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Optomechanics and thermometry of cryogenic silica microresonators
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We present measurements of silica optomechanical resonators, known as bottle resonators, passively cooled in
a cryogenic environment. These devices possess a suite of properties that make them advantageous for preparation
and measurement in the mechanical ground state, including high mechanical frequency, high optical and
mechanical quality factors, and optomechanical sideband resolution. Performing thermometry of the mechanical
motion, we find that the optical and mechanical modes demonstrate quantitatively similar laser-induced heating,
limiting the lowest average phonon occupation observed to just ∼1500. Thermalization to the 9 mK thermal bath
would facilitate quantum measurements on these promising nanogram-scale mechanical resonators.
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I. INTRODUCTION

Cavity optomechanical systems, consisting of high-quality
optical cavities coupled to mechanical resonators, offer a
promising route to making precision measurements in both the
applied and fundamental science domains [1]. In dispersively
coupled systems, the motion of the mechanical resonator shifts
the resonance frequency of the optical cavity, which can in turn
be observed as periodic changes in the amplitude or phase of
light traversing the cavity. Optomechanics thus provides an
extremely sensitive readout for micro- and nanomechanical
resonators, enabling their use as exquisite sensors of a variety
of phenomena on small scales, including displacement [2],
force [3–5], torque [6,7], and acceleration [8]. This read-
out sensitivity has also motivated fundamental searches for
quantum properties of nanomechanical resonators [9] at, or
near, their vibrational ground state where mechanical motion
originates from quantum zero-point fluctuations. The hybrid
nature of optomechanical systems additionally makes them
desirable for applications in quantum information processing
architectures [10], and as a resource for entangled [11],
squeezed [12], or other nonclassical states [13].

Noise from thermally driven oscillations of mechanical
resonators poses a significant obstacle to performing many
of these proposed experiments. Mechanical resonators with
frequencies in the kHz to GHz range have thermal occupancies
of billions to thousands of phonons at room temperature,
which can easily drown out any quantum signature. Reducing
this thermal occupation is thus of great importance. The
optomechanical interaction can be exploited to actively cool
the mechanical mode into or near its ground state [14–16] but a
fundamental limit to this process is imposed by the temperature
of the mechanical resonator’s bath, necessitating cryogenic
precooling [1]. Active optomechanical cooling furthermore
reduces the quality factor (Qm) of the mechanical resonator,
decreasing the signal-to-noise ratio at low temperatures [1].
For these reasons, we focus on passively cooling our res-
onators, which additionally facilitates the use of sensitive op-
tomechanical systems for probing low temperature phenomena
such as superfluidity [17–19] and superconductivity [20].

In previous experiments, optomechanical systems have
been passively cooled using both helium flow cryostats [16,21]
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and dilution refrigerators [11,22]. Our system uses a dilution
refrigerator for its lower achievable base temperature and,
in contrast to the system presented in Ref. [22], uses the
highly efficient tapered-fiber coupling method [23,24], which
is compatible with both bulk and on-chip optomechanical
systems [25,26].

Here we present measurements of so-called silica bottle
resonators [27,28], shown in Fig. 1, which have ellipsoidal
shapes and exhibit optical whispering gallery modes (WGM)
in the infrared and visible range, a simulation of which is
shown in Fig. 1(b). They are interesting structures for their
high optical quality factors (Qo up to 108) and the tunability of
their mode structure [28]. Additionally, these bottle resonators
have mechanical breathing modes with frequencies in the 50
to 250 MHz range, Fig. 1(c), corresponding to average phonon
occupancies of just 3.3 and 0.4, respectively, at a temperature
of 9 mK (the base temperature of our dilution refrigerator).
The significant modal overlap of the optical and mechanical
modes, which are both localized at the equator, leads to
a large optomechanical coupling, on the order of G/2π ∼
10 GHz/nm. Furthermore, the combination of high optical
quality factor and high mechanical frequency places these
devices in the sideband-resolved regime, enabling many of
the important tools of optomechanics [1].

