A recent work [47] studies this behavior for
a BEC system where one must consider at least three sites
(trimer) to make the system nonintegrable at the classical level.
Remarkably for JC systems, a two-site (dimer) model would
be sufficient for classical nonintegrability due to extra degrees
of freedom added by qubits.

V. DISCUSSION

In summary, we have developed a technique to study the
delocalization-localization transition in the Jaynes-Cummings
dimer model. In this method we introduced an effective
one-dimensional tight-binding model (polariton basis) for this
system and treated each site exactly, while we treated the in-
tersite polariton hopping semiclassically. In order to construct
the polariton basis, we wrote the Fock-space representation for
the JCDM where the Schrödinger equation is mapped onto a
discrete equation. The continuum approximation can be made
for large system sizes (total polariton numbers) and the JCDM
can be viewed as a moving particle confined in a potential
well, details of which are determined by the cavity-qubit
interactions. The localization in this picture is equivalent to
the existence of localized wave functions near the band edges.
We also presented another view for the localization transition
in terms of a gap opening in the density of states. We have
found that the critical coupling for the transition is the same
in both quantum-mechanical and fully classical calculations,
which resolves the issue raised by Ref. [28]. Furthermore, we
employed a WKB approximation in this picture to derive a
set of Bohr-Sommerfeld quantization conditions for the entire
energy spectrum in the strong-coupling regime. We showed
that the quantization rules match with the eigenvalues of the
Hamiltonian.

The presented method is quite general and can be ap-
plied to a variety of models including interactions between
spins and bosonic fields. The usual classical limit of these
models in the large-spin and large-photon-number limit could

013845-8



FOCK-SPACE LOCALIZATION OF POLARITONS IN THE . . . PHYSICAL REVIEW A 93, 013845 (2016)

involve some difficulties if one wants to include higher-order
fluctuations due to nonlinear terms for a spin path integral
(see Appendix A). Remarkably, our method gets around this
difficulty by expanding around a different classical limit,
namely, polariton bands. The polariton band picture remains
valid even at small photon numbers. In particular, this method
can be generalized to other interesting systems where the exact
treatment of spin-1/2 is essential, such as the Rabi model, the
driven-dissipative JC model, the multimode JC model, and the
Dicke model. Moreover, the equations of motion can be used
to study quench dynamics of these models. A recent work
[48] has developed a similar semiclassical approach to study
the dynamical transitions due to quench dynamics in various
models including the Dicke model.

Our focus in this article has been the dynamical properties
of the JCDM as a closed system. It is worth noting that the
experimental setup [35] is an open system where photons can
escape from the cavities and the qubits may relax and decohere
over time. The experimental finding for the critical coupling,
however, is different from the theoretical treatments for the
closed system. This difference still remains an open question.
In order to accommodate the dissipation due to environment, it
is straightforward to generalize the classical limit of the JCDM
for open systems using various nonequilibrium path-integral
formalisms originally developed by Kadanoff and Baym [49]
or Keldysh [50]. Along these lines, Mandt et al. [51] recently
studied the dissipative JCDM by mapping the dynamics onto
a set of Fokker-Planck equations in terms of photon and
spin coherent states in the positive-P representation. They
have shown that this method can qualitatively reproduce the
experimental measurements. They also considered a driven-
dissipative JCDM, where it was argued that the suppression
of the steady-state tunneling current is a manifestation of
the localization transition. It is important to note that the
calculations of Ref. [51] have been done for spin coherent
states, which can only be justified for large spins. As we have
seen here, treating qubits as spin 1/2 is quite crucial and only
this way can one obtain the full picture. Hence, one interesting
future direction is how to generalize the polariton bands to
capture the dynamics of an open JCDM.

Note added in proof. This work was initiated by Darius
Sadri and has benefited immensely from his ideas. Doctor
Sadri tragically passed away before the work was completed.
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APPENDIX A: CLASSICAL DYNAMICS AND THE
LOCALIZATION TRANSITION

In this appendix we use the standard coherent-state path-
integral formulation of quantum mechanics [52,53] and write
down a classical action for the JCDM. We derive the classical
equations of motion and obtain the localization transition after

FIG. 8. Bloch representation of spin coherent state.

making an analogy with a driven pendulum. In Appendix B
we visualize the time evolution in the phase space using
the Poincaré sections and show that the nonlinear dynamics
governed by the classical equations leads to chaos. The semi-
classical picture derived in [28] is based on fully factorizing
expectation values of products of the photon and the qubit
operators in Heisenberg equations of motion. Although this
type of factorization is quite customary in the study of JC-based
models, there is no physical intuition to what the underlying
assumptions are and it is not clear how one can systematically
improve this process by including new terms.

