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Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points
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It is known that the Fresnel wave surfaces of transparent biaxial media have four singular points, located on
two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact,
a highly symmetric linear material is proposed whose Fresnel surface exhibits 16 singular points. Because for
every linear material the dispersion equation is quartic, we conclude that 16 is the maximum number of isolated
singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry
(zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for
our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring
resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric
moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummer’s 166 configuration of points
and planes. An investigation parallel to ours, but in linear elasticity, is suggested for future research.
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I. INTRODUCTION

In the geometrical optics approximation, the Fresnel (wave)
surface describes the propagation of light inside a transparent
material. For biaxial media, such as aragonite [orthorhombic
CaCO3] and topaz [orthorhombic Al2SiO4(F,OH)2], the sur-
face consists of two shells that intersect at four locations [1].
Indeed, the property that the four singular points are aligned on
two axes lends the name to this class of media. The singularities
in the Fresnel surface of a biaxial crystal give rise to the
phenomenon of internal conical refraction [2]. More precisely,
a narrow light beam (in vacuum) striking a plate of crystal
along the optical axis is refracted, upon incidence, into a cone
and, upon exit, into a hollow cylinder. The geometry of wave
propagation in biaxial media is a classical topic of research,
first investigated by Fresnel [3] in 1821. As an aside, this
explains why the wave surface is also termed Fresnel surface.
Conical refraction in biaxial media was predicted as early as
1832 by Hamilton [4] on the basis of Fresnel’s work. It was
experimentally demonstrated just a year later by Lloyd, using
a crystal of aragonite [5].

The rise of metamaterial technology [6] prompts new
questions in the traditional analysis of Fresnel surfaces. By
designing suitable artificial materials, it is possible to control
a wide range of electromagnetic medium parameters. As
a matter of fact, one can tune with remarkable accuracy
not only the permittivity, but also the permeability and the
magnetoelectric response. For comparison, it is worthwhile
to recall that the familiar biaxial crystals have anisotropic
permittivity but are not magnetic or magnetoelectric. Typically,
more complicated media give rise to more elaborate Fresnel
surfaces, whose properties are still largely unexplored. Our
work intends to answer general questions with respect to the
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number and arrangement of the singularities in a Fresnel sur-
face. Most notably, we put forward a highly symmetric medium
that exhibits 16 singular points and discuss a metamaterial
realization for it (Sec. II B and Sec. IV).

Two additional remarks are as follows: (i) Our analysis is
restricted to isolated singular points (more correctly termed
‘ordinary double points’ [7]). This limitation is important,
since, for example, all points on the Fresnel surface of
an isotropic medium are singular. (ii) The papers [8–10]
examine conical refraction in bianisotropic media and are
complementary to our work. In particular, they establish that,
for media with absorption, the singularities of the Fresnel
surface are connected to a wealth of physical effects.

Biaxial medium

A good point of departure is the simple biaxial medium
with electromagnetic response:

Da = εabEb, εab = diag(3,4,6),
(1)

Ha = μ−1
ab Bb, μ−1

ab = diag(1,1,1).

Here, εab and μ−1
ab are the permittivity and the inverse

permeability. Throughout this article, Heaviside-Lorentz units
are used, and the vacuum speed of light is normalized to
1, whereby ε0 = μ0 = c = 1. Moreover, Latin indices range
from 1 to 3, and Einstein’s summation convention is employed.
The medium (1) gives rise to the dispersion equation, cf. [11,
(D.2.44)],

f (ω,ka) = −72ω4 − 3k4
1 − 4k4

2 − 6k4
3

+ 30ω2k2
1 + 36ω2k2

2 + 42ω2k2
3

− 10k2
2k

2
3 − 9k2

3k
2
1 − 7k2

1k
2
2 = 0, (2)

with ω being the angular frequency and ka = (k1,k2,k3) the
spatial wave covector. Figure 1 illustrates the Fresnel surface
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FIG. 1. Cross section of the Fresnel surface for the biaxial
medium (1). The remaining half of the surface is obtained via
symmetry.

corresponding to (2). This surface determines the inverse phase
velocity ka/ω of an electromagnetic wave traveling in a given
direction. Since the medium is birefringent, there are typically
two possible inverse phase velocities for each direction.

