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Robust self-trapping of vortex beams in a saturable optical medium
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We report on the observation of robust self-trapping of vortex beams propagating in a uniform condensed
medium featuring local saturable self-focusing nonlinearity. Optical vortices with topological charge m = 1, that
remain self-trapped over approximately five Rayleigh lengths, are excited in carbon disulfide using a helical light
beam at 532 nm and intensities from 8 to 10 GW/cm2. At larger intensities, the vortex beams lose their stability,
spontaneously breaking into two fragments. Numerical simulations based on the nonlinear Schrödinger equation,
including the three-photon absorption and nonpolynomial saturation of the refractive nonlinearity, demonstrate
close agreement with the experimental findings.
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I. INTRODUCTION

The spatiotemporal evolution of light beams in nonlinear
(NL) media is a subject of broad interest in fundamental and
applied research [1]. In transparent condensed (solid or liquid)
materials, the beam propagation is generically dominated by
the nonresonant Kerr nonlinearity, which induces changes in
the materials’ refractive index that may lead to the beam’s
self-focusing (or defocusing), spectral broadening, and other
NL phenomena [2]. The beam propagation in centrosymmetric
materials with the nonlinearity described by the third-order
susceptibility, χ (3), is usually modeled by the cubic NL
Schrödinger equation (NLSE) [2]. Of particular interest are
beams representing spatial solitons, with diverse applications
to photonics, optical computing, telecommunications, etc. It is
commonly known that self-focusing media allow the stable
propagation of one-dimensional [(1+1)D] spatial solitons,
due to the balance between the linear diffraction and self-
focusing [3]. However, two-dimensional [(2+1)D] optical
solitons in media with the instantaneous cubic nonlinearity
are unstable, due to the catastrophic self-focusing (critical
collapse) at high powers [4]. Nevertheless, saturation of the
nonlinearity may prevent the collapse, securing stable soliton
propagation. In particular, the analysis has shown that the
NLSE produces stable solutions for materials exhibiting an
interplay of the focusing third-order and defocusing fifth-order
susceptibilities, with Reχ (3) > 0 and Reχ (5) < 0, in one, two,
and three dimensions [5,6]. Recently, the stable propagation of
(2+1)D spatial solitons in carbon disulfide, CS2, supported by
this mechanism, has been demonstrated experimentally [7]. On
the other hand, by using resonant nonlinearity in the rarefied
gas of three-level atoms—which includes competing cubic
and quintic nonlinearities, along with the four-wave mixing
(FWM)—it was possible to demonstrate the stabilization, on a
long propagation distance (∼20 diffraction lengths), of various
soliton species including fundamental, dipole, and vortex ones.
The FWM in a nonresonant medium (glass) was exploited
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too to arrest the collapse of (2+1)D quasisolitons [8,9].
Furthermore, applying a nonlinearity-management procedure
[10], it was possible to observe stable (2+1)D spatial solitons
in a composite with suppressed χ (3) but conspicuous focusing
χ (5) and defocusing χ (7) susceptibilities [11].

In defocusing media, spatial solitons appear as optical
vortices and dark solitons [12]. The vortices are axisymmetric
beams with a phase singularity and zero amplitude at the pivot
[13]. These helical beams carry the phase factor, exp(imθ),
where θ is the azimuthal coordinate and m is the topological
charge. Contrary to bright (fundamental) spatial solitons,
delocalized (dark) optical vortex solitons (DOVSs), supported
by a finite background, are stable structures in defocusing NL
media [14]. Experimental observations of DOVSs in defocus-
ing media were reported by several groups [14,15]. However,
bright (self-trapped) optical vortex solitons in self-focusing
media are subject to spontaneous azimuthal symmetry break-
ing due to the corresponding modulational instability [16–20].
Many works have aimed to identify suitable conditions for the
stabilization of self-trapped optical vortex solitons [21–26]. In
particular, bright optical vortex solitons in media combining
cubic focusing and quintic defocusing nonlinearities have
regions of stability and azimuthal instability, depending on the
beams’ power [25–27]. While this subject has been elaborated
upon theoretically, no experimental report showing the stable
propagation of a self-trapped vortex beam in a self-focusing
uniform medium with local nonlinearity has been presented,
thus far.