The dynamics of the JCDM with spin S can be described in
terms of the action in the real-time coherent-state path-integral
formalism

S =
∑

s=L,R

Ss
JC[ns ,ψ̄s,ψs] + St [ψ,ψ̄],

where the tunneling term becomes

St [ψL/R,ψ̄L/R] = J

∫
dt(ψ̄RψL + ψ̄LψR) (A1)

and the JC action is

SJC[n,ψ̄,ψ] = SB[n,ψ̄,ψ] −
∫

dt(Sn · B + νcψ̄ψ), (A2)

in which

B(t) = νq ẑ + ig(ψ − ψ̄)ŷ + g(ψ + ψ̄)x̂. (A3)

Here ψ̄ and ψ are complex fields representing the photon fields
and the spin coherent state is defined in terms of the Bloch state
|n〉 defined in the coordinate system (x̂,ŷ,ẑ) such that

〈n|Ŝ|n〉 = Sn,

where n is a unit vector (see Fig. 8) spanning the Bloch sphere
and Ŝ on the left-hand side is the spin-S operator while S on
the right-hand side (RHS) denotes the number S. For qubits,
we have S = 1/2. The first term in the action (A2) is the Berry
phase contribution

SB[n,ψ̄,ψ] =
∫

dt[ψ̄∂tψ + S〈n|∂t |n〉].

It is important to note that the spin part of the above action is
always imaginary even in the imaginary-time formalism and
this signals the fact that this term is topological. Indeed, this
term is equal to the area on the Bloch sphere enclosed by the
path traveled by the Bloch vector and can be written as

〈n|∂t |n〉 =
∫ 1

0
dτ n(t,τ ) · [∂tn(t,τ ) × ∂τ n(t,τ )] (A4)
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at which τ is a parameter to define the area on the Bloch sphere
such that

n(t,0) = n(t), n(t,1) = n0.

Here n0 = ẑ is the spin quantization direction. In the limits
N → ∞ and S → ∞, the dynamics is described by the
stationary solutions of the action

∂tns = Bs(t) × ns

for the qubit and

i∂tψs = νcψs + gS[ns,x − ins,y] − Jψs̄

for the photon field. Note that the Heisenberg equations of
motion for the JCDM Hamiltonian in Eq. (1.2) are

∂t Ŝs,k = i[H,Ŝs,k] = (Bs × Ŝs)k,

i∂t âs = i[H,âs] = νcâs + g[Ŝx − iŜy],

where B is defined in Eq. (A3) and the additional subscript k

denotes the kth component of a vector. The classical equations
of motion are equivalent to factorizing approximation of the
expectation values of quantum operators, i.e.,

∂t 〈Ŝ〉 ≈ 〈B〉 × 〈Ŝ〉,
where 〈· · · 〉 denotes the expectation value over the initial state
and we make the following identifications: 〈a〉 = ψ and 〈Ŝ〉 =
Sn.

It is more convenient to represent spin in the spherical
coordinate system n = (sin θ cos φ, sin θ sin φ, − cos θ ), as in
Fig. 8, and to split the cavity fields into their real and imaginary
parts ψs = Rs + iIs . Using this parametrization, the equations
of motion become

φ̇s = −νq − 2g(Rs cos φs − Is sin φs)cotθs, (A5a)

θ̇s = 2g(Rs sin φs + Is cos φs) (A5b)

for the spin and

Ṙs = νcIs − gS sin θs sin φs − JIs̄, (A5c)

İs = −νcRs − gS sin θs cos φs + JRs̄ (A5d)

for the cavity fields, where s = L,R and its opposite s̄ = R,L.
Here our focus is the resonant case where νq = νc and the free
dynamics of the spin and photon field can be removed in the
rotating frame.

The classical dynamics of the JCDM takes place in an
eight-dimensional phase space. In order to find a lower
bound on the critical value of g/J where the delocalization-
localization transition occurs, we approach the critical point
from the localized side. In the localized phase, we start with all
polaritons on the left cavity and we can assume ψL(t) ≈ √

N

and ψR(t) ≈ 0 in all times. This is a plausible assumption
as long as N � S. So the dynamics in the rotating frame
simplifies into

ṘL = −gS sin θL sin φL, (A6a)

ṘR = −gS sin θR sin φR, (A6b)

İL = −gS sin θL cos φL, (A6c)

İR = −gS sin θR cos φR + J
√

N, (A6d)

where only the fourth equation couples the two JC islands.
This equation describes a motion subject to an external drive
F = J

√
N . Depending on the ratio η = gS/J

√
N , the sign

of the RHS may be allowed to change over time or not. These
two modes of motion correspond to delocalized and localized
phases. If η < 1, the RHS of Eq. (A6d) always remains positive
and the right (empty) cavity absorbs more and more energy.
Therefore, excitations can be fully transferred to the empty
cavity and this process continues repeatedly. However, if there
exists a turning point at which the RHS of Eq. (A6d) vanishes
(i.e., η sin θ0 cos φ0 = 1), there exist initial conditions such
that the RHS oscillates between positive and negative values.
In other words, the motion goes in and out of phase with the
driving force and the averaged energy absorbed by the empty
cavity becomes zero. In this case, the time-averaged transferred
excitations is zero and the system is in the localized phase.
Thus, the critical value is defined as the boundary between
these two limits, ηc = 1. So the lowest value of the coupling
ratio g/J to get a localized phase is given by

g(cl)
c

J
= 1

S

√
N. (A7)

After substituting S = 1/2, we see that this result is the same
as the quantum simulations [28,35] as well as the WKB picture
studied in this article. However, this is different from the
previous numerical analysis of the semiclassical factorized
Heisenberg equations of motion [28], where the critical ratio is
found to be g/J ≈ 2