The solutions of the four simultaneous equations

∂f (ω,ka)

∂ω
= 0,

∂f (ω,kb)

∂ka

= 0, (3)

are the singular points of the Fresnel surface [12, Sec. 99]. In a
renowned monograph on Kummer surfaces, Hudson explains
this concept as follows [13, Sec. 8]: an isolated singular point is
“characterised geometrically by the fact that the tangent lines at
it generate a quadric cone instead of a plane, and algebraically
by the absence of terms of the first degree from the equation
in point coordinates when the node [the singularity] is taken
as origin.”

We remark that the solutions of (3) can display ω = 0,
and therefore infinite ka/ω. Hence, representing singular
points through the inverse phase velocity is, at times, im-
practical. In this article, singular points are specified via
the four-dimensional wave covector qα = (−ω,ka), where
α = 0, . . . ,3. This representation does not suffer from the
problem just mentioned. It is also worthwhile to observe that
multiplying qα = (−ω,ka) by a constant leaves the Fresnel
surface unchanged. Thus, if a negative ω occurs, one is free
to multiply the four-dimensional wave covector by −1 and
retrieve a positive angular frequency. Because it is possible to
take ω � 0 systematically, one can introduce a sign convention
and request that the angular frequency must be positive. We do
not employ this convention, so that ω is a generic real number
(positive, negative, or zero). Retaining the sign flexibility
allows us to highlight a pattern in the singular points of
Sec. II A, which are interlinked by cyclic permutations of the
four-dimensional components.

As expected, the locations on the Fresnel surface in Fig. 1,
where the two shells meet, are singular points. Indeed, they

correspond to solutions of (3) with f (ω,ka) being the function
in (2). The locations, as represented through qα , are

(1, +
√

2,0, +
√

2), (1, −
√

2,0, −
√

2),

(1, +
√

2,0, −
√

2), (1, −
√

2,0, +
√

2),

whereby it is easy to check that the singular points form two
optical axes. In turn, this verifies that the electromagnetic
medium (1) is biaxial.

The Fresnel surface of the medium (1) has, in addition to
the four real singular points listed above, 12 complex ones,
such as

(1,0,i
√

3,
√

6) .

More generally, the solutions of (3) do not need to be real.
The physical interpretation of complex singular points is
quite unclear—they seem to describe waves that are partly
evanescent and whose exponential decay is independent of
polarization. A better understanding of complex singular
points may be acquired by revisiting the boundary problem
of a biaxial medium interfaced with vacuum. This idea is left
as the subject of future work.

The discussion so far motivates a question: Can the Fresnel
surface of a linear medium exhibit more than four real singular
points?

II. SIXTEEN REAL SINGULAR POINTS

A. Four singular points at infinity

A medium is magnetoelectric if an applied electric field
induces a nonzero magnetization and, similarly, an applied
magnetic field induces a nonzero polarization. We consider
the medium

Da = εabEb + αa
bB

b,
(4)

Ha = μ−1
ab Bb − αb

aEb,

whose magnetoelectric tensor, permittivity, and permeability
are

αa
b = diag

(√
3

2
, −

√
3

2
,0

)
,

εab = diag

(
1,1, − 1

2

)
, (5)

μ−1
ab = diag

(
1,1, − 1

2

)
.

The dispersion equation specified by (4) with (5), namely,

f (ω,ka) = − 1
2

(
ω4 + k4

1 + k4
2 + k4

3 − ω2k2
1 − ω2k2

2 − ω2k2
3

− k2
2k

2
3 − k2

3k
2
1 − k2

1k
2
2

) = 0, (6)

leads to a Fresnel surface with 16 real singular points.
Moreover, (6) is the equation, in homogeneous coordinates,
for a highly symmetric Kummer surface [14, p. 140]. The
general relationship between Fresnel surfaces and Kummer
surfaces is examined in Sec. III.
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FIG. 2. The Fresnel surface of the magnetoelectric medium (4)
with (5) has 12 singularities in the finite (and four at infinity).

