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Wave propagation in birefringent materials with off-axis absorption or gain
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The polarization direction of an electromagnetic field changes and eventually reaches a steady state when
propagating through a birefringent material with off-axis absorption or gain. The steady state orientation direction
depends on the magnitude of the absorption (gain) and the phase retardation rate. The change in the polarization
direction is experimentally demonstrated in weakly doped (0.05%) Pr3+ : Y2SiO5 crystals, where the light
polarization, if initially aligned along the most strongly absorbing principal axis, gradually switches to a much less
absorbing polarization state during the propagation. This means that the absorption coefficient α in birefringent
materials generally varies with length. This is important for, e.g., laser crystal gain media, highly absorbing and
narrow band spectral filters and quantum memories.

DOI: 10.1103/PhysRevA.93.013842

I. INTRODUCTION

For electromagnetic plane wave propagation in birefringent
materials the instantaneous polarization direction of the elec-
tric field vector E normally changes during the propagation.
For example, the polarization of a wave propagating along one
of the principal axes in a (nonabsorbing) birefringent material
with (initially) linear polarization at an angle γ relative to one
of the other principal axes, changes from linear to elliptical
(with major axes |E| cos γ or |E| sin γ ) and then to linear
polarization at angle −γ and then back to elliptical, etc. as it
propagates through the material. For a case where the wave
is not propagating along one of the principal axes the wave
vector and the Poynting vector are in general not parallel and
there are walk-off effects (e.g., Chap. 6 in Ref. [1]).

In this work we consider an initially linearly polarized plane
wave, propagating along a principal axis in a nonmagnetic off-
axis absorbing birefringent material. In this case polarization
rotation can occur even if the initial linear polarization is
aligned with one of the principal axes. In materials with
absorption or gain the development of the polarization can
be complicated. Not only could there be oscillations between
linear and elliptical polarization and walk-off effects, there can
also be conversions from light of one polarization to another
polarization due to the absorption (or gain).

Such effects should for example be present in laser crystal
gain media when the gain is anisotropic and the gain tensor
is not aligned with the principal axes [2]. Recently there has
also been an interest in highly absorbing and very narrow
bandwidth filters for very specific applications such as quan-
tum memories [3], or highly absorbing narrow-band filters
with exceptionally large etendue [4,5] for high performance
ultrasound optical tomography [5,6] and also dynamically
tunable high performance filters [7]. All these recent papers use
filters based on rare-earth–ion-doped inorganic crystals where
the absorption tensor is not aligned with the principal axes.
As a consequence the light polarization gradually switches
during propagation to a much less absorbing polarization state
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even if the input polarization is perfectly aligned with the most
strongly absorbing principal axis. This significantly decreases
the achievable filter attenuation from what might be anticipated
based on just the material absorption coefficient.

In this work we theoretically analyze the polarization
rotation in absorbing birefringent materials with a model
adapted from [8]. We provide some simple relations of when
the effects need to be taken into account and give possible
suggestions on how to maintain the original high absorption.
The theoretical analysis is supported by an experimental
demonstration of the polarization rotation effect.

The paper is organized as follows. First an intuitive
theoretical background is given. This is followed by simulation
results and discussions of polarization steady states and the
effects of absorption on light propagating through a crystal.
Experimental results are then presented where the incoming
and outgoing polarization directions are studied for crystals
with different absorption and length. Lastly a remark about
the maximum absorption axis is made before the paper is
concluded with a summary. A rigorous mathematical treatment
of the problem can be found in the Appendixes.

II. THEORETICAL BACKGROUND

A detailed description of the theoretical framework is given
in the Appendixes, but a simple and intuitive understanding
can be achieved by considering the effects of birefringence
and absorption separately. In Fig. 1(a) we see the principal
axes of a birefringent crystal as well as the direction of the
transition dipole moment μ. This direction does not coincide
with any of the principal axes of the crystal. An incoming
plane wave Ein, which is on resonance with the absorbing
transition and with its polarization oriented along one of
the principal axes D2, generates a polarization P along μ

with a 90◦ phase shift. This polarization generates a field
EP along μ with a relative phase relation to Ein [9,10] as
shown in Fig. 1(b). The total resulting electromagnetic field
Etot = Ein + EP now also have a component along the D1

axis as shown in Fig. 1(c). Since the crystal is birefringent
the polarization state oscillates between linear [Figs. 1(c) and
1(e)] and elliptical [Fig. 1(d)] as the field propagates through
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FIG. 1. Simplified view of the propagation of an electric field
through a birefringent crystal with a transition dipole moment axis
tilted with respect to the crystal axes (D1⊥D2). (a) The incoming
electric field Ein is polarized along D2. (b) The material is polarized
by the incoming plane wave and emits an electric field EP along
the transition dipole moment which is 180◦ out of phase with the
incoming field Ein [9,10], resulting in the total field Etot = Ein + EP

which has both a D1 and D2 component of the electric field. The
magnitude of EP is exaggerated to make the effects easier to see.
The electric field is projected along the crystal axes D1 and D2 in
(c) to make it possible to see the effect of propagation through the
birefringent crystal which causes a relative phase change between the
two electric field components. In (c) they are oscillating in phase,
while in (d) they are 90◦ out of phase and in (e) they are completely
out of phase (180◦).

the crystal. Of course in reality the effects of absorption and
birefringence are intertwined and occur simultaneously. The
theoretical examination in the Appendixes makes it possible
to simulate the propagation of any incoming electric field
polarization through a birefringent crystal with an absorption
axis with an angle to the principal axes, a problem that cannot
be trivially solved by choosing a new coordinate basis. Our
method works for infinite incoming plane waves and assumes
that the lateral (transverse) dimensions of the crystal are
infinite as well. Discussions around the results from these
simulations can be found in the next section.