This work aims to report the observation of effectively
stable propagation of (2+1)D self-trapped vortex beams, with
topological charge m = 1, in a condensed optical medium,
viz., liquid CS2, which features strong self-focusing [28].
The stable propagation of self-trapped vortex beams, which
keep their shape and size unaltered over approximately five
Rayleigh lengths, is reported here, exploiting a combination
of the saturation of the refractive nonlinearity and three-photon
absorption (3PA). The behavior of the self-trapped vortex
beam is reproduced by using a modified NLSE which very
well models the filamentation of light in CS2, generated by
a picoseconds laser input at 532 nm [29]. In the instability
regime, splitting of the vortex beam into two separating
fragments is observed at large intensities, in agreement with
the numerical simulations.
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II. EXPERIMENTAL SETUP

The setup used to study the vortex-beam propagation is
displayed in Fig. 1. The second-harmonic beam at 532 nm,
obtained from a Nd:YAG laser (80 ps, 10 Hz, 1064 nm), with
the maximum pulse energy of 10 µJ, was used. An optical
vortex beam with topological charge m = 1 was produced
by passing the Gaussian beam through a phase plate (VPP)
manufactured by RPC Photonics. The control of the incident
beam’s power was provided by a λ/2 plate followed by a
Glan prism, which assures that the beam is linearly polarized.
A telescope was used to adjust the beam waist, in order to
illuminate a large area of the VPP, and a spatial filter was used
to eliminate higher-order diffracted light. The vortex beam was
focused by a 5-cm focal distance lens (L1) on the input face of a
glass cell filled by CS2. The waist of the Gaussian-shaped beam
was 11 μm, and the vortex’s core radius at the focus was 3 μm.
Figure 1(b) shows the transverse intensity profile of the beam
at the input face of the sample. To confirm the presence of the
topological charge carried by the beam, the triangle aperture
method was used [30]. The respective diffraction pattern is
shown in Fig. 1(c), where the two bright points on each side
of a triangular lattice correspond to m = 1.

Transverse vortex-beam profiles were recorded using a
charge-coupled device (CCD) camera aligned with the beam-
propagation direction (the z axis). Cells of thickness 1, 2, 3, 4,
and 5 mm filled by CS2 were used to image the propagation
of the vortex beam over different distances, as in [31]. Lens
L2 was used to obtain the beam’s image at the output face
with magnification M = 4. The imaging system, consisting
of lens L2 and the CCD, can scan along z to image the
input and output face of the five cells, maintaining the same
magnification. Small marks on the input and output faces of
the cells help to identify the correct position of the imaging
system, by observing a sharp image of the mark in the
CCD. To observe the evolution of the vortex beam in the
transverse plane, measurements were first performed with a

FIG. 1. (a) The experimental setup: polarizer (P); mirror (M);
telescope (T); vortex phase plate (VPP); spatial filter (SF); spherical
lenses with f1 = 5 mm (L1) and f2 = 5 mm (L2). The CCD1 camera
produced the transmitted-beam spatial profile. Cylindrical lenses with
f = 40 mm (CL1) and f = 80 mm (CL2), and CCD2 were used in
the SLIM setup. The cell’s length is 10 mm. (b) The intensity profile
of the input vortex beam. (c) The diffraction pattern of the beam with
topological charge m = 1, produced by the triangle aperture method.

1-mm-long cell. The imaging system was translated along the
z axis to image the entry (at z = 0) and output of the cell
(at z = 1 mm). Then, the 1-mm-long cell was replaced by a
2-mm-long cell maintaining the same position of the input
face, with respect to lens L1, and translating the imaging
system over z = 2 mm. The initial position of the cell was
corroborated using side-view measurements (with precision
of ∼1 µm), as described below. The same procedure was
performed for the other cells with different thicknesses. In
addition, beam images were obtained using the scattered-light
imaging method (SLIM) [32], by measuring the weak scattered
light in the direction perpendicular to the beam’s pathway. A
cell 10 mm long was used for these measurements. The setup
collecting the scattered light consisted of two cylindrical lenses
with 40-mm (y axis) and 80-mm (z axis) focal lengths, used
to obtain images with magnification of 7 and 1/2, respectively.
The experiments were performed with intensities adjusted
from I = 0.5 GW/cm2 to I = 25 GW/cm2, to identify regions
of stable and unstable propagation of the vortex beam. The
margin of error in the experimental measurements is given by
the camera pixel size (4.6 µm) divided by the magnification.
To ensure that the images correspond to the same laser pulses,
both CCD cameras were triggered by Nd:YAG laser pulses, at
the repetition rate of 10 Hz. Additionally, to keep control over
intensity fluctuations of the laser, a postfiltering selection was
carried out to keep records solely of images corresponding to
the intensities varying at most by ±2%.