√
2N , which is off by a factor of

√
2 from

the exact quantum dynamics. This contrast is because Ref. [28]
only considered the initial condition with both qubits down and
ignored the fact that the critical ratio g/J actually depends on
the initial states of qubits. Figure 9 illustrates this dependence
explicitly. As we see in this plot, the phase boundary in terms
of g/J

√
N starts around 2

√
2 � 2.8, the same as Ref. [28],

but reaches a minimum at 2 for θR = π/2. Hence, the classical
dynamics (i.e., the dynamics in the limit N � S � 1) implies

θR(t = 0)/π
0 0.25 0.5 0.75 1

g
(c

l)
c

/J
√

N

2

2.4

2.8

Delocalized

Localized

FIG. 9. Classical critical ratio g/J as a function of initial config-
uration for the spin. Here the dynamics is given by Eqs. (A5a)–(A5d)
and the other spin angles are initially fixed at θL(0) = φL(0) = 0. The
green curve is given by Eq. (A9), based on analogy to the pendulum,
and the blue circles are the critical boundary obtained numerically
after calculating the long-time averaged imbalance. We set S = 1/2.
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that the minimum value of g required to obtain self-trapping
is given by Eq. (A7).

Few remarks regarding Fig. 9 are in order. First, note
that our analysis of the critical coupling for arbitrary initial
spin configurations is based on the dynamics described by
Eqs. (A6a)–(A6d), where the initial state of the left qubits
θL and φL corresponding to the fully populated JC site
does not make any significant change and hence is fixed at
θL(0) = φL(0) = 0. Second, since we are looking for a lower
bound on the critical ratio g/J , we choose φR(0) = 0 to
maximize the coefficient multiplying g in the first term on the
RHS of Eq. (A6d). Given these initial conditions, the dynamics
of IR and θR can be combined into a single equation

θ̇2
R

2
= 2g2S[cos θR − cos θR(0)] + 2Jg

√
N [θR − θR(0)],

(A8)

where the initial conditions are θR(0) �= 0 and θ̇R(0) = 0.
The second initial condition means that the qubit has no
initial kinetic energy, which is a physical assumption. The
above equation is reminiscent of a pendulum moving under
gravity (described by the angle θR) and subject to a constant
torque τ = 2Jg

√
N . It is easier to understand the localization

transition using the pendulum analogy. The pendulum may
do a full rotation (delocalized) or only oscillate with a small
amplitude (localized). In the oscillatory mode the motion is
bound by the turning points at which θ̇R = 0. So the existence
of turning points can be used to determine the boundary
between localized and delocalized dynamics. The critical value
can then be written as g(cl)

c /2J
√

N = 1/ sin θ0, where θ0 is the
nonzero solution of

sin θ0 + cos θ0 − cos θR(0)

θ0 − θR(0)
= 0. (A9)

Notice that the critical ratio for θR(0) � π/2 is simplified
into g(cl)

c /2J
√

N = 1/ sin θR(0) as expected from setting the
RHS of Eq. (A6d) equal to zero. However, for θR(0) < π/2,
Eq. (A9) gives a lower critical value than the more strict
condition g(cl)

c /2J
√

N = 1/ sin θR(0). This means that the spin
dynamics must be considered fully along with the cavity field
dynamics to yield the correct critical value. Finally, we confirm
our analysis by numerically simulating the full nonlinear
classical dynamics (shown as blue circles in Fig. 9) and taking
the averaged imbalance as an order parameter to determine
the phase boundary between localized and delocalized phases.
Note that in numerics we only set the initial condition for the
left spin θL(0) = φL(0) = 0.

Let us now briefly discuss how one can include next-order
fluctuations in this formalism and why such a program involves
some complications. We use qi (i = 1–8) to collectively denote
the canonical variables of the JCDM. The action for small
fluctuations around the classical trajectory qi(t) = q

(cl)
i (t) +

ri(t) can be approximated by

S[q] ≈ S[q(cl)] + 1

2

∫
dt ′
∫

dt ′′ri(t
′)Gij (t ′,t ′′)rj (t ′′) + · · · ,

where the classical solutions satisfy the stationary condition
δS/δq

(cl)
i = 0 and the Green’s function is defined by

Gij (t ′,t ′′) = δ2S[q]

δqi(t ′)δqj (t ′′)

∣∣∣∣
qi=q

(cl)
i

.

The difficulty in calculating the Green’s function is due to the
Berry phase term for spins in Eq. (A4), which is not quadratic
and causes Gij (t ′,t ′′) to explicitly depend on the time variables
t ′ and t ′′ during a trajectory. Therefore, finding the Green’s
function for an arbitrary trajectory is generically a difficult task
especially since there is no close solution to Eqs. (A5a)–(A5d).
This process can however be done numerically.

The coupling to the qubit not only induces a nonlinearity
that leads to the localization, but also enlarges the phase space
available to the system by adding more degrees of freedom.
Unlike the BECDW [54], the JCDM is not integrable for
nonzero coupling. The study of chaos in the JCDM is beyond
the scope of the present paper.