III. SIMULATION RESULTS

In this section results from simulations of light propagation
inside a birefringent crystal with a tilted transition dipole
moment direction is analyzed. As a specific example a 0.05%
Pr3+ : Y2SiO5 crystal is chosen where the transition dipole
moment is tilted by 74.6 ± 1.9◦ from the D1 crystal axis [11] as
seen in Fig. 2 and calculated in the Appendixes, see Eq. (B18).

A. Phase retardation in a birefringent crystal

The propagation phase φ can be written as φ = 2π nz
λ0

rad,
i.e., light with the wavelength λ0 in vacuum experiences a

FIG. 2. (a) Transition dipole moment μ versus principal axes
for Pr3+ : Y2SiO5 (D1⊥D2⊥b). (b) Notation of linear incoming and
elliptical outgoing polarizations are seen where γ is the angle between
the D1 axis and the incoming polarization and ψ is the angle between
the D1 axis and the major axis a of the outgoing elliptical polarization.

phase shift of φ rad when traveling an optical length nz through
a material, where n is the index of refraction and z is the
propagation depth. The difference between the accumulated
phases φ2 and φ1 for light propagating along two different
crystal axes D2 and D1, respectively, is termed the phase
retardation

�φ = φ2 − φ1 = 2π
�nz

λ0
, (1)

where �n = n(D2) − n(D1). The crystal length needed to obtain
a quarter-wave plate �φ = π

2 for a Y2SiO5 crystal with the
different refractive indices n(D1) = 1.7881, n(D2) = 1.809, and
nb = 1.7851 along the principal axes [12] is calculated using
Eq. (1) to be about 7.25 μm for light propagating along the b

axis.

B. Polarization steady states

From the effects explained in Fig. 1 it is clear that it
is not possible to maintain a pure linear polarization when
propagating through a crystal where the transition dipole
moment axis does not coincide with any of the optical axes of
the crystal. However, in general two steady state polarization
solutions exist for a forward propagating wave. They are
elliptically polarized and only differ by a 90◦ rotation of their
major axes in the D1-D2 plane. The polarization of the steady
state does not change when propagating through the crystal.
The ellipticity and the direction of these polarizations depend
on the following ratio:

R = n2
(D2) − n2

(D1)

χabs
, (2)

where χabs is the electric susceptibility connected to the
absorption [for Pr3+ : Y2SiO5 see Eq. (A16)]. In general, only
the steady state solution with the lowest absorption or highest
gain is stable.

In Figs. 3(a)–3(c) the steady state polarization solutions
when the transition dipole moment makes an angle of 74.6◦
relative to the D1 axis are shown for three different cases
where R � 1, R ≈ 1, and R � 1, respectively. For absorption
the green curves are stable solutions and the red curves are
unstable. The reverse is true in the case of gain. The first
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FIG. 3. Polarization steady states for (a) Pr3+ : Y2SiO5 with absorption coefficients αD1 = 3.6 ± 0.5 cm−1 and αD2 = 47 ± 5 cm−1 which
corresponds to an absorption susceptibility χabs = (8.82 ± 0.8) × 10−4 and a transition dipole moment direction with an angle θ = 74.6 ± 1.9◦

from D1 as can be seen in Fig. 2(a). (b) and (c) Increased absorption susceptibility χabs by a factor of 100 and 10 000, respectively. The ratio R

in Eq. (2) is (a) R ≈ 85, (b) R ≈ 0.85, and (c) R ≈ 0.0085. The green curves are stable (unstable) and the red curves are unstable (stable) in
the case of absorption (gain).

case, seen in Fig. 3(a), is the same as for a 0.05% Pr3+ :
Y2SiO5 crystal which has a transition dipole moment direction
that is tilted 74.6 ± 1.9◦ from D1 and absorption coefficients
along D1 and D2 of αD1 = 3.6 ± 0.5 cm−1 and αD2 = 47 ±
5 cm−1 which corresponds to an electric susceptibility for the
absorption that is χabs = (8.82 ± 0.8) × 10−4. The difference
n2

(D2) − n2
(D1) in Y2SiO5 is 0.075, which gives a ratio R ≈

85 � 1. Here one can see that the steady state solutions lie,
respectively, along the D1 and the D2 crystal axes, which is
always the case for R � 1.

The next two cases seen in Figs. 3(b) and 3(c) use the
same values mentioned above except that the absorption
susceptibility χabs is increased by a factor 100 and 10 000,
respectively. In the extreme where R � 1, seen in Fig. 3(c),
the solutions lies almost completely along the transition dipole
moment (unstable for absorption) and perpendicular to it
(stable for absorption). In between these extreme cases when
R ≈ 1, seen in Fig. 3(b), the solutions lie between the crystal
axes and the transition dipole moments and have a higher
ellipticity than in the extremes.

The steady state solutions can be explained by the same
phenomena that was discussed in Fig. 1, i.e., that an electric
field in D2 creates an electric field in D1, and vice versa, due
to the tilted absorption (gain) axis. The steady state solutions
are polarization states where the sum of the components lost
and absorbed in D1 decays at the same rate as the sum of the
components created and absorbed along D2, which in other
words means that the polarization stays the same.

The dependence on R can be intuitively explained by
rewriting the numerator in Eq. (2) as

n2
(D2) − n2

(D1) = (
n(D2) + n(D1)

)(
n(D2) − n(D1)

)
= (

n(D1) + n(D1)
)
�n. (3)

If we now assume that n(D1) and n(D2) are roughly constant
then the ratio R measures if �n is small or large compared to
the absorption and �n sets the rate at which phase retardation

is accumulated [see Eq. (1)]. In other words if R � 1 then the
phase retardation dominates over the absorption. This makes
all polarizations that are symmetric along the crystal axes
equivalent [due to the effects explained in Figs. 1(c)–1(e)] and
therefore the only steady state solutions that can exist are along
D1 and D2, see Fig. 3(a). In the other extreme where R � 1
the absorption dominates and any phase retardation between
the two electric field components can be ignored, which leads
to one solution orthogonal and one solution parallel to the
transition dipole moment axis, see Fig. 3(c).