By importing f (ω,ka) from (6) into (3), one arrives at

∂f

∂ω
= ω

(
k2

1 + k2
2 + k2

3 − 2ω2
) = 0,

∂f

∂k1
= k1

(
ω2 − 2k2

1 + k2
2 + k2

3

) = 0,

(7)
∂f

∂k2
= k2

(
ω2 + k2

1 − 2k2
2 + k2

3

) = 0,

∂f

∂k3
= k3

(
ω2 + k2

1 + k2
2 − 2k2

3

) = 0.

The solutions to (7), that is, the 16 real singular points of the
Fresnel surface for the medium (4) with (5) are as follows
[14,15]:

1. (0,1,1,1) 9. (0,1, − 1,1)

2. (1,0,1,1) 10. (1,0,1, − 1)

3. (1,1,0,1) 11. (−1,1,0,1)

4. (1,1,1,0) 12. (1, − 1,1,0)

5. (0, − 1,1,1) 13. (0,1,1, − 1)

6. (1,0, − 1,1) 14. (−1,0,1,1)

7. (1,1,0, − 1) 15. (1, − 1,0,1)

8. (−1,1,1,0) 16. (1,1, − 1,0)

Figure 2 displays the Fresnel surface generated by (6). A
careful inspection of the plot establishes that it includes only 12
singular points. This is because four singular points are located
at infinity. In other words, the electromagnetic waves described
by the covectors 1,5,9, and 13 have ω = 0. As a consequence,
the inverse phase velocity ka/ω for these is unbounded.

It is worthwhile to observe that the 12 singular points
included in Fig. 2 lie on the edges of a cube, at the midpoints.
The other four singularities are retrieved by extending the body
diagonals of the cube to the plane at infinity. As explained

FIG. 3. The Fresnel surface given by the dispersion equation (9).
Some readers will note that the plot illustrates a Kummer surface.

in Sec. V below, this arrangement of 16 points has various
remarkable properties.

The question arises: Can the Fresnel surface of a linear
medium have 16 real singular points that are all finite?

B. No singular points at infinity

We consider the medium specified by (4) together with

αa
b = 1

4 diag(3 + √
3, − 3 − √

3,0),

εab = 1
4 diag(−1 − √

3, − 1 − √
3, − 4 + 2

√
3), (8)

μ−1
ab = 1

4 diag(1 + √
3,1 + √

3,4 − 2
√

3),

and formulate the accompanying dispersion equation as

f (ω,ka) = − 1
2 (ψ2 − 6abcd) = 0, (9)

where ψ,a,b,c,d are polynomials in the angular frequency and
the spatial wave covector,

ψ(ω,ka) = 1
2

(
11ω2 − k2

1 − k2
2 − k2

3

)
,

a(ω,ka) = 1
2

(−3ω − k1 − k2 − k3
)
,

b(ω,ka) = 1
2

(−3ω − k1 + k2 + k3
)
,

c(ω,ka) = 1
2

(−3ω + k1 − k2 + k3
)
,

d(ω,ka) = 1
2

(−3ω + k1 + k2 − k3
)
.