APPENDIX B: CLASSICAL CHAOS AND THE
KOLMOGOROV-ARNOLD-MOSER THEOREM

As mentioned in Appendix A, the nonlinearity due to
coupling to the qubit may lead to chaos at the classical level.
When g = 0, our system is (Liouville) integrable [55]; periodic
or quasiperiodic motion then occurs on invariant tori with
angles as variables and different tori labeled by conserved
action

Ii = 1

2π

∮
γi

p · dq. (B1)

The Kolmogorov-Arnold-Moser theorem states that as a
nonlinear perturbation is introduced, the rational (resonant or
periodic) tori are destroyed and the quasiperiodic ones are
deformed. As the interaction is increased, only sufficiently
irrational tori continue to survive, those that do form a Cantor
set. Let us now visualize this behavior in our system. We use
the restricted dynamics to construct Poincaré sections. For
certain initial conditions, the dynamics is restricted to a four-
dimensional subspace. In this construction a four-dimensional
phase space gives rise to a three-dimensional fixed energy
surface. To construct the Poincaré section, one follows the
dynamics and records the state of the system when one of the
degrees of freedom, called a periodic variable, reaches a certain
value. This specifies a point in the two-dimensional plane
corresponding to the other degrees of freedom. The section
is then filled in by sampling initial conditions on the fixed
energy surface and following the dynamics for each initial
state for a long time.

An example of such sections is given in Fig. 10 for various
values of g/J . Here the initial conditions are taken as IL =
RR = 0, φL = π/2, and φR = 0 such that the dynamics is
restricted to a four-dimensional subspace. This choice leads
to a set of four coupled equations, which preserve this choice.
This submanifold contains the dynamics corresponding to an
initial condition with perfect imbalance (e.g., Z ≡ nL − nR =
N for RL = √

N and IR = 0 at t = 0). The reduced equations
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FIG. 10. Poincaré sections for various values of g/2J
√

N . (a)–
(d) Three-dimensional diagrams showing explicitly one of spin
angles. (e)–(h) Two-dimensional diagrams [equivalent to the red
sections of (a)–(d), respectively] using the polar coordinates (r,α) =
[
√

(R2
L + I 2

R)/N, tan−1(IR/RL)]. From top to bottom g/2J
√

N =
0.088, 0.311, 0.442, and 1.41.

of motion are then

θ̇L = 2gRL, (B2a)

θ̇R = 2gIR, (B2b)

ṘL = −gS sin θL − JIR, (B2c)

İR = −gS sin θR + JRL, (B2d)

together with

ṘR = İL = φ̇L = φ̇R = 0. (B3)

In this four-dimensional subspace the tunneling potential in
Eq. (A1) is identically zero, which means the energy associated
with this subspace is independent of the hopping amplitude J .
In Fig. 10 the periodic variable is chosen to be θL(t) (with
2π period) and the other two variables are the cavity fields
RL(t) and IR(t). As we see, for sufficiently small values of
g/J as in Figs. 10(a) and 10(e) the motion is periodic, while it
becomes more and more chaotic as the ratio g/J is increased.
Nevertheless, there are few surviving quasiperiodic orbits for
intermediate interactions.

Interestingly, the restricted equations of motion we study
for classical chaos are identical to the classical equations of
motion for electrons moving in a two-dimensional periodic
potential subject to an external magnetic field. This system
has been previously studied [56] and is known to display
a variety of ballistic one-dimensional and two-dimensional
normal diffusive and anomalous diffusive transport, related to
the chaotic behavior.

APPENDIX C: REVIEW OF THE BOSE-EINSTEIN
CONDENSATE DOUBLE-WELL PROBLEM

The BECDW system is considerably simpler than the
JCDM as there is no spin degrees of freedom. The Schrödinger
equation has the same form as in Eq. (2.6) with two differences
that the hopping term is B(x) = J/2

√
(1 + x + h)(1 − x + h)

and the nonlinearity is explicit in the potential energy term
W (x) = γ x2 + εx, where γ is the interaction strength and ε

is an ad hoc term to break the left-right parity symmetry. We
choose the ansatz �(x,t) = α(x,t)e(i/h)S(x,t) with a real-valued
phase and amplitude. The real and imaginary parts of the
Schrödinger equation up to first order in h are found to be

− ∂tS = −2B0 cos(2∂xS) + W (x) − 2hB1 cos(2∂xS),

−∂tα = 4αB0 cos(2∂xS)∂2
xS + 2(αB ′

0 + 2α′B0) sin(2∂xS),

(C1)

where

B0(x) = J

2

√
1 − x2, B1(x) = J

2

1√
1 − x2

.

In order to identify the Hamiltonian and the canonical
momentum, we use the Hamilton-Jacobi equations

H = −∂tS, ϕ = ∂xS.

So the Hamiltonian can be written as

H = −2B0(x) cos(2ϕ) + W (x) + WQ(x),

where all quantum corrections to the classical limit are put into
the so-called quantum potential [44],

WQ(x,ϕ) = −2hB1(x) cos(2ϕ) + O(h2).
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We introduce the classical velocity

v = ∂H

∂ϕ
= 4B0(x) sin 2ϕ,

hence, the second identity in Eq. (C1) can be rewritten in terms
of the probability density P = α2 as

∂tP + ∂x(Pv) = 0,

which is the continuity equation. Now that the Hamiltonian
is determined, one can solve for the stationary solutions
�(x,t) = α(x)e−(i/h)εt e(i/h)S(x), where S(x) is expanded in
powers of h,

S(x) = S(0)(x) + hS(1)(x) + O(h2),

thus, the canonical momentum can be also expanded as

ϕ = ∂xS = ϕ(0) + hϕ(1) + O(h2).