C. Electric field absorption when R � 1

From the simulations one can obtain the (expected) expo-
nential decay in the electric field components along D1 and D2

as a function of propagation. For the example of Pr3+ : Y2SiO5

the decay coefficients can be seen in Fig. 4(a) for a linear input
polarization along D2 [γ = 90◦ in Fig. 2(b)]. Even though the
input polarization only has a D2 component of the electric
field, a D1 component is almost immediately created in the
crystal due to the effects explained in Figs. 1(a) and 1(b).
Since this effect is dual, i.e., a D2 component creates a small
D1 component and vice versa, the net effect will be that the
largest component creates a smaller orthogonal component.
Therefore, the relative size of the created component is the
same as the ratio of the D2 and D1 component of the
steady state, since at the steady state (when the polarization
no longer changes with propagation) the D2 component is
almost completely created by the tilted absorption of the D1

component. Therefore, it is a measure of how strong the
connection between the two components is. For the case of
Pr3+ : Y2SiO5 the initial electric field component along D1 is
approximately a factor of 330 less than the D2 component [see
Fig. 4(a) and Eq. (B9)].

The exponential decay along D2 is much larger than along
D1 in the beginning of the propagation due to the fact that
the transition dipole moment lies much closer to D2. However
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FIG. 4. Shows the decay of the electric field components along crystal axes D1 (green) and D2 (red) as a function of propagation distance
z for a linear input polarization at an angle (a) γ = 90◦ and (b) γ = 45◦ from D1. The dashed black lines are linear fits to the logarithm of the
electric field in the form ln[E(z)] = ln(E0) + Cz, where the value of C is displayed next to each black curve. Note that these values represent
the decay of the electric field. To obtain the absorption coefficients for the intensity multiply these values with 2, i.e., αD1 = 3.6 ± 0.5 cm−1

and αD2 = 47 ± 5 cm−1. The steady state limit can be seen in (a) which shows the largest total absorption that can be reached with a high
absorption rate for a linear polarization. The inset in (b) is a zoomed in view of the steady state limit reached after ≈2.7 mm for γ = 45◦. The
oscillating pattern has a period of 29 μm (matching a 2π phase evolution calculated with Eq. (1) and exists due to the interactions between the
polarization induced in the material and the electric field of the light and the birefringence of the crystal. (c) The (approximate) propagation
distance needed to reach the steady state limit shown in blue as a function of the input polarization angle γ together with the electric field
component along D1 (green) and along D2 (red) at the steady state limit. Note that the x axis is cut at 87◦ and that the axis scale changes
afterwards. Note also the plateau reached at 89.83◦ which shows that better angle precision than that is not needed.

towards the end of the propagation the stable steady state
solution is reached and both components decay at the same
rate. Continuing in Fig. 4(b) the input polarization is changed
to γ = 45◦ and the polarization steady state is reached sooner
since the input polarization is more similar to the stable steady
state. For a linear input polarization the highest absorption rate
is achieved along D2 but slows down after propagating around
5.4 mm, see Fig. 4(a). This leaves us with the ultimate limit,
which we call the “steady state limit,” of the maximum electric
field absorption with a high absorption rate of the incoming
light for this material to be 10−6–10−5 and this is reached for
a 5.4-mm-long crystal. To clarify, the light continues to be
absorbed after this limit but at a much slower rate. In light
of this limit it is clear that scaling a crystal longer than ≈5.4
mm to gain absorption serves limited purpose and one can get
exponentially higher absorption by avoiding the steady state
limit. Note also that much earlier, at around 2.7 mm, the electric
field component along D1, which decays much slower, is of the
same size as the component along D2 and the D1 component
dominates after 2.7 mm, even though the D1 component was
zero before entering the crystal, this component can however
be blocked with a polarizer after the crystal.

The (approximate) propagation distance needed to reach
the steady state limit as a function of the input polarization
γ is shown in blue in Fig. 4(c). The electric field component
along D1 and D2 when the steady state limit is reached is
also shown in green and red, respectively. Note that the D1

electric field component is always a factor of ≈330 larger than
the D2 component when the steady state solution is reached.
Close to γ = 90◦ the propagation distance decreases quite
rapidly as γ departs from 90◦. Therefore, high polarization
purity is required to have a high absorption and a steady state
limit at 5.4 mm. The polarization purity is defined as the ratio
of the desired and undesired polarization component, in this
case the ratio of the D2 and the D1 component. The purity

needed is in the order of the ratio of the D2 and D1 electric
field components for the stable steady state; higher purity is
unnecessary since a small D1 component of this size will be
created during the first few μm of propagation. For Pr3+ :
Y2SiO5, seen in Fig. 3(a), this ratio is ≈330 for the electric
field, or equivalently 105 for the intensity components [see
Eq. (B9)]. This means that a polarizer with a suppression of 105

and a polarization angle precision of around 0.17◦ is required
to achieve the longest propagation distance with maximum
absorption.

To avoid the steady state limit one has to suppress the D1

component of the light. This can be done with, e.g., a linear
polarizer. To achieve high absorption it is therefore better to
use several smaller crystals (lengths of � 5.4 mm) with linear
polarizers blocking any D1 component in between each set of
crystals instead of using one long crystal.

IV. EXPERIMENTAL RESULTS

To examine the polarization change during propagation
several experiments were performed on crystals with different
lengths. We used three 0.05% Pr3+ : Y2SiO5 crystals with
different lengths (1, 6, and 12 mm) and measured the
outgoing polarization direction ψ as a function of the incoming
polarization angle γ , see Fig. 2(b). The crystals were kept
at cryogenic temperature (2 K). The setup is illustrated in
Fig. 5(a). The absorption was probed with attenuated pulses
to minimize saturation effects on the absorption and between
each experiment a set of hole eraser pulses were used over
a wide spectral range to make sure that no permanent hole
burning occurred.