The Fresnel surface of the medium determined by (4)
and (8) has 16 real singular points that are all finite.
Accordingly, the plot in Fig. 3 exhibits 16 singularities, which
one can view by applying different rotations. The singular
points, as represented via qα = (−ω,ka), are as follows:

1. 1
2 (3, − 1, − 1, − 1) 4. 1

2 (3,1,1, − 1)

2. 1
2 (3, − 1,1,1) 5. 1

2 (1, − 3,1,1)

3. 1
2 (3,1, − 1,1) 6. 1

2 (1,1, − 1,3)
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7. 1
2 (1,3,1, − 1) 12. 1

2 (1, − 1,3,1)

8. 1
2 (1, − 1, − 1, − 3) 13. 1

2 (1,1,1, − 3)

9. 1
2 (1,1, − 3,1) 14. 1

2 (1, − 3, − 1, − 1)

10. 1
2 (1,1,3, − 1) 15. 1

2 (1, − 1,1,3)

11. 1
2 (1, − 1, − 3, − 1) 16. 1

2 (1,3, − 1,1)

At these locations, the partial derivatives of the function
f (ω,ka) in (9) vanish, as is appropriate. Moreover, because
1–16 have ω �= 0, the singular points of the Fresnel surface
are indeed all bounded; to put it differently, the inverse phase
velocities of the electromagnetic waves, which correspond to
the 16 singularities, are finite.

It is interesting to note that, although the surfaces in
Figs. 1, 2, and 3 are dissimilar, the local geometry near each
singular point is ultimately the same. Thus, in the geometrical
optics limit, there is no fundamental difference between the
16 singularities above and the four singular points of a biaxial
medium. The remark is consistent with algebraic geometry,
which treats all isolated singularities on an equal footing.

Now, one may ask: Can the Fresnel surface of a linear
medium exhibit more than 16 real singular points?

III. QUARTIC KUMMER SURFACES

The generic local and linear medium is

Da = εabEb + αa
bB

b,
(10)

Ha = μ−1
ab Bb + βa

bEb,

where {εab,μ−1
ab ,αa

b,βa
b} have real components and are

independent of {ω,ka}, since the medium is nondispersive. No
further conditions are imposed on these tensors. As a result,
{εab,μ−1

ab ,αa
b,βa

b} contain 3 × 3 = 9 parameters each, and
the medium 4 × 9 = 36 in total.

The dispersion equation for the generic local and linear
response, as expressed in terms of three-dimensional quan-
tities, is unwieldy. A more convenient formula is obtained
with the help of four-dimensional electrodynamics. In this
representation, the medium (10) becomes [11,16]

Hαβ = 1
2χαβμνFμν, (11)

where the excitation Hαβ = −Hβα and the field strength
Fαβ = −Fβα summarize the fields (Da,Ha) and (Ea,B

a),
respectively. Greek indices are assumed to take the values
{0,1,2,3}. Owing to the symmetries

χαβγ δ = −χβαγ δ = −χαβδγ , (12)

the four-dimensional medium tensor has 36 independent
components (see the remark above).

One can prove [11,17,18] that the dispersion equation of
the generic local and linear medium is quartic in ω and ka .
As a matter of fact, in four dimensions, it takes the relativistic
covariant form

f̃ (qα) = Gκλμνqκqλqμqν = 0, (13)

with qα = (−ω,ka) and f̃ (qα) = f (ω,ka). The Tamm-Rubilar
tensor Gαβγ δ may be defined as [19]

Gαβγ δ = 1

3!
χκ(αβ|λ �χ�

κμλν χμ|γ δ)ν . (14)

In particular, the indices enclosed by round brackets are
symmetrized. Moreover, �χ�

αβγ δ = 1
4 εαβκλεγ δμνχ

κλμν , with
εαβγ δ being the Levi-Civita symbol.

A surface that originates from a quartic homogeneous
polynomial equation in four variables cannot have more than
16 isolated singular points [13]. The statement refers to the
overall number of singular points—no distinction is made
between those that are real and those that are not. In view
of (13), one readily concludes that the Fresnel surface of a local
and linear medium never exhibits more than 16 singularities.