III. RESULTS AND DISCUSSION

Figure 2 presents the beam profiles at the entrance and
exit faces of each cell used, for two values of the laser
intensity. Figure 2(a), corresponding to relatively low intensity,
I = 1 GW/cm2, shows that the vortex beam diverges along the
propagation pathway without changing its ringlike shape, NL
effects being negligible in this case. On the other hand, it is
observed in Fig. 2(b) that, for I = 9 GW/cm2, the beams’
shape and radius remain constant for the propagation over
3 mm, which corresponds to approximately five Rayleigh
lengths; this result clearly indicates the formation of a stable
self-trapped vortex beam. At z > 3 mm, the beam diverges
because the intensity is depleted by the NL absorption. As
shown below, numerical simulations corroborate that a long
distance of the stable propagation of self-trapped vortex beams
can be attained. Figures 2(c) and 2(d) show the intensity
distribution along the radial coordinate corresponding to
Figs. 2(a) and 2(b), respectively. The solid and dashed lines
are guides to the eyes, which represent the evolution of the
beam size.

Figure 3 displays side-view images recorded for intensities
from 1 to 18 GW/cm2. Figures 3(a) and 3(b), in conjunction
with Fig. 2(a), demonstrate that, for I � 5 GW/cm2, the vor-
tex beam does not change its ring shape, while diverging due to
the linear diffraction. For 5 GW/cm2 � I < 8 GW/cm2, the
beam’s divergence weakens with the increase of the intensity,
due to the self-focusing effect. Figures 3(c)–3(e), obtained
for 8 GW/cm2 � I � 10 GW/cm2, exhibit the stable prop-
agation of the vortex beam up to the distance of ∼3 mm.
Thus, Figs. 2(b) and 3(c)–3(e) provide the direct evidence
for the propagation of a stable ring-shaped vortex. However,
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FIG. 2. Transverse vortex-beam profiles at input and output faces
for cells with thicknesses 1, 2, 3, 4, and 5 mm: (a) I = 1 GW/cm2 and
(b) I = 9 GW/cm2. The lines are guides to the eye. (c,d) Normalized
intensity distributions of the beam at each position from (a,b).

at I > 10 GW/cm2, strong concentration of the power was
observed in the course of the first 3 mm of the propagation,
and the transverse images exhibit distortion of the beam
profiles. These asymmetries gradually increase, up to splitting
of the vortex beam observed at I � 18 GW/cm2, as shown in
Fig. 3(f). The low resolution of the image after the splitting is
due to the weakness of the scattered light. Figures 3(g)–3(l)
present the variation of the beam’s radius in the course of the
propagation, corresponding to Figs. 3(a)–3(f), respectively.
Shaded rectangles display the region where the self-trapped
vortex beam is stable.

In the range of intensities used, the NLSE for CS2 has
to be modified to include additional effects, which depend
on the wavelength and pulse duration [28]. In particular, the

FIG. 3. Experimental side-view images of the vortex-beam prop-
agation for intensities (a) 1 GW/cm2, (b) 5 GW/cm2, (c) 8 GW/cm2,
(d) 9 GW/cm2, (e) 10 GW/cm2, and (f) 18 GW/cm2. (g–l) The
beam’s radius as a function of the propagation distance, corresponding
to (a–f), respectively. The shaded areas indicate the region of the
stable vortex-beam propagation.

combination of χ (3) and χ (5) terms was used to explain the
formation of bright spatial solitons excited by 100-fs laser
pulses at 920 nm [7]. On the other hand, by illuminating CS2

by 12-ps pulsed beams at 532 nm, it was concluded in Ref. [29]
that, for the range of intensities tested, the nonlinearity
is properly described by a nonpolynomial refractive index,
n2,eff(I ) = aI/(1 + b2I 2), with a = 6.3 × 10−33 m4/W2 and
b = 2.3 × 10−15 m2/W. This specific expression (Ansatz) for
the NL refractive index was adopted to fit data obtained for
CS2 in the picosecond regime by means of the D4σ method
[33], which provides very accurate measurements for the
second moment of the intensity distribution of the transmitted
beam. Instead of measuring the variation of the transmitted
intensity, as in the case of the Z-scan technique, the D4σ