According to the simulations for a Pr3+ : Y2SiO5 crystal
there is a minimum (sufficient) value of the absorption where
the steady state solution is reached which means that the
outgoing polarization is almost entirely along the D1 axis.
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FIG. 5. (a) Polarization analyzer setup. First, two polarizers are
calibrated against each other by minimizing the photodiode (PD)
signal when there is nothing in between them. The first polarizer
(Pol1) and the half-wave plate (HWP) makes sure that the incoming
linearly polarized light is at an angle γ from D1. The D1 and D2

directions are measured with the same setup with the crystal at room
temperature where absorption is negligible. By turning the second
polarizer (Pol2) to maximize the throughput to the photodiode (PD)
the outgoing polarization after the crystal is measured to be ψ . (b)
Three experiments were performed on a 12 mm crystal 0, 4, and
13 GHz away from the center of the inhomogeneous absorption
profile. The simulations have χabs given by Eq. (4) which assumes
an inhomogeneous profile in the shape of a Lorentzian distribution
using a FWHM of 9 GHz, which was measured in the experiment. The
experimental results are displayed as yellow triangles, cyan squares,
and blue dots together with a red dotted, dashed, and solid curve,
respectively, for the three cases of 0, 4, and 13 GHz. Note that the
simulation results for the 0 and 4 GHz cases overlap.

A 12 mm Pr3+ : Y2SiO5 crystal is employed to illustrate this
effect as shown in Fig. 5(b), where three measurements at
different frequencies within the inhomogeneous profile were
performed. The inhomogeneous linewidth � of this crystal is
measured to be about 9 GHz. The three sets of measurements
at frequencies 0, 4, and 13 GHz relative to the line center
are shown in Fig. 5(b) as yellow triangles, cyan squares, and
blue dots, respectively, together with simulations for each case

displayed as a red dotted, dashed, and solid curve. For high
and intermediate absorption the outgoing polarization is along
the D1 axis which agrees with the fact that the D2 component
is absorbed much quicker than the D1 component.

As shown in Figs. 1(c)–1(e) the outgoing polarization shifts
significantly during propagation. It is therefore impossible to
determine if the outgoing polarization is in the range ψ =
0◦–90◦ or ψ = 90◦–180◦ for a given input polarization without
a very precise knowledge of the crystal length. A quarter-wave
plate distance was calculated previously to be L ≈ 7.25 μm
which means that a full evolution of the phase is done in
≈29 μm in Y2SiO5. If the crystal length is not known within
this precision it is indeed impossible to determine the outgoing
polarization direction. The crystal length used in the simula-
tions is therefore changed from exactly 12 mm by a few tens
of μm to the value that best matches the experimental results.

The absorption coefficients in [11] are measured in a crystal
with a linewidth of � = 6.2 GHz and which nominally has
the same Pr concentration, 0.05% as in the present crystal.
This would correspond to a peak absorption susceptibility
of χ

peak
abs = (8.82 ± 0.8) × 10−4. The inhomogeneous profile

can be approximated as a Lorentzian profile [11] that in our
experiments have a linewidth of � = 9 GHz. Assuming that
the integral of the absorption should be the same for our crystal
and the crystal used in [11] the peak absorption susceptibility
of our crystal should be reduced by a factor 9/6.2 which gives
χ

peak
abs = (6.08 ± 0.55) × 10−4. Since the three measurements

seen in Fig. 5(b) are performed at different positions on the
inhomogeneous profile the absorption susceptibility used in
the simulations must be adjusted accordingly:

χabs = χ
peak
abs

(�/2)2

(f − f0)2 + (�/2)2
,

χabs,1 = [f − f0 = 0 GHz] ≈ (6.08 ± 0.55) × 10−4,
(4)

χabs,2 = [f − f0 = 4 GHz] ≈ (3.39 ± 0.31) × 10−4,

χabs,3 = [f − f0 = 13 GHz] ≈ (0.65 ± 0.06) × 10−4.

The simulations agree well with the experimental results
and only in the 13 GHz case is the absorption so low that the
outgoing polarization varies from D1. The results from the 1
and 6 mm crystals give similar results that agree with the simu-
lations. Also here the absorption susceptibility must be reduced
with respect to the peak value to account for the experiments
taking place at the side of the inhomogeneous profile.

V. MAXIMUM ABSORPTION AXIS

It has previously been shown, see Ref. [13], that slow
light effects split an incoming linear polarization into two
parts, where one part has a significantly larger slow light
effect than the other. The transition dipole moment direction
was then considered as the maximum absorption direction
but it turns out that the maximum (minimum) absorption
and consequently time delay happens when we set the input
polarization along the D2 (D1) axis. In general this depends on
the ratio R in Eq. (2), since if R � 1 the maximum absorption
direction is almost exactly along the transition dipole moment
axis, but as stated this is not the case for Pr3+ : Y2SiO5 where
R ≈ 85 � 1.
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VI. CONCLUSION

In conclusion, we have modeled and analyzed the polariza-
tion of light propagating through an absorbing (amplifying)
birefringent crystal. Steady state solutions for the polarization
of a propagating wave were found and discussed. This led to
the conclusion that only increasing the length of a birefringent
medium (e.g., a rare-earth–ion-doped crystal) is not the most
efficient method to reach higher absorption. This can be
an important issue in applications like quantum memories
and spectral filtering employing birefringent crystals [3–7].
Since the model works for any birefringent material with
either absorption or amplification it can be useful in other
applications such as laser crystal gain media or with other
materials that are not specifically discussed here.

It also became clear that the polarization direction with
maximum absorption (gain) depends upon the ratio between
the phase retardation and the magnitude of the absorption
(gain). For an absorbing Pr3+ : Y2SiO5 crystal the maximum
absorption axis is along D2, while the stable polarization
steady state solution is almost completely along D1.