By considering index symmetries, one can split the medium
tensor into a principal part, a skewon part, and an axion
part [11]:

χαβμν = (1)χαβμν + (2)χαβμν + (3)χαβμν. (15)

The decomposition is valid in all reference frames and is
irreducible under the action of GL(4,R). Moreover, the three
elements contain, respectively, 20 + 15 + 1 = 36 independent
components. When

χαβγ δ = χγδαβ, (16)

so that (2)χαβμν = 0, the medium is called skewon-free.
Expressing (16) in three-dimensional form yields

εab = εba, μ−1
ab = μ−1

ba , βa
b = −αb

a. (17)

It is then simple to verify that the local linear media with
the constitutive laws (1), (4) with (5), and (4) with (8) are
all skewon-free. Furthermore, as the skewon part of (10) is
arbitrary, this law includes two independent magnetoelectric
tensors, αa

b and βa
b.

The Fresnel surfaces of skewon-free local and linear media
are Kummer surfaces in the real projective space; conversely,
every Kummer surface is the Fresnel surface of a local and
linear medium with a vanishing skewon part [19,20]. We
deduce that the Fresnel surface of a skewon-free medium
has exactly 16 singular points, provided these are isolated.
As a matter of fact, this property is known to be valid for
the Kummer surfaces [14,21]. Notably, the surfaces discussed
in earlier sections had 16 singularities (over the complex
numbers), in agreement with the general theory.

If the electromagnetic response is linear but not local,
{εab,μ−1

ab ,αa
b,βa

b} can be complex and depend on {ω,ka}.
The impact of generalizing the medium parameters to be
complex is limited. As the dispersion equation remains
quartic, homogeneous, and polynomial in nature, the Fresnel
surface exhibits no more than 16 singular points. By contrast,
allowing {εab,μ−1

ab ,αa
b,βa

b} to depend on {ω,ka}, that
is, allowing the material to be dispersive, makes general
questions very difficult.

As an aside, a medium has a zero axion part [see (15)] if in
three dimensions it satisfies αa

a − βb
b = 0 (the indices a and b

are summed over). One can easily check that the media (1), (4)
with (5), and (4) with (8) are axion-free. Because the axion
part (3)χαβγ δ drops out from the Tamm-Rubilar tensor (14),
and thus from the dispersion equation (13), it is irrelevant for
the propagation of electromagnetic waves [11].
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IV. METAMATERIAL REALIZATIONS

It appears likely that media with 12 or 16 real and
finite singular points can be realized as metamaterials. More
specifically, this section examines how (4) with (5), and (4)
with (8) may be created as artificial materials.

The permittivity and permeability matrices in (5)
and (8) have the structure εab = diag(ε⊥,ε⊥,ε‖) and μab =
diag(μ⊥,μ⊥,μ‖), where the parameters {ε⊥,ε‖,μ⊥,μ‖} are
allowed to be negative. According to [22], permittivity and
permeability matrices of this type can be achieved through a
suitable arrangement of metal rods and split-ring resonators.
As an aside, the metamaterial will reflect the property that
εab and μab exhibit a preferred direction (they are uniaxial).
Obtaining the numerical values for {ε⊥,ε‖,μ⊥,μ‖}, as given
in (5) and (8), requires, almost certainly, a detailed optimiza-
tion. More explicitly, the individual artificial particles must be
tuned and their density adjusted. Because one takes advantage
of resonant effects, the desired values of {ε⊥,ε‖,μ⊥,μ‖} are
expected to be achieved only in a narrow band of frequencies ω.

To realize magnetoelectric matrices of the type αa
b =

diag(A, − A,0), see (5) and (8), we suggest two alternative
metamaterial designs. The first design relies on the properties
of chromium sesquioxide (Cr2O3), a magnetoelectric crys-
tal [23]. More in detail, a mixture of perpendicularly arranged
Cr2O3 pieces can be used to generate a matrix αa

b with
the correct structure. The second design, which is practical
at microwave frequencies, involves a suitable arrangement
of magnetostatic wave resonators [24,25]. These are ferrite
elements attached to metal wires and magnetized by a static
external magnetic field. As in the case of the permittivity
and the permeability, obtaining a specific numerical value for
the magnetoelectric parameter A is likely to require accurate
optimization. Moreover, one can perform a successful tuning
across a narrow frequency band only.