method directly measures changes in the transverse profile
of the transmitted beam, thus leading to a more exact value
of the NL refractive index [33]. Experimental data reported
in Ref. [29] clearly show saturable-refraction behavior of the
CS2 medium for intensities on the order of tens of GW/cm2.
On the other hand, the usual expression for the saturable
nonlinearity, n2,eff(I ) = a′/(1 + b′I ), adopted in Ref. [16],
does not adequately describe the experimental results for
low intensities. Figure 4(a) shows a comparison between the
two NL refractive Ansätze proposed in Refs. [16] and [29],
where values of a′ = 20 × 10−18 m2/W and b′ = 19.3 ×
10−15 m2/W are used to compare the results corresponding
to the model of Ref. [16] (the red line) with their counterparts
reported in Ref. [29] (the black line). Note that both models
produce similar behavior of n2,eff for high intensities. Thus,
the saturation Ansatz from Ref. [29] is expected to produce the
instability of the vortex beam, leading to splitting of the vortex,
similar to results of Ref. [16]. However, for low intensities the
model from Ref. [16] does not describe the experimentally
observed stability region of the self-trapped vortex beams in
CS2 [the shaded vertical rectangle in Fig. 4(a)].

However, it should be noted that the model proposed
in Ref. [29] is no more valid for low intensities [the
region corresponding to the dashed line in Fig. 4(a)]. The
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FIG. 4. (a) The effective NL refractive index of CS2 as a function
of the laser intensity. Red (gray in the black-and-white rendition) and
black lines correspond to the models adopted in Refs. [16] and [29],
respectively. The vertical blue bar indicates the intensity range of the
effective stability of the self-trapped vortex beams. (b) Transmittance
of CS2 versus the input laser intensity, in the 1-mm-thick cell. The
solid line corresponds to the theoretical fit corresponding to the 3PA
effect.

measurements reported in Ref. [29] show that n2 ≈ 1.4 ×
10−14 cm2/W for intensities in the range of 1–2 GW/cm2

[34]. Indeed, the signal obtained by using the D4σ method
becomes very weak at this level, therefore the growth of
n2, eff between 1.4 × 10−14 cm2/W and ≈3 × 10−14 cm2/W at
intensity 20 GW/cm2 may be understood as a contribution of
the self-focusing fifth-order nonlinearity. At larger intensities,
the effect of the plasma generation, characterized by the NL
absorption, makes the self-defocusing NL refraction more and
more dominant, contributing to the reduction of n2, eff . This
behavior can be understood as a physical explanation of the
overall variation observed in Fig 4(a).

As concerns the NL absorption, it was also concluded in
Refs. [29,34] that the two-photon absorption is negligible,
while the three-photon absorption (3PA) must be taken into
account, with respective coefficient γ = 9.3 × 10−26 m3/W2.
Figure 4(b) shows the intensity transmitted through the CS2

sample (the cell length being 1 mm) versus the incident
beam’s intensity, for the vortex beam with m = 1. Blue
circles represent experimental data collected under the same
conditions which were used to study the propagation of
the self-trapped vortex beam. The solid line represents the
theoretically calculated evolution of the optical intensity, I ,
along the propagation distance, z, produced by the respective
differential equation, dI (z)/dz = −γ I 3(z), which implies that
the absorption in CS2 is determined solely by the 3PA, as
concluded in Refs. [29,34]. It is seen that, with the value of γ

reported in Ref. [29], the experimental and theoretical results
are in very good agreement.

To describe the propagation of the vortex beams in CS2

in the picosecond regime, we used a modified NLSE, which
includes the saturable-refractive index, and the 3PA as per
Ref. [29]:

i
∂E

∂z
= − 1

2n0k
�⊥E −

(
kaI 2

1 + b2I 2
+ i

γ I 2

2

)
E, (1)

where E is the field amplitude (I = 2ε0n0c|E|2), �⊥ the
transverse Laplacian, z the propagation distance, k = 2π/λ

(λ is the carrier wavelength), n0 the linear refractive index,
and b the saturation coefficient. We normalize the variables as
X = x/w0, Y = y/w0, Z = z/L, U = E/Er , with L = n0kw2