This work will hopefully open up new opportunities
to investigate more interesting physics and applications
regarding the propagation effects in rare-earth–ion-doped
crystals in the future.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Council,
the Knut & Alice Wallenberg Foundation, the Crafoord
Foundation, the EC FP7 Contract No. 247743 (QuRep), Lund
Laser Centre, and NanoLund. The research leading to these
results also received funding from the People Programme
(Marie Curie Actions) of the European Union’s Seventh
Framework Programme FP7 (2007-2013) under REA Grant
Agreement No. 287252 (Marie Curie Action). Finally, we are
most grateful to Professor Stefan Kröll, Professor Y. C. Sun,
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APPENDIX A

1. Light propagation in a birefringent crystal

The propagation of an electromagnetic field in a general
material containing absorption can be a quite complex problem
to solve due to the interaction of light and matter, but one could
reduce this complexity without losing the generality of the
solution by considering a simplification based on the properties
of the medium. We start the simplification by considering a
plane-stratified medium, which is a valid assumption for the
materials investigated in our case. The assumption of plane-
stratified media is a proper approximation for materials that
show variation in the propagation direction (z axis) but no
variation in the lateral (x-y plane) direction. In other words, we
have homogeneity (same absorption or gain) in the x-y plane
and possible inhomogeneity (varying absorption or gain) along
the z axis. The main theoretical concept of the calculations in
this paper is discussed with more details in Ref. [8].

For macroscopic media, Maxwell’s equations describe
the dynamics of the fields as follows (the harmonic time

convention e−iωt is used):

∇ × E(r,ω) = ik0[c0B(r,ω)],
(A1)

∇ × η0H(r,ω) = −ik0[c0η0D(r,ω)],

where η0 =
√

μ0

ε0
is the intrinsic impedance of vacuum, and c0 =

1/
√

ε0μ0 and k0 are the speed and wave number of light in
vacuum, respectively. In addition, E, B, H, and D are the
electric field, magnetic flux density, magnetic field, and the
electric flux density, respectively.

In order to apply Maxwell’s macroscopic equations, it is
necessary to specify the relations between E, B, H, and D.
These equations are called the constitutive relations:

D(r,ω) = ε0[ε(z,ω) · E(r,ω) + η0ξ (z,ω) · H(r,ω)],
(A2)

B(r,ω) = 1

c0
[ζ (z,ω) · E(r,ω) + η0μ(z,ω) · H(r,ω)],

where r = xx̂ + yŷ + zẑ and ω is the angular frequency. ε

and μ are the permittivity dyadic and permeability dyadic of
the medium, respectively, while ξ and ζ are called crossed
magnetoelectric dyadics. All four dyadics and all four fields
can depend on the angular frequency ω, but this variable is
suppressed below to simplify the notation.

In a single crystal, the physical and mechanical properties
can often be orientation dependent. When the properties of
a material vary with orientation, the material is said to be
anisotropic. Alternatively, when the properties of a material are
the same in all directions, the material is said to be isotropic.
Bi-anisotropic is a general class of linear media which exhibit
so-called magnetoelectric coupling between the electric and
magnetic fields [8].

Based on the plane-stratified assumption, it is natural
to decompose the electromagnetic field into tangential (x-y
plane) and normal components. Considering the lateral ho-
mogeneity and substituting the constitutive relations (A2)
into Maxwell’s equations (A1) gives a system of ordinary
differential equations (ODEs) with the variable z:

d

dz

(
Exy(z)

η0J · Hxy(z)

)
= ik0M(z) ·

(
Exy(z)

η0J · Hxy(z)

)
, (A3)

where J is a two-dimensional rotation dyadic (rotation of 90◦
in the x-y plane) as follows:

J =
(

0 −1
1 0

)
(A4)

and

J · J = −I2 =
(−1 0

0 −1

)
. (A5)

For a more detailed discussion of how to obtain (A3), which
is beyond the scope of this paper, the reader is referred to
Ref. [8].

According to the main assumption, the plane-stratified
media assumption, the four dyadics ε(z),ξ (z),ζ (z), and μ(z)
in (A2) depend only on one spatial variable z, which describes
the propagation distance. The Pr3+ : Y2SiO5 crystal, which
is our medium, is appropriately modeled as a nonmag-
netic anisotropic medium with zero crossed magnetoelectric
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dyadics. Therefore, as a second assumption, we assume
nonmagnetic properties (μ = I) and also no crossed magne-
toelectric dyadics (ξ = ζ = 0) in (A2). There exists a general
set of equations for the connection between the fundamental
matrix M(z) and the four main dyadics in Ref. [8], but based on
the three assumptions described above and a normal incident
we can simplify M(z) = M for our case as

M =
(

¯̄0 −¯̄I2

− ¯̄ε⊥⊥ + 1
εzz

ε̄⊥ε̄z
¯̄0

)
, (A6)

where

¯̄ε⊥⊥ =
(

εxx εxy

εyx εyy

)
, ε̄⊥ =

(
εxz

εyz

)
,

(A7)

ε̄z = (εzx εzy), ¯̄I2 =
(

1 0
0 1

)
.

2. M tensor eigenvalues and eigenvectors

Following (A3) we need to investigate the eigenvalues
and eigenvectors of the M tensor (A6) in order to calculate
the tangential components of the electric and magnetic field.
The eigenvectors ui and vi correspond to the eigenvalues
+λi and −λi (i = 1,2) for the forward and backward waves,
respectively,

ui = {Eix,Eiy, − η0Hiy,η0Hix}
for i = 1,2.

vi = {−Eix, − Eiy, − η0Hiy,η0Hix}
(A8)

For a full analytical derivation of the eigenvalues and
eigenvectors see Appendix B.

3. E-field evolution in the propagation direction

To understand the E-field and H-field properties while the
wave is propagating in the z direction, we can employ the
fundamental equation for one-dimensional wave propagation
(A3). By considering the eigenvectors and eigenvalues of the
M matrix (A8), the wave properties along the propagation
direction (z) is calculated for the forward wave:

d

dz
ui = ik0λiui =⇒ ui(z) = ui(0)eik0λiz. (A9)

It is possible to calculate the backward wave vi(z) in the
same way.