II. EXPERIMENTAL DETAILS

We fabricate our bottle resonators by applying tension to
each end of a single mode optical fiber while melting it with
a CO2 laser. This process results in a string of resonators, as
shown in Fig. 1(a), separated from each other by thin stems.
By controlling the intensity of the CO2 laser and the length
of the pull time, we create resonators with symmetric shapes
and extremely thin supporting stems. This reduces phonon
tunneling through the stems and increases the mechanical
quality factor [29].

Tapered fibers [23,24] are used to couple light into the
WGMs of the bottles. These fibers have a small core (on the
order of the wavelength of the light) and no cladding, save the
medium surrounding the fiber. Our tapers are created by heat-
ing an optical fiber with a hydrogen torch and pulling it until
a minimum diameter of ∼1 μm is reached [26], resulting in a
large evanescent field. This allows efficient coupling of light
to WGM resonators through frustrated total internal reflection.
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FIG. 1. (a) Photograph of a string of bottle resonators along
with the tapered fiber for optomechanical measurement. Scale bar
is 100 μm. (b) Simulation of a WGM optical resonance, showing a
cross section of the bottle with the optical field localized along the
equator. (c) Representative mechanical spectrum, measured at room
temperature. The three most prominent resonances are indicated by
the corresponding mechanical mode simulation.

We passively cool the taper and bottle resonators using a
dilution refrigerator with a base temperature of 9 mK [25]. To
facilitate taper-resonator coupling at cryogenic temperatures,
we have built an optomechanical coupling system within the
inner vacuum can (IVC), on the mixing chamber plate, as
pictured in Fig. 2(a). The bottles are mounted on top of
a stack of nanopositioning stages, which allow full three-
dimensional control over the position of the resonators. They
are thermally anchored to the mixing chamber through a series
of oxygen-free high-conductivity copper plates and braids. The
taper is epoxied and mounted to a large Invar block, which
minimizes the effects of thermal contractions. A homebuilt
low-temperature microscope [25] enables real-time in situ
imaging of the taper-resonator system with a resolution of
∼1 μm [Fig. 2(b)]. We inject light from a tunable diode laser
housed at room temperature into the tapered fiber and detect
the transmitted light with a fast photodetector. The optical
and mechanical properties of the bottles can thus be measured

FIG. 2. (a) Optomechanical coupling apparatus on the mixing
chamber stage of our dilution refrigerator. The bottles are mounted
onto the gold-plated copper mount while red light injected into the
fiber highlights the tapered region. (b) Image of a bottle resonator and
tapered fiber taken with the low-temperature microscope. Scale bar
is 100 μm.

from the low- and high-frequency parts of the photodetector
voltage, respectively.

III. OPTICAL PROPERTIES

Characterization of the near-infrared optical modes is
performed by scanning a tunable diode laser (1500–1630 nm)
with angular frequency ωL across a resonance, resulting in
the following expression for the low-frequency part of the
transmission ṅout (in units of photons per second) through the
tapered fiber:

ṅout = ṅin − κ0ncav. (1)

Here ṅin = Pin/�ωL is the rate of photons passing through
the tapered fiber, for injected laser power Pin and reduced
Planck constant �. The linewidth of the resonance is given by
κ = κ0 + κex, where κ0 is the intrinsic decay rate and κex is
the rate at which photons are exchanged between the bottle
and tapered fiber. Our setup allows us to sensitively control
the relative strengths of these intrinsic and extrinsic decay
rates [25]. For the measurements that follow, the resonator is
operated in the slightly undercoupled regime (κex � κ0) with
κex/2π ≈ 20 MHz and κ0/2π ≈ 30 MHz.

The number of photons inside the cavity,

ncav = ṅinκex

κ2

4 + �2
, (2)

is a function of the laser detuning � = ωL − ωo from the cavity
resonance ωo. For the WGM in a bottle of radius R, the angular
optical resonance frequencies ωo are given by

ωo = lc

Rc1n
. (3)

The integer l is a mode label for a particular resonance, c

is the speed of light in vacuum, n is the refractive index of the
bottle, and c1 is a geometric factor which accounts for the fact
that the optical mode is not perfectly confined to the surface
of the resonator [30].