Next we can solve for phase-space trajectories with a fixed
energy ε by plugging this expansion into the Hamiltonian

ε = −2B0 cos(2ϕ(0) + 2hϕ(1)) + W (x) + WQ(x,ϕ(0)).

At zeroth order we get

ϕ(0)(x) = 1

2
arccos

(
ε − W (x)

−2B0(x)

)
and the first-order correction would be

ϕ(1) = B1(x)

2B0(x)

cos[2ϕ(0)(x)]

sin[2ϕ(0)(x)]

= − 1

2(1 − x2)

ε − W (x)

{J (1 − x2) − [ε − W (x)]2}1/2
.

Using these results, quantization rules can be found accord-
ingly [43].

APPENDIX D: EXACT SOLUTIONS OF THE
SCHRÖDINGER EQUATION NEAR BOUNDARIES

Here we briefly discuss the exact solutions at the boundaries
we encounter in JCDM polariton bands. Except for the critical
region, which will be explained at the end, the linearized
Schrödinger equation around the classical turning point x =
zα + ξ up to O(h2) corrections can be easily shown to be

∂2
ξ ψi − βα∂ξψi − ci,αγαξ ψi ≈ 0, (D1)

where zα is the turning point that is the solution to ε = V α
i (zα),

in which α = l,h refers to the stationary points with ϕi =
0,π/2, respectively, and

βα = zα

1 − z2
α

, γα =
√

1 − z2
α

2h2J
|∂xV

α
i (zα)|.

Here a sign coefficient ci,α is introduced to be ±1 when ξ > 0
is classically forbidden (allowed). The turning point is given
by the general expression

|zα| = 1

J 2
[(ε2 + J 2 − 2g′2)J 2 − 2(g′2 ∓ εJ )2

+ 2|g′2 ∓ εJ |
√

g′2 + 2J 2 ∓ 2εJ ]1/2. (D2)

where the ± signs are both accepted only if there are four
turning points on both inner and outer boundaries. The

solution of the linearized differential equation can be written
analytically in terms of the Airy functions

ψi = eβαξ/2[CaAi
(
ci,αγ 1/3

α ξ̃
)+ CbBi

(
ci,αγ 1/3

α ξ̃
)]

,

where ξ̃ = ξ + ci,α β2
α/4γα . It is important to note that

in deriving the above equation near the turning point at
which ϕi → π/2, the wave function is oscillating so fast
ψi ∝ eiπx/2h; hence, we write down the linearized Schrödinger
equation for the slowly varying part of the actual wave function
by multiplying the wave function by e−iπx/2h to cancel the
oscillating factors.

In the case of upper-upper or lower-lower bands, there is
a critical region, near energy εc,1 = 2g′ − J or εc,4 = −2g′ +
J , respectively, between the localized and delocalized states
where the potential term V l

1 (x) or V h
4 (x) is extremum at the

turning point x = 0. This situation requires a separate analysis
as the exact solution is no longer the Airy functions and the
quantization condition will be different from the usual Bohr-
Sommerfeld quantization. Near the critical level, energy can be
written as ε = εc,k + λ/N , where the expanded Schrödinger
equation near x = 0 + ξ is simplified into

∂2
ξ ψk − ξ ∂ξψk + ck

2Jh2

[
e − λh + ξ 2

2

(
g′

2
− J

)]
ψk ≈ 0,

(D3)

in which the sign coefficient ck is c1 = −1 for the upper-upper
component or c4 = 1 for the lower-lower component. Note
that this is not a linear differential equation [as opposed to the
regular boundary in Eq. (D1)] and the corresponding solutions
are parabolic cylinder functions instead of Airy functions
[43,57],

ψk = eξ 2/4 [CaDiχ−1/2(cke
iπ/4ξ

√
μ/h)

+CbDiχ−1/2(cke
−i3π/4ξ

√
μ/h)],

where we neglect the terms of order unity compared to 1/h

and

μ =
√

g′

2J
− 1, χ = λ

2μJ
. (D4)

APPENDIX E: DERIVATION OF QUANTIZATION
CONDITIONS FOR THE LOWER-LOWER BAND

Here we explicitly show how to derive the quantization
rules for lower-lower polaritons.

(i) Delocalized states ε < J − 2g′. Here the particle is
confined in a two-sided potential. Since the classically allowed
region is defined between two turning points |x| < zl , the
WKB wave function [Fig. 3(b)] would simply be

ψ4(x) =

⎧⎪⎨
⎪⎩

α4(x)(C+e(i/h)S4(x) + C−e−(i/h)S4(x)), |x| < zl

α4(x)C ′
−e−(1/h)Q4(x), x > zl

α4(x)C ′
+e(1/h)Q4(x), x < −zl

(E1)

and the other modes are described by

ψ2(x) = α2(x)e−(1/h)Q2(x),

ψ3(x) = α3(x)e(1/h)Q3(x).
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The above modes will add a correction of order h to the wave-
function exponents in Eq. (E1) through Eq. (2.14); however,
these terms are exponentially small and will be neglected.
Matching the WKB wave function with the Airy functions at
x = ±zl leads to the connection formulas

i
C−
C+

= e(2i/h)�S4 , Cb = 0,

where �S4 = ∫ zl

0 ϕ4dx. Similarly, one can derive the connec-
tion formula for x = −zl + ξ ,

i
C+
C−

= e(2i/h)�S4 .