By convention, the polarization of light is described by
specifying the orientation of the wave’s electric field at a
point in space over one period of the oscillation. Therefore, to
understand the polarization direction inside the medium it is
enough to only derive the E field. The initial light polarization
before interaction with the medium could be described by the
E field:

E0 = E0x x̂ + E0y ŷ. (A10)

In addition, the transverse electric field (x-y components)
inside the medium could be written as a sum of the E field
of the two eigenvectors:

Einside = AE1(z) + BE2(z)

= A(E1x x̂ + E1y ŷ) + B(E2x x̂ + E2y ŷ). (A11)

Based on the boundary condition for the tangential E fields
at the interface:

x̂ : E0x = AE1x + BE2x, ŷ : E0y = AE1y + BE2y. (A12)

Therefore,

A = E0xE2y − E0yE2x

E1xE2y − E1yE2x

, B = 1

E2x

[E0x − AE1x]. (A13)

Now we can extend our fields to a different z using (A9),
(A11), and (A13) as follows:

u(z) = Au1e
ik0λ1z + Bu2e

ik0λ2z. (A14)

Note that since the M matrix does not depend on z in this
case the eigenvalues and eigenvectors +λi , −λi , ui , and vi

remain constant and it is therefore possible to propagate the
fields [or equivalently u(z) in (A14)] to any desired length
in one step. In the more general case where the eigenvalues
and eigenvectors changes with z one has to recalculate these
in the simulations every distance �z to be able to propagate
the fields to z, where �z is chosen for numerical stability and
resolution.

Note also that the two polarization steady states for a
forward propagating wave discussed in the main text is simply
u1 and u2 where the solution with the lowest imaginary part
of its eigenvalue is the stable solution while the other is
the unstable solution. This can be understood since a high
absorption leads to a fast decay from that state, i.e., the highest
absorption gives the unstable state. In the same way, a large
negative imaginary part corresponding to a high gain will
generate a large component and therefore become stable since
the other component can be neglected.

4. Light propagation in a Pr3+ : Y2SiO5 crystal

We start by calculating the permittivity tensor for Pr3+ :
Y2SiO5 and then employ the theoretical approach discussed
above to obtain the light polarization direction while propa-
gating through this specific medium.

To define the permittivity tensor for Pr3+ : Y2SiO5 one
could start by deriving the relation between permittivity and
susceptibility for the host material (Y2SiO5) and the absorber
(Pr) separately as follows:

ε = (1 + χ ) = (1 + χhost + iχ abs). (A15)

The imaginary part of the susceptibility is proportional to
the absorption, while the real part of the susceptibility is
proportional to the real refractive index.

In Appendix B a full analytical derivation of the electric
susceptibility χabs and the transition dipole moment angle
θ is given but the following equations (A16) and (A17) are
approximately correct for the case of Pr3+ : Y2SiO5.

χabs is a dimensionless quantity which represents the imag-
inary part of the electric susceptibility and is approximately
proportional to the absorption coefficients (αD1 + αD2 ), in the
medium as follows [14]:

χabs = nbgc0

ω

(
αD1 + αD2

)
, (A16)

where nbg ≈ 1.8 is a background refractive index and ω ≈
2π · 494 × 1012 rad/s.
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The anisotropic absorption coefficients for the two sites
of a nominally 0.05% Pr3+ : Y2SiO5 crystal at the 3H 4 - 1D2

transition is measured as shown in Table 7.6 in Ref. [11]. Based
on this measurement the absorption for site I (605.977 nm) is
about 3.6 ± 0.5 along the D1, 47 ± 5 along the D2, and <0.1
along the b axis, all in the unit cm−1 [see Fig. 2(a), where
D1, D2, and b are crystal principal axes]. To estimate the
susceptibility and the transition dipole moment angle θ , (A16)
and the following equation are used (for more correct values
see (B18);

tan(θ )2 = αD2

αD1

,

⇒ θ = 74.5 ± 1.9◦, (A17)

⇒ χabs = (8.8 ± 1.0) × 10−4,

where χabs is given in the direction of the transition dipole
moment shown in Fig. 2(a). It can be rotated about the b axis

to the principal axis coordinate system to be able to perform
the summation in (A15):

χ
crystal
abs = Rz

−1 · χ
dipole
abs · Rz

= χabs

⎛
⎝ cos2 θ sin θ cos θ 0

sin θ cos θ sin2 θ 0
0 0 0

⎞
⎠. (A18)

The next step is to calculate χhost based on the Sellmeier
dispersion and the measured coefficients from Table 7.1 and
Eq. 7.2 in Ref. [11]:

χhost =
⎛
⎝2.1973 0 0

0 2.2726 0
0 0 2.1867

⎞
⎠. (A19)

Adding up all calculations, the final results for the permit-
tivity tensor in the principal axis coordinate will be

ε =
⎛
⎝εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠ (A20)

=
⎛
⎝1 + χxx + iχabs cos2 θ iχabs sin θ cos θ 0

iχabs sin θ cos θ 1 + χyy + iχabs sin2 θ 0
0 0 1 + χzz

⎞
⎠ (A21)

=
⎛
⎝3.1973 + 6.2e−5i 2.3e−4i 0

2.3e−4i 3.2726 + 8.2e−4i 0
0 0 3.1867

⎞
⎠. (A22)

Using this permittivity tensor together with (A6), (A8), (A13), and (A14) it is possible to propagate light through an absorbing
Pr3+ : Y2SiO5 crystal. Normally one can diagonalize a symmetric matrix by rotating the coordinate axes, this is however only
possible for a real-valued matrix and not for a general complex symmetric matrix containing imaginary parts corresponding to
losses or gain.