0
and Er = (2bn0cε0)−1/2, where w0 is the initial beam’s waist,

FIG. 5. Numerically generated images showing the evolution of
transverse vortex-beam profiles (with m = 1) along the propagation
direction, for intensities 1 GW/cm2 (a), 9 GW/cm2 (b), 12 GW/cm2

(c), and 15 GW/cm2 (d).

c the speed of light in vacuum, and ε0 the vacuum permittivity,
to rescale Eq. (1):

∂U

∂Z
= i

2

(
∂2U

∂X2
+ ∂2U

∂Y 2

)
+ i

η|U |4U
1 + |U |4 − μ|U |4U, (2)

where η ≡ Lka/b2 and μ ≡ γL/(2b2). The intensity is related
to the normalized field by I = |U |2/b.

Simulations of Eq. (2) were initiated with the input wave
form U (R,θ,Z = 0) ∝ exp(−R2/w2

0 + imθ ) tanh[R/(2wv)],
where R and θ are the polar coordinates and m is the
topological charge, w0 and wv being waists of the Gaussian
background and vortex core, respectively. Numerical results
for the vortex-beam propagation in the 10-mm-long cell filled
by CS2 were produced for L = 2.3 mm, η = 28, and μ = 3.3.

Figure 5 shows the evolution of the transverse beam’s
profiles for intensities between 1 and 15 GW/cm2, obtained by
simulations of Eq. (2), which were performed by means of the
split-step compact finite-difference method [35]. Figure 5(a)
displays the divergence of the vortex beam for I = 1 GW/cm2,
which is similar to what happens in the linear regime,
according to Figs. 2(a) and 3(a). For I = 9 GW/cm2, the
propagation of the self-trapped vortex beam can be observed
over a distance of ∼3 mm, as shown in Fig. 5(b), which agrees
with Figs. 2(b) and 3(d). Figure 5(c) shows a deformation
of the beam’s profile for I = 12 GW/cm2, which gradually
grows, leading to the complete split of the vortex beam at
I = 15 GW/cm2, as shown in Fig. 5(d).

Figure 6 shows a longitudinal cross section of the vortex-
beam propagation, produced by simulations of Eq. (2). At
I = 1 GW/cm2 [Fig. 6(a)], the vortex beam keeps the ring
shape but diverges due to the diffraction. On the other hand,
in Fig. 6(b), corresponding to I = 8.5 GW/cm2, the beam
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FIG. 6. Numerical results for the vortex-beam propagation at (a)
I = 1 GW/cm2 and (b) I = 8.5 GW/cm2, obtained by simulations
of Eq. (2). (c,d) The beam’s radius as a function of the propagation
distance, produced by the simulations for the 3PA coefficient (c)
γ = 9.3 × 10−26 m3/W2 and (d) γ = 0, with various intensities. The
shaded area in (c) indicates the intensity range of stable propagation
of self-trapped vortex beams.

slightly diverges at first, but, after passing ∼1.2 mm, it keeps
constant shape and width in the course of the propagation
over ∼3 mm, and diverges afterwards. Figure 6(c) shows the
variation of the vortex-beam radius at several positions in the
cell for different intensities, the shaded rectangles displaying
the region of the stable propagation of the (2+1)D self-trapped
vortex beams, for I = 8 and 9 GW/cm2. For 15 GW/cm2, the
curve ends at z = 3 mm, as the vortex splits in two fragments
beyond this point.

To highlight the effect of the 3PA (γ > 0), Fig. 6(d) shows
the evolution of the vortex-beam radius produced by simula-
tions of Eq. (2) with γ = 0. In this case, at I < 7 GW/cm2 the
beam diverges, as in Fig. 6(c). At I = 7.5 GW/cm2, it initially
diverges, passing 1.2 mm, but features stable propagation of
the self-trapped vortex beam over the subsequent 2.5 mm.
For I = 8 GW/cm2, the vortex is unstable, splitting into two
fragments.

Figure 7(a) shows, at I = 18 GW/cm2, two bright frag-
ments of radius 17 µm at the output face, with distance 68 µm
between them, the intensity of each one being 10% of the
initial value. The intensity loss is caused by the 3PA, while
the difference between the fragments results from a small
asymmetry in the input beam. Figure 7(b) shows the respective
numerical result, obtained from Eq. (2) for I = 15 GW/cm2.
The spiral emerging around the fragments in the simulations
(it is more salient at I � 16 GW/cm2) was not observed in the
experiment, as the camera was not sensitive enough for that.