Thus, we get 4
h
�S4 = (2n + 1)π , which means

1

h

∫ zl

−zl

ϕ4(x)dx =
(

n + 1

2

)
π. (E2)

This is similar to the familiar Bohr-Sommerfeld quantization
for a particle confined in a potential well [44].

(ii) Localized states J − 2g′ < ε < −g′√2. The potential
profile consists of two isolated classically allowed regions
close to x = ±1. Hence, there are two sets of turning points
zl and zh: One is bouncing off the ϕ4 = 0 potential, which
is similar to the previous case ε = V l

4 (x = zl), and the other
is bouncing off the 2ϕ4 = π potential, which is the solution
of ε = V h

4 (x = zh). Provided the classically allowed region is
zh < |x| < zl , the WKB wave function [Fig. 3(c)] would be

ψ4(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α4(x)C ′
−e−(1/h)Q4(x), x > zl

α4(x)(CR,+e(i/h)S4(x) + CR,−e−(i/h)S4(x)), zh < x < zl

α4(x)(C ′′
+e(1/h)Q4(x) + C ′′

−e−(1/h)Q4(x)), |x| < zh

α4(x)(CL,+e(i/h)S4(x) + CL,−e−(i/h)S4(x)), −zl < x < −zh

α4(x)C ′
+e(1/h)Q4(x), x < −zl.

Close to |x| = zl the connection formula is the same as the
previous case

i
CR,−
CR,+

= e(2i/h)�S4 , i
CL,+
CL,−

= e(2i/h)�S4 , (E3)

where the boundary of the integral is only slightly different
as in �S4 = 1

2

∫ zl

yr
ϕ4dx and yr is the solution to the equation

ε = W44(x,ϕ4) corresponding to ϕ4 = π/4,

yr = |ε|
g′

√
1 −

(
ε

2g′

)2

. (E4)

Near x = zh, ϕ4 → π and the wave function is oscillating so
fast and ψ4 ∝ eiπx/2h; therefore, as mentioned in Appendix D,
only the slowly varying part of the wave function will be
matched to the Airy functions and there will be an additional
term πyr/2h in the quantization rule as a result of this
manipulation.

Close to x = zh and on the forbidden side, the connection
formula yields

Ca

Cb

= 2e(1/h)�Q4 , (E5)

where �Q4 = ∫ zh

−zh
φ4dx. The matching condition for the

allowed side is simplified into∣∣∣∣∣ CR,+e(i/h)�S ′
4−iπyr /2h+iπ/4 + CR,−e−(i/h)�S ′

4+iπyr /2h−iπ/4

−CR,+e(i/h)�S ′
4−iπyr /2h+iπ/4 + CR,−e−(i/h)�S ′

4+iπyr /2h−iπ/4

∣∣∣∣∣
=
∣∣∣∣Cb

Ca

∣∣∣∣,
where �S ′

4 = ∫ yr

zh
ϕ̃4dx, with

ϕ̃4(x) = 1

2
arccos

(
ε − W44(x)

2B
(0)
44 (x ′)

)
. (E6)

It is worth noting that there is no minus sign inside the
argument as opposed to Eq. (2.13). Combining this with
Eq. (E3), we get

1 − cos 2�S
(eff)
4

1 + cos 2�S
(eff)
4

= 1

4
e−(2/h)�Q4 ,

where �S
(eff)
4 = �S4 − �S ′

4 + πyr/2h = ∫ zl

yr
ϕ4dx −∫ yr

zh
ϕ̃4dx + πyr/2h. This can be recast in the quantization

condition

1

h
�S

(eff)
4 (ε) = nπ ± 1

4
e−(1/h)�Q4(ε). (E7)

As a result, the tunneling rate is related to the energy splitting
in the energy spectrum through

δε(split) = 1

2
e−(1/h)�Q4(ε)

∣∣∣∣∣d�S
(eff)
4

dε

∣∣∣∣∣
−1

.

(iii) Critical region ε ∼ J − 2g′. Consider a small deviation
from the critical energy ε = J − 2g′ + λ/N . The WKB
solutions close to the critical point x = 0 is found to be

∂xS
(0) = π

2
− μx

2
,

∂xS
(1) = λ

2Jμ x
, (E8)

α4(x) = α0,4√
2μJx

ex2/4.

So the wave function becomes

ψ4(x) = C± exp

(
± iπ

2h
x ∓ i

μx2

4h

+ (±iχ − 1/2) ln(x
√

μ/h)

)
(E9)
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and the quantization formula is derived to be

arg

[
e−(2i/h)�S

(eff)
4

√
2π

�(1/2 − iχ )
− eπχ/2

]
= nπ + π/2, (E10)

where

�S
(eff)
4 =

∫ zl

yr

ϕ4dx −
∫ yr

0
ϕ̃4dx + πyr

2
(E11)

and χ and yr are defined in Eqs. (D4) and (E4), respectively.

APPENDIX F: QUANTIZATION CONDITIONS FOR
OTHER POLARITON BANDS

In this appendix we show the quantization conditions for
upper-upper and middle polariton bands.