APPENDIX B: THEORETICAL ANALYSIS OF THE MATERIAL MATRIX M

For light propagating parallel to one crystal axis of a plane-stratified, nonmagnetic birefringent crystal with an absorption (or
gain) axis in the transverse x-y plane and no crossed magnetoelectrical properties the material matrix M can be written as

M =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1

−n2
(D1) − iχabs cos2 θ −iχabs cos θ sin θ 0 0

−iχabs cos θ sin θ −n2
(D2) − iχabs sin2 θ 0 0

⎞
⎟⎟⎠, (B1)

where n(D1) and n(D2) are the refractive indices of the two crystal axes in the x-y plane. θ is the angle from D1 to the transition
dipole moment axis and χabs is the electric susceptibility associated with the absorption.

The polarization steady states are given by the eigenvectors to the material matrix M. Four eigenvectors and eigenvalues
exists and two of the eigenvalues have a positive real part which means they are connected to a forward traveling wave. These
eigenvalues and eigenvectors are most important for the analysis in this paper. The stable eigenvector is the one whose eigenvalue
has the lowest imaginary part (which is true for both positive imaginary parts in the case of absorption and for negative imaginary
part in the case of gain).

Solving for the eigenvalues of M gives four eigenvalues:

λi = ±

⎡
⎢⎣n2

(D1) + n2
(D2) + iχabs

2
∓ χabs

2

√√√√(
n2

(D2) − n2
(D1)

χabs

)2

− 2i(1 − 2 sin2 θ )
n2

(D2) − n2
(D1)

χabs
− 1

⎤
⎥⎦

1/2

. (B2)

Since we are only interested in the forward propagating waves only the eigenvalues whose real part is positive are of interest.
These eigenvalues are denoted λ1 and λ2.
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Before we solve for the eigenvectors in the general case we have to account for some special cases where θ = 0◦ or θ = 90◦.
In these cases the transition dipole moment axis is parallel to one of the crystal axes D1 or D2 which of course results in two
steady states, one along D1 and another along D2. Another special case is when the absorption is zero, which again is a trivial
case where the polarizations of the steady states lie along D1 and D2.

Now that these special cases have been solved we will solve for the eigenvectors in the general case where we exclude the
special cases mentioned above. The forward eigenvectors will be called ui :

ui = {Eix,Eiy, − η0Hiy,η0Hix} (B3)

and the propagation is given by

u1(z) = u1(0)eik0λ1z, u2(z) = u2(0)eik0λ2z. (B4)

The eigenvector equations we want to solve are⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1

−n2
(D1) − iχabs cos2 θ −iχabs cos θ sin θ 0 0

−iχabs cos θ sin θ −n2
(D2) − iχabs sin2 θ 0 0

⎞
⎟⎟⎠

⎛
⎜⎝

Eix

Eiy

−η0Hiy

η0Hix

⎞
⎟⎠ = λi

⎛
⎜⎝

Eix

Eiy

−η0Hiy

η0Hix

⎞
⎟⎠. (B5)

The first two equations provides a relationship between the electric and magnetic fields and are omitted here since we are only
interested in the ratio between the D1 and D2 components of the electric field to get the steady state solution, i.e., we only have
to solve for the first two components of the eigenvector. This leaves us with two equations:(

n2
(D1) + iχabs cos2 θ

)
Eix + (iχabs cos θ sin θ )Eiy = λ2

i Eix, (iχabs cos θ sin θ )Eix + (
n2

(D2) + iχabs sin2 θ
)
Eiy = λ2

i Eiy. (B6)

Since we have the option to normalize the eigenvector in any way we set Eiy = 1 (assuming that Eiy 
= 0). Now solving for
the ratio Eix/Eiy we get

Eix = Eix

Eiy

= iχabs cos θ sin θ

λ2
i − (

n2
(D1) + iχabs cos2 θ

) . (B7)

Using the following ratio:

R = n2
(D2) − n2

(D1)

χabs
, (B8)

Eq. (B7) [with λi from (B2)] can be rewritten in the following way:

Eix

Eiy

= 2 cos θ sin θ

1 − 2 cos2 θ − iR ∓
√

1 − (1 − 2 sin2 θ )2 + [iR + (1 − 2 sin2 θ )]2
. (B9)

It can be shown that E1x

E1y
= −E2y

E2x
, which means that the two

steady state solutions only differ by a 90◦ rotation in the D1-D2

plane since the two-dimensional rotation matrix for an angle
of 90◦ is

J =
(

0 −1
1 0

)
. (B10)

1. Analysis when R → 0

We can now solve for the steady state solutions (i.e., electric
field components of the eigenvectors ui) in the limit R →
0, which in other words means that the absorption is high
compared to the phase retardation [see (3)]. The eigenvalues
become

λ1 ≈
√

n2
(D1) + n2

(D2)

2
, λ2 ≈

√
n2

(D1) + n2
(D2)

2
+ iχabs, (B11)

i.e., one solution with no absorption (or gain) and a refractive
index close to the refractive index of the material and one
solution with high absorption (or gain) and a high refractive
index.

The solution for the ratio of the electric field components
becomes

λ1 :
E1x

E1y

≈ − tan(θ ), λ2 :
E2x

E2y

≈ 1

tan θ
. (B12)

Since these are real numbers the polarizations are linear and
the directions are for λ2 along the transition dipole moment
and for λ1 perpendicular to it. Since the stable solution is the
eigenvector whose eigenvalue has the lowest imaginary part,
λ1 is stable for absorption and λ2 is stable for gain.

2. Analysis when R → ∞
In the other limit where R → ∞ the phase retardation

dominates over the absorption which gives the following
approximation of the eigenvalues:

λ1 ≈
√

n2
(D1) + iχabs cos2 θ, λ2 ≈

√
n2

(D2) + iχabs sin2 θ.

(B13)

Here the stable solution depends on the transition dipole
moment direction given by θ as well as the refractive indices
n(D1) and n(D2). Using (B6) we can solve for the eigenvectors
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in the limit when R → ∞:

λ1 :
(
n2

(D1) + iχabs cos2 θ
)
E1x + (iχabs cos θ sin θ )E1y

≈ (
n2

(D1) + iχabs cos2 θ
)
E1x

⇒ E1y ≈ 0,

λ2 : (iχabs cos θ sin θ )E2x + (
n2

(D2) + iχabs sin2 θ
)
E2y

≈ (
n2

(D2) + iχabs sin2 θ
)
E2y

⇒ E2x ≈ 0. (B14)

From these equations it is clear that the eigenvector
corresponding to λ1 has almost no E1y component and is
therefore along D1 and the reverse is true for λ2.