For relatively low injected optical powers (Pin � 250 nW),
the optical resonances can be measured without heating
the mixing chamber and have Qo of 106 − 107, which are
consistent with their room-temperature quality factors. At
larger injected powers, light lost from the taper (∼30%) heats
the cryogenic environment [25]. Furthermore, the high Qo,
and correspondingly long photon lifetime in the cavity, leads
to an increased absorption of laser photons in the silica.

This absorption generates a local heating of the silica within
the optical mode volume, which in turn causes both a change in
the bottle dimensions through thermal expansion and a change
in the refractive index through the thermorefractive effect. We
can then rewrite Eq. (3) with Taylor-expanded expressions for
the radius and the refractive index [30],

ωo(T ) = lc

R(1 + ε�T )c1n
(
1 + 1

n
∂n
∂T

�T
)

≈ ωo[1 − b(T )�T ], (4)

where T is the equilibrium temperature of the glass in the
absence of laser heating, �T is the temperature increase
caused by optical absorption, and ε is the linear thermal
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expansion coefficient. Note that both n and ε vary with T .
Although higher-order terms become important under some
conditions [31], here we keep only terms to first order in �T

and for simplicity write b(T ) = ε + 1
n

∂n
∂T

.
Incorporating the modified ωo into Eq. (2), we have

ncav = ṅinκex

κ2

4 + (� + �nlncav)2
, (5)

where the thermo-optical effects have been written into a
nonlinear detuning parameter �nl [32,33]. This parameter can
be thought of as the shift in the optical resonance frequency
per intracavity photon, and is related to the parameters in
Eq. (4) by �nlncav = b(T )�T , under the assumption that the
temperature gradient �T is proportional to the number of
intracavity photons. As we will see, the exact constant of
proportionality will depend on the resonator’s heat dissipation.

Equation (5) is now a nonlinear function of ncav, giving
rise to up to three distinct real solutions for appropriate values
of �nl. Experimentally, this is manifest as a bistability and
hysteresis in the resonance shape, which is dependent on the
scanning direction of the laser [34,35]. As the laser is tuned
closer to the optical resonance, more photons are coupled into
the cavity, causing a greater shift in the resonance frequency.

This nonlinear optical behavior is observed in our experi-
ments, as shown in Fig. 3 for a R = 25 μm bottle. Using the
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FIG. 3. Transmission measured across a bottle optical resonance
with a wavelength of 1516 nm and a temperature of 4.2 K. For
similar injected powers, the resonance exhibits different behavior
when the bottle is (a) immersed in helium exchange gas and (b)
surrounded by vacuum. Fits to the data (black line) yield nonlinear
detuning parameters �nl/2π of approximately (a) −3 × 10−7 Hz and
(b) −2 × 10−6 Hz.

cubic equation to exactly solve Eq. (5), we fit our experimental
data to extract �nl under various experimental conditions. In
particular, we find that injecting a large quantity of helium
exchange gas into the IVC at 4.2 K reduces �nl by an order of
magnitude (�nl/2π ≈ −3 × 10−7 Hz compared to −2 × 10−6

Hz in vacuum). We furthermore find that �nl at the fridge base
temperature (�nl/2π ≈ −3 × 10−6 Hz) is comparable to that
at 4.2 K in vacuum.

Although it will not be discussed here, it is worth noting that
at intermediate pressures of helium exchange gas, we observe a
higher-order thermo-optical nonlinearity. This results in up to
five real solutions to a modified form of Eq. (5), and presents
itself in the experiment as a multistability in the resonance
profile. This effect is thought to originate from a reversal of the
thermorefractive effect at low temperatures [31], although the
nonlinear temperature dependence of the thermal expansion
coefficient [36] may also contribute.

IV. MECHANICAL PROPERTIES

The high-frequency part of the taper transmission encodes
the mechanical motion of the bottle resonator. We collect
this signal by recording a time trace of the high-pass filtered
photodetector voltage with a fast analog-to-digital converter.
The R = 25 μm bottle studied has several mechanical res-
onances, with the most prominent being at 55, 85, and
109 MHz, with room temperature quality factors of ∼104.
At low temperatures, we focus on the lowest-frequency
(55 MHz) mode, which has an effective mass meff = 64 ng
and optomechanical coupling strength G/2π ≈ 8 GHz/nm.