The experiment was repeated for the input beam with
vorticity m = −1, obtained by reversing the input face of the
VPP. Figures 7(c) and 7(d) display the respective experimental
and numerical results, with two fragments similar to those in
Figs. 7(a) and 7(b), but rotated by 90°. The experimental and
related numerical images obtained for m = −1 demonstrate
that the results are highly reproducible. Similar results have
been obtained for other input intensities.

FIG. 7. (a,c) Experimental images obtained in the output face of
the cell, after the splitting of the vortex beam with topological charge
m = +1 (a) and m = −1 (c), for laser intensity I = 18 GW/cm2.
(b,d) Simulations of Eq. (2) for (b) m = +1 and (d) m = −1, at
I = 15 GW/cm2.

In the simulations, the fragments emerging after the
splitting of the vortex beam move along tangents to the vortex
ring, due to conservation of the orbital angular momentum
(see Supplemental Material [36]). However, unlike previous
theoretical results which predict the formation of fundamental
solitons after the splitting [16,17], in the present case the
fragments are not solitons, because of the losses induced
by the 3PA. The model used here can be applied to the
propagation of vortex beams with multiple topological charges
too, but they tend to be unstable against splitting, unlike the
vortex with m = 1. In particular, simulations (not shown here)
demonstrate that a vortex beam with m = 2 spontaneously
splits into a ring-shaped set of four bright fragments (that
cannot be identified either as fundamental solitons with
m = 0), which move due to the conservation of angular
momentum.

Simulations were also performed with I/(1 + b2I 2) in
Eq. (2) replaced by 1/(1 + bI ), which is the form of the
saturable nonlinearity adopted in Ref. [16]. Varying the
input intensity from 1 to 25 GW/cm2, no stability region
for self-trapped vortex beams was found in that case. Thus,
the crucially important ingredients necessary for the stable
propagation of the self-trapped vortex beams are the appro-
priate intensity dependence of the NL refractive index, as
derived in Ref. [29], and the 3PA. Actually, the 3PA term in
Eq. (2) helps to expand the stability region for the self-trapped
vortex beam. In particular, with this term kept in Eq. (2),
the splitting of the vortex into two fragments is observed
at I > 13 GW/cm2, while the stable propagation occurs at
8 GW/cm2 � I < 10 GW/cm2. However, if the 3PA term is
dropped, the splitting occurs at I � 8 GW/cm2, with a tiny
stability region spotted at 7.4 GW/cm2 � I � 7.6 GW/cm2.
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IV. SUMMARY

In summary, the observation and characterization of
(2+1)D self-trapped vortex beams, which stably pass approx-
imately five Rayleigh lengths, is reported using a condensed
medium (liquid CS2) with the local saturable self-focusing
nonlinearity. The self-trapped vortex beams with topological
charge m = 1 are azimuthally stable at moderate values of
the input intensity, due to the saturation of the refractive
nonlinearity and the instability-suppressing effect of the 3PA
(three-photon absorption). At higher intensities, the vortex
beams are unstable, spontaneously splitting into a pair of
separating fragments. The experimental findings are accurately
modeled by the modified NLSE with the saturable NL
refractive index and the 3PA coefficient gathered from recent
measurements [29].

Strictly speaking, the stability of the self-trapped vortex
beams reported here is a transient effect, as the 3PA eventually
causes degeneration into the linear regime, while the saturable-
refractive nonlinearity alone cannot stabilize self-trapped
vortex beams in the absence of the nonlinear loss [1,16]. On
the other hand, as mentioned above, the analysis predicts a
stability region for self-trapped (bright) optical vortex solitons

in the conservative medium with the cubic-quintic (rather
than saturable) nonlinearity [24–27]. Recently, this nonlin-
earity was implemented in colloidal samples, the loss being
negligible at experimentally relevant propagation distances
[10,11]. The work aimed at the creation of unconditionally
stable bright optical vortex solitons in this setting is currently in
progress.
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Cerda, Phys. Rev. Lett. 105, 053904 (2010); L. E. E. de Araujo
and M. E. Anderson, Opt. Lett. 36, 787 (2011); A. M. Amaral,
E. L. Falcão-Filho, and C. B. de Araújo, ibid. 38, 1579 (2013).
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