3. Analysis of Pr3+ : Y2SiO5

In 0.05% Pr3+ : Y2SiO5 R is quite high so we can use
the approximations made in the previous section for when
R → ∞. Continuing from (B13) we can write the imaginary
part of λi as

Im(λ1) ≈ 1

2

√
2
√

n4
(D1) + χ2

abs cos4 θ − 2n2
(D1),

(B15)

Im(λ2) ≈ 1

2

√
2
√

n4
(D2) + χ2

abs sin4 θ − 2n2
(D2).

From these two equations we can solve for the transition
dipole moment angle θ and the electric susceptibility associ-
ated with the absorption χabs to be

θ ≈ arctan

⎡
⎣({

2[Im(λ2)]2 + n2
(D2)

}2 − n4
(D2){

2[Im(λ1)]2 + n2
(D1)

}2 − n4
(D1)

)1/4
⎤
⎦,

χabs ≈
√{

2[Im(λ1)]2 + n2
(D1)

}2 − n4
(D1)

+
√{

2[Im(λ2)]2 + n2
(D2)

}2 − n4
(D2). (B16)

In Pr3+ : Y2SiO5 the exponential decays of the intensity
along D1 and D2 are measured and they are αD1 = 3.6 ±
0.5 cm−1 and αD2 = 47 ± 5 cm−1, respectively. Given that
the eigenvectors calculated in (B14) are along D1 and D2,
respectively, one can, using (B4), write the following equation:

Im(λ1) = αD1

2k0
, Im(λ2) = αD2

2k0
, k0 = 2π

λ0
, (B17)

where the factor of 1/2 comes from that we now deal with
electric fields and not intensities. k0 is the wave number and
λ0 is the wavelength of the incoming wave in vacuum (not
to be confused with λ1 and λ2 which are the eigenvalues
of M). Using (B16) and (B17) one can calculate the angle
θ from D1 to the transition dipole moment axis and the
absorption susceptibility χabs for a Pr3+ : Y2SiO5 crystal using
λ0 = 605.977 nm, n(D1) = 1.7881, and n(D2) = 1.809:

θ = 74.6 ± 1.9◦, χabs = (8.82 ± 0.8) × 10−4. (B18)

An approximation of θ and χabs in (B16) can be made
by assuming that Im(λi) � nDi

and that n(D1) ≈ n(D2) ≈ nbg

(which is the case for Pr3+ : Y2SiO5). This results in

θ ≈ arctan

⎛
⎝{

[Im(λ2)]2n2
(D2)

[Im(λ1)]2n2
(D1)

}1/4
⎞
⎠

≈ arctan

(√
Im(λ2)

Im(λ1)

)
= arctan

(√
αD2

αD1

)
(B19)

and

χabs ≈ 2Im(λ1)n(D1) + 2Im(λ2)n(D2)

= αD1n(D1)

k0
+ αD2n(D2)

k0
≈

(
αD1 + αD2

)
nbg

k0
. (B20)

Equations (B19) and (B20) are only valid in the case where
R → ∞ but allows us to use (A16) and (A17) for the case
of Pr3+ : Y2SiO5 which gives values quite close to the more
correct values obtained in (B18).

4. Continuation of analysis when R → 0

In the other case where R → 0 we only have one axis
with absorption [see (B11)] and therefore in (B17) we
replace αD2 by αdipole that measures the absorption along
the transition dipole moment axis for λ2 whose eigenvector
points in that direction and set Im(λ1) = 0. θ is now given
by the angle from the crystal axis to the axis of which
the absorption is measured. Assuming that χabs � n2

Di
the

following proportionality between χabs and αdipole can also be
calculated using (B11):

χabs ≈ 1

2

(
αdipole

k0

)2

. (B21)

This shows that the electric susceptibility χabs does not always
scale linearly with the absorption coefficient αdipole.
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Chaneliére, and J. L. Le Gouët, Adv. Photon. Quantum Comput.
Memory Commun. IV 7948, 794805 (2011).

013842-10

http://dx.doi.org/10.1063/1.3696307
http://dx.doi.org/10.1063/1.3696307
http://dx.doi.org/10.1063/1.3696307
http://dx.doi.org/10.1063/1.3696307
http://dx.doi.org/10.1117/12.874009
http://dx.doi.org/10.1117/12.874009
http://dx.doi.org/10.1117/12.874009
http://dx.doi.org/10.1117/12.874009


WAVE PROPAGATION IN BIREFRINGENT MATERIALS . . . PHYSICAL REVIEW A 93, 013842 (2016)

[7] S. E. Beavan, E. A. Goldschmidt, and M. J. Sellars, J. Opt. Soc.
Am. B 30, 1173 (2013).

[8] S. Rikte, G. Kristensson, and M. Andersson, IEE Proc. Microw.
Antennas Propag. 148, 29 (2001).

[9] J.-X. Cheng and X. S. Xie, Coherent Raman Scattering
Microscopy (CRC, Boca Raton, FL, 2012), pp. 65–69.

[10] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman
Lectures on Physics, Vol. 1 (Addison-Wesley, Reading, MA,
1963), Sec. 30.7 (http://www.feynmanlectures.caltech.edu/).

[11] Y. C. Sun, Spectroscopic Properties of Rare-Earths in
Optical Materials, edited by G. Liu and B. Jacquier

(Springer Series in Material Science, New York, 2005),
Chap. 7.

[12] R. Beach, M. D. Shinn, L. Davis, R. W. Solart, and W. F. Krupke,
IEEE J. Quantum Electron. 26, 1405 (1990).

[13] A. Walther, A. Amari, S. Kröll, and A. Kalachev, Phys.
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