It is important to note that, despite significant efforts to
thermally anchor the bottle resonators to the base plate of the
fridge, the thermometers used to measure the temperature of
the mixing chamber will not provide an accurate measure of
the mechanical mode temperature. The thermally insulating
nature of silica along with the very thin connections between
the bottles prevent efficient conduction of heat, while incident
laser light used to measure the mechanics leads to local
heating of the resonator. Dynamical back-action effects in
the optomechanical interaction can also lead to mode-specific
heating or cooling [1] which is not reflected in the temperature
of the bulk silica.

To directly determine the temperature of the mechanical
mode, we exploit the thermally driven motion of the resonator.
In this case, the resonator’s spectral response is quantified by
its one-sided power spectral density (PSD). For a resonator
with effective mass meff and a mechanical mode temperature
T , the displacement PSD is given by [37]

Sxx(ω) = lim
τ→∞

1

τ
|X(ω)|2

= 4kBT 	m

meffQm
[(

	2
m − ω2

)2 + (ω	m/Qm)2
] , (6)

for a sufficiently long measurement time τ (τ � 2π/	m).
Here kB is the Boltzmann constant, 	m is the angular frequency
of the mechanical resonance, and X(ω) is the Fourier transform
of the resonator’s position x(t). It is evident that the prefactor of
the displacement PSD (4kBT/meff) scales linearly with T and
thus gives a direct measurement of the mode temperature.
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In our experiments we measure this displacement response
by Fourier transforming the photodetector voltage, squaring
and dividing the result by the measurement bandwidth. The
voltage PSD is given by the sum of a detection system-
dependent noise floor SNF

V V and the transduction of Sxx(ω)
through the optical cavity and photodetector,

SV V (ω) = SNF
V V + ṅ2

in
G2

	2
m

α(	m,�)Sxx(ω). (7)

The transduction of Sxx(ω) scales with the square of the rate
of injected photons, as well as the square of the ratio of the
optomechanical coupling strength to the mechanical resonance
frequency. All of the detuning dependence of SV V (ω) is con-
tained in α(	m,�) (see Appendix), a function which describes
the transduction of the resonator’s fluctuations in position into
fluctuations in first taper transmission and then voltage.

Precise knowledge of the laser detuning, along with the
optomechanical coupling strength G, injected optical power
and the gains of the detection electronics would allow the
extraction of Sxx(ω), and hence the mode temperature, from
Eq. (7). This is not always experimentally feasible, so we
instead indirectly calibrate SV V (ω) by injecting an all-optical
signal of known energy into the system [38]. The general
procedure for doing so is outlined in Fig. 4. An electro-optic
modulator (EOM) driven at angular frequency 	mod phase
modulates the input laser light, generating optical sidebands on
the laser at frequencies ωL ± k	mod for integer k. If the phase
modulation depth β is small (β = πV0/Vπ � 1 for applied
voltage V0 and EOM half-wave voltage Vπ ), only the first order

Laser EOM

FIG. 4. Schematic of the mechanical mode thermometry tech-
nique. Modulation of laser light by an electro-optic modulator (EOM)
generates optical sidebands on the laser spaced by 	mod. The motion
of the optomechanical resonator (OMR) imposes additional sidebands
at 	m. Both sets of sidebands are detected by the photodiode (PD),
resulting in a high-pass filtered (HPF) spectrum that has two distinct
peaks corresponding to the phase modulation (54.5 MHz) and the
mechanical motion (55 MHz).

sidebands (k = 1) need be considered. If 	mod is chosen such
that |	mod − 	m| � �, where � = 	m/Qm is the resonance
linewidth, the PSD of the photodetector signal becomes (see
Appendix)

SV V (ω)

= SNF
V V + ṅ2

in

(
G2

	2
m

α(	m,�)Sxx(ω) + α(	mod,�)Sφφ(ω)

)
,

(8)

where Sφφ(ω) is the spectrum of the applied phase modulation.
This spectrum features two distinct peaks, as shown in Fig. 4
at 	mod and 	m.