A further warning is that interactions between the particles
associated with different effects (electric, magnetic, and
magnetoelectric) may not be negligible. These interactions
generally produce unwanted bianisotropic terms in the medium
law that are difficult to eliminate. Research on how to address
the problem in magnetoelectric metamaterials is ongoing [26].

V. KUMMER’S 166 CONFIGURATION

As noted in Sec. II A, the singular points of the Fresnel sur-
face generated by the medium (4) with (5) are very symmetric.
In fact, it is possible to show [27,28] that the four-dimensional
covectors q = (−ω,k) representing these singular locations
are mapped into each other by Dirac γ matrices:

γ 0 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠, γ 1 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎠,

γ 2 =

⎛
⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0

⎞
⎟⎠, γ 3 =

⎛
⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎠,

and γ 5 = iγ 0γ 1γ 2γ 3. Equivalently, one can start from the

four-dimensional wave covector that describes a singular point
and retrieve all other singularities by matrix multiplication
with γ 0, . . . ,γ 5. For instance, if q1, . . . ,q16 are the 16

singular locations listed in Sec. II A, we have that

q1 = (0, 1,1,1), iγ 2γ 3q1 = q2,

−γ 0q1 = q5, −γ 3γ 1q1 = q10,

γ 1q1 = q16, −iγ 1γ 2q1 = q9,

−iγ 2q1 = q8, γ 0γ 5q1 = q7,

γ 3q1 = q15, −γ 1γ 5q1 = q14,

γ 0γ 1q1 = q4, iγ 2γ 5q1 = q6,

iγ 0γ 2q1 = q12, −γ 3γ 5q1 = q13,

−γ 0γ 3q1 = q11, γ 5q1 = q3.

(18)

Here, the extra factors of −1 and
√−1 are immaterial, because

the equations (7), which define the singular points, are invariant
under scaling of q = (−ω,k) by any nonzero constant, and
the same holds true for the dispersion equation (6). The
striking property (18) is a manifestation of the fact that
the singularities give rise to a 166 configuration [14]. More
explicitly, the singular points determine 16 planes, with each
plane containing six points; in addition, the planes meet at the
16 singular points, with each point lying on six of the planes.

It is well known [13,15] that the singularities of a Kummer
surface always identify a 166 configuration. Moreover, as
explained in Sec. III, the Fresnel surfaces of skewon-free local
and linear media are Kummer surfaces. We deduce that, for
any medium in this wide class, isolated singular points give
rise to a 166 configuration.

VI. CONCLUSION

We established that rather simple local and linear media
can exhibit 16 real singular points. It was found that practical
realizations of these media are within the current technical
abilities. To achieve the required permittivity, permeability,
and magnetoelectric moduli, metamaterial designs were put
forward consisting of metal rods, split-ring resonators, and
magnetized inclusions.

On the basis of the general dispersion equation, we
discovered that the Fresnel surface of a local and linear
medium cannot exhibit more than 16 singularities. It was in fact
recognized that the Fresnel surfaces of media with no skewon
part have exactly 16 singular points (assumed isolated). To
reach this conclusion, we made use of an interesting link to
the classical projective geometry of Kummer surfaces.

Finally, it was observed that, for the medium (4) with (5),
the singular points are mapped into each other by the Dirac
γ matrices. We related this property to the Kummer 166

configuration and described the generalization to all local and
linear media with a vanishing skewon part.
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An idea for future work is to conduct an investigation
similar to the above in linear elasticity. For instance, it
appears desirable to establish how many singularities can the
wave surface of a linear anisotropic elastic medium have.
Deriving a general answer to this question is likely to be
more difficult than in electrodynamics. An upper bound on
the number of singularities, however, can be readily attained.
Because the dispersion equation for anisotropic elastic media
is sextic [29], the resulting wave surface cannot display more

than 65 singular points; this follows from algebraic geometry
(see [30]).
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