1. Upper-upper band

The upper-upper mode is populated for energies g′√2 �
ε � J + 2g′, as illustrated in Fig. 2. The situation is very
similar to the lower-lower polariton band with the only
difference that the localized states appear in the bottom of
the band and the delocalized states appear at higher energies.
Likewise, there are three regions: one with delocalized wave
functions centering around x = 0, one with localized wave
functions in which the probability density is maximized
close to the boundary points x = ±1, and one at the critical
region separating the localized and delocalized states. This
band is similar to the BECDW with attractive interaction.
The derivation of the quantization rules is very similar to
Appendix E and we only quote the final results.

(i) Delocalized states ε > −J + 2g′. The particle is con-
fined in a two-sided potential well and the wave function is
large close to the center (x = 0). It is worth noting that the
end points are at 2ϕ1 = π and the boundary matching must
be done for a slowly varying component of the wave function.
The quantization condition is found by

1

h

∫ zl

−zl

ϕ̃1(x)dx =
(

n + 1

2

)
π, (F1)

where

ϕ̃1(x) = 1

2
arccos

(
ε − W11(x)

2B
(0)
11 (x ′)

)
. (F2)

Notice that there is no minus sign in the denominator as
opposed to Eq. (2.13), which has to do with only taking the
slowly varying multiple of the wave function.

(ii) Localized states g′√2 < ε < −J + 2g′. The potential
looks like a double well with two minima at x = ±1. The

quantization rule would be

1

h
�S

(eff)
1 (ε) = nπ ± e−(1/h)�Q1(ε), (F3)

where

�S
(eff)
1 =

∫ zl

yr

ϕ̃1dx −
∫ yr

zh

ϕ1dx + π

2
yr,

�Q1 =
∫ zh

−zh

φ1dx,

in which ϕ̃1 is defined in Eq. (F2) and other parameters are
introduced as in Appendix E.

(iii) Critical region ε ∼ −J + 2g′. Without much differ-
ence from the lower-lower band, here the quantization formula
is found to be

arg

[
e−(2i/h)�S

(eff)
1

√
2π

�(1/2 + iχ )
− e−πχ/2

]
= nπ + π/2,

(F4)

where

�S
(eff)
1 =

∫ zl

yr

ϕ̃1dx −
∫ yr

0
ϕ1dx + πyr

2

and χ and yr are defined in Eqs. (D4) and (E4), respectively.

2. Middle bands

The middle polariton bands correspond to the energy range
|ε| � g′√2. The wave function has two nonzero components:
the lower-upper and upper-lower polariton modes. This region
in turn can be divided to two subregions. In the first region,
when J � ε � g′√2 or −g′√2 � ε � −J , one component is
dominant in each half (x > 0 or x < 0) since only one compo-
nent is classically allowed and the other one is forbidden. In the
second region, when |ε| < J , both components are nonzero
at the same region of x. However, in terms of quantization
relations the treatments for both cases are identical as the
first-order correction, in Eq. (2.10), does not couple the second
and third components directly and all corrections come in as
higher-order contributions (at least of order h2). Therefore, it
does not really matter whether these two components overlap
over a range of x or not.

The upper-lower (second) polariton component is confined
between two turning points zl � x � zh, where zl and zh are
solutions to ε = V l

2 (x) and ε = V h
2 (x) given in Eq. (D2). The

lower-upper (third) polariton component is then confined in
−zh � x � −zl due to symmetry (see Fig. 2). So the WKB
wave function takes the form � = [0,ψ2,ψ3,0]T , where

ψ2(x) =

⎧⎪⎨
⎪⎩

α2(x)(C2,+e(i/h)S2(x) + C2,−e−(i/h)S2(x)), zl < x < zh

α2(x)C ′
2,−e−(1/h)Q2(x), x > zh

α2(x)C ′
2,+e(1/h)Q2(x), x < zl

and

ψ3(x) =

⎧⎪⎨
⎪⎩

α3(x)(C3,+e(i/h)S3(x) + C3,−e−(i/h)S3(x)), −zh < x < −zl

α3(x)C ′
3,−e−(1/h)Q3(x), x > −zl

α3(x)C ′
3,+e(1/h)Q3(x), x < −zh.
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Starting from the connection formulas at the two boundaries
for each component, it is straightforward to derive the
quantization conditions

1

h
�S

(eff)
2 (ε) = nπ − π

2
yr, (F5a)

1

h
�S

(eff)
3 (ε) = nπ + π

2
yr, (F5b)

where

�S
(eff)
2 =

∫ zl

yr

ϕ2dx −
∫ yr

zh

ϕ̃2dx,

�S
(eff)
3 =

∫ −zl

−yr

ϕ3dx −
∫ −zh

−yr

ϕ̃3dx,

and yr is defined in Eq. (E4). It is easy to show that these
two relations are indeed identical as the integrands are even
functions of x.

APPENDIX G: VALIDITY OF WKB ANALYSIS

The derivation of WKB relies on our original assumption
that the total polariton number N is large and a 1/N expansion
is applicable. A natural question is to what extent this
assumption can be justified. In order to check the validity
of the WKB approximation, we use the Husimi-Kano Q

representation [58] to compare our semiclassical picture and
the quantum eigenstates (see a comprehensive discussion of
the Husimi function in Ref. [59]). Similar analyses have been
done for the BEC double-well system [60].