If we additionally assume that 	mod ≈ 	m, such that the
response of the detection electronics is flat, then α(	mod,�) ≈
α(	m,�) and the phase modulation signal and mechanical
motion are transduced similarly through the optical cavity.
Although the strength of each peak in SV V (ω) depends
sensitively on the injected optical power and the laser detuning,
this dependence is identical between the two peaks, such that it
simply provides an overall scale for the spectrum. In contrast,
any change in T will affect only the mechanical resonance at
	m through Sxx(ω). If the phase modulation conditions are
held constant, we can then find the temperature of the mode
through the ratio

RT = Am

Amod
∝ T , (9)

where Amod is the integrated area under the phase modulation
peak and Am is the area under the mechanical resonance. For
the purpose of these calculations we subtract the detection
noise floor SNF

V V .
We drive our EOM at 	mod/2π = 54.5 MHz and measure

RT at liquid helium temperature (4.2 K), where a copious quan-
tity of exchange gas in the IVC ensures good thermalization
of the bottle resonator with the outer helium bath. The result,
R4.2, fixes the temperature measurement scale. The mechanical
mode temperature is thus given by

T = RT

R4.2
× 4.2 K. (10)

Measurements of the bottle resonator made under various
experimental conditions at low temperatures are shown in
Fig. 5. The laser was scanned across the optical resonance
and the low- and high-frequency parts of the taper trans-
mission were recorded simultaneously. From left to right,
measurements were made at 4.2 K in exchange gas and in
vacuum, as well as in vacuum with the fridge operating at its
base temperature of 9 mK. In all cases, an injected power of
Pin = 24 μW was used.

As the laser is tuned to the center of the optical resonance,
the low-frequency transmission decreases and more photons
are coupled into the bottle. There is a corresponding decrease
in the mechanical resonance frequency, which is accompanied
by an increase in the mode temperature. In exchange gas,
the temperature increase is small, on the order of a few
Kelvin, and the maximum relative frequency shift amounts
to approximately −0.04%. In contrast, when the IVC is
evacuated, we see strikingly similar behavior regardless of
whether the fridge is operated at 4.2 K or base temperature. In
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FIG. 5. (From top to bottom) The low-frequency transmission
of light through the tapered fiber traces out the optical resonance
profile (top), while information about the mechanical resonance at 55
MHz is contained in the power spectral density of the high-frequency
transmission (plotted here on a log scale). From fits to these spectra,
we extract the resonance frequency (red), quality factor (green),
and temperature (cyan) of the mechanical mode across the optical
resonance.

both cases, the mode temperature increases to approximately
40 K, while the mechanical frequency changes by −0.3%. We
also observe a significant decrease in Qm, from 1100 to 600,
as the laser is tuned to the center of the optical resonance.

For a more direct comparison, the mechanical resonance
frequency and inverse Qm are plotted versus measured
mechanical mode temperature in Fig. 6 for a number of injected
optical powers. Black triangles indicate measurements taken
at 77 K (liquid nitrogen) and 295 K (room temperature), where
the bottles were thermalized using nitrogen exchange gas.

V. DISCUSSION

Our measurements reveal key information about heat
dissipation in the bottle resonators. Despite efforts to
thermally anchor the bottles to the base temperature of the
fridge, the lowest achieved mechanical mode temperature was
approximately 4 K, corresponding to an average occupation
of just ∼1500 phonons. This temperature was reached when
helium exchange gas was added to the IVC, indicating that the
gaseous helium facilitated convection between the resonator
and the bath of liquid helium. In vacuum, regardless of whether
the fridge was operated at base temperature or liquid helium
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FIG. 6. (a) Frequency and (b) inverse Qm versus calibrated mode
temperature. Lines are guides to the eye and black triangles are data
points at 77 K (liquid nitrogen) and 295 K (room temperature) in
nitrogen exchange gas.

temperature, the mechanical mode temperature was raised
upon optomechanical measurements, as shown in Figs. 5 and 6.
This is evidence of the intrinsically weak thermal connection
between the mixing chamber and the silica bottle resonator.