As we have seen in Sec. II, dynamics within the ith polariton
band can be described by two conjugate variables: the position
x = Z/N and the momentum ϕi . Let us focus on the lower-
lower polariton band and define θ = ϕ4. The Poisson bracket
is promoted to the canonical commutation relation [x,θ ] = ih

at the quantum level where the Planck constant is h = 1/N .
A squeezed coherent state can be represented in position and
momentum

〈θ ′|θ + ix〉 = 1

(πκ2)1/4
exp

(
−i

xθ ′

h
− (θ ′ − θ )2

2κ2

)
,

(G1)

〈x ′|θ + ix〉 = 1

(π/κ2)1/4
exp

(
i
x ′θ
h

− κ2 (x ′ − x)2

2

)
.

The squeezing parameter κ is the key parameter in connecting
the classical picture and quantum eigenstates [58,59]. It
determines the relative resolution in the phase space (x,θ ).
The optimum κ generally depends on the explicit form of the
Hamiltonian in terms of the conjugate variables of interest. For
a simple harmonic oscillator, this parameter must be chosen
equal to the zero-point fluctuations κ = (mω/�)1/2 in (x,p)
space and equal to one κ = 1 in ladder operators (a,a†) space
(the usual Q function in quantum optics [61]). For our case,
κ must be tuned to an optimum value to obtain the best
resolution. In general, we write κ = sκ0, where s > 1 is the
tuning parameter, which is set to be s = 1 for the ground state
and is slightly increased for higher excited states. The value
κ0 = (N3g2/8J 2)1/8 comes from the harmonic approximation

x

θ/π
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1
(a)

FIG. 11. Comparison of the classical phase space and the
quantum Husimi distribution in the lower-lower polariton band. (a)
Classical energy contours. The Q distribution is shown (b) for the
ground state, (c) for the midband (oscillatory) 52nd state, (d) close to
the critical level [separatrix in (a)] 73rd state, and (e) for the localized
97th state. Here N = 100 and J/g′ = 1/3.

of the Hamiltonian close to the ground state

H4 ≈ −2g′ − J + J

2
θ2 + g′

4
x2. (G2)

For a pure state |ψ〉, the Husimi function is defined by

Q(x,θ ) = |〈θ + ix|ψ〉|2. (G3)

In order to compute the inner product numerically, we use
the identity

〈θ + ix|ψ〉 = 1

(π/κ)1/4

1∑
x ′=−1

C4(x ′)

× exp

(
i
x ′θ
h

− κ2 (x ′ − x)2

2

)
, (G4)

where C4(Z) is the fourth component of the wave function
in the polariton basis. Note that in these calculations only
C4(Z) is taken into account as the rest of the components
are negligible in the lower-lower band. Figure 11 shows that
the Husimi functions of the Hamiltonian eigenstates match
quite well with the classical phase-space energy contours for
large values of N . As we see in Fig. 11(b), the ground state
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FIG. 12. Husimi Q representation for various values of system size N in the lower-lower polariton band: (a) N = 20, (b) N = 10, and
(c) N = 6. From left to right, each row shows the ground state, a midband (oscillatory) state, a state close to the critical level, and a localized
state. Here J/g′ = 1/3.

is represented by a pointlike distribution, meaning that it is
a minimum-uncertainty (Gaussian) wave packet, consistent
with our harmonic approximation above. The next excited
states [Fig. 11(c)] are oscillatory states. At the critical level
εc,4 = −2g′ + J , we arrive at the separatrix (bifurcation point)
of the classical phase space, which is also manifest in the
Husimi function as in Fig. 11(d). Ultimately, above the critical
level we obtain the localized states, which are represented
by two separate branches close to x = 1 and −1 in the
quantum picture [Fig. 11(e)]. This is because the Hamiltonian
preserves the parity (left-right) symmetry and the localized
states in the classical picture are indeed Schrödinger cat states
in the eigenspectrum of the Hamiltonian. To see how much
the above correspondence survives for smaller system sizes
(polariton numbers), we compute the Husimi function for
N = 20, 10, and 6 in Figs. 12(a)–12(c). The classical phase
space is independent of N and is shown in Fig. 11(a). It is
clear that the fluctuations are more pronounced as N becomes
smaller; however, even up to such small values as N = 6 the
classical and the quantum phase-space pictures seem to be
remarkably consistent. Therefore, the WKB approach would
remain a reasonable approximation up to small polariton
numbers, although its power as an analytical tool is more
appreciable in the large system sizes where the exact treatments
are exponentially difficult.

Another remark is that we have neglected the interband
coupling (quantum potential) as we are interested in the

strong-coupling regime where the polariton bands are
separated from each other. However, in the weak-coupling
regime the corrections from Eq. (2.15) would be non-negligible
as the bands overlap and our quantization rules start to fail.
Interestingly, even in the weak-coupling regime, the
quantization rules remain valid if we stay far enough from the
overlapping regions. Such an example for J/g′ is illustrated in
Fig. 13.

/g
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FIG. 13. Error in the Bohr-Sommerfeld quantization rules in the
entire spectrum. Different symbols refer to different quantization
conditions and the vertical lines show various energy scales; both are
explained in the caption of Fig. 4. Here J/g′ = 1 and N = 400.
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