While the thermometry presented reflects the mechanical
mode temperature directly, including any dynamical back-
action effects from optomechanical interactions, we conclude
that back-action does not play a significant role in our current
measurements. Shifts in mechanical frequency and quality
factor in Fig. 6 exhibit the same sign on either side of the optical
resonance, in contrast with the antisymmetric shape observed
for optical spring and optomechanical damping effects [1].
Instead, heating of the mechanical mode arises as a result of
the absorption of laser light into the bulk silica. The degree
of nonlinearity in the optical resonances, quantified through
the parameter �nl, serves as an indicator of the temperature
change in the silica generated by the absorbed light. We find
that �nl is nearly an order of magnitude larger in vacuum than
in exchange gas, since the lack of convection greatly reduces
the efficiency with which the bottle can dissipate heat. These
results are consistent with a relative mechanical frequency shift
in vacuum that is nearly ten times larger than that in exchange
gas. Since the optical and mechanical modes occupy nearly
the same volume within the bottle structure, heating by laser
absorption is reflected strongly in the mechanical mode.

Finally, we observe a significant dependence of the
mechanical quality factor on temperature, with a shape
that is characteristic of phonon coupling to configurational
two-level systems in glass [39]. At high temperatures, thermal
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activation over a potential barrier allows transitions between
the two configurations; as the temperature is lowered, thermal
activation ceases and quantum tunneling can occur. At still
lower temperatures, quantum tunneling is also forbidden and
the mechanical quality factor increases dramatically. From the
shape of Fig. 6(b), we deduce that our system resides in the
region of thermal activation. Lower temperatures would thus
allow us to increase the mechanical quality factor beyond
its room temperature value. There is also an increase in the
mechanical damping rate when the IVC is filled with exchange
gas; we attribute this to interactions with a thin film of liquid
helium on the surface of the bottle. This may in fact be
a promising tool to study ultrathin superfluid films [17,40]
via interactions with the optical and mechanical modes of
resonator. We note that the general shapes of both Figs. 6(a)
and 6(b) are in agreement with the observations of silica toroid
resonators reported in Ref. [31].

VI. CONCLUSION

We have demonstrated passive cooling of a 64 ng op-
tomechanical resonator down to just ∼1500 phonons. Further
cooling is prevented by the inability to dissipate the heat caused
by optical absorption, exacerbated by the high Qo of the silica
resonator. The scale of this optical absorption was found to be
in good agreement with the degree of heating in the mechanical
mode. This comparison was enabled by optomechanical mode
thermometry, detailed in the Appendix, which is now an impor-
tant tool for quantum optomechanics. Future experiments will
focus on improving the coupling of these sideband-resolved
optomechanical resonators to the thermal bath. One possibility
to achieve this is to use a local reservoir of helium as a heat
link to the 9 mK dilution refrigerator environment, which
would reduce optically induced heating of the resonator [41].
In particular, it would be intriguing to use liquid helium,
which has been shown to provide an excellent thermalization
medium for microelectromechanical systems (MEMS) down
to ∼60 mK [42]. Furthermore, the MEMS in Ref. [42] regain
their vacuum mechanical dissipation levels at T � 100 mK,
due to the temperature-dependent phonon occupation in the
superfluid state. Successful thermalization of the presented
nanogram-scale microresonators to 9 mK would result in
average phonon occupancies of n̄ � 3, while maintaining the
high mechanical quality factor and sideband-resolved nature
of these optomechanical devices, opening up the door for
ground state cooling [15] and further quantum optomechanical
protocols [11]. Finally, extension of these cryogenic silica
microresonators to doped optical glasses would also enable
new quantum technologies, such as photonic memories for
quantum cryptographic networks [43].
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APPENDIX: MECHANICAL MODE THERMOMETRY

1. Solution of the optomechanical cavity

The equation of motion for the intracavity optical field a(t)
in an optical cavity that is coupled to a mechanical resonator
with strength G = −dωo/dx is given by [1]

ȧ(t) = −
(

κ

2
− i� − iGx(t)

)
a(t) + √

κexsin(t), (A1)

in a frame rotating at the laser frequency ωL. Here sin(t) is
the input optical field, normalized such that |sin(t)|2 = ṅin =
Pin/�ωL. The field output by the optical cavity is then

sout(t) = sin(t) − √
κexa(t). (A2)

This system can be solved in the stationary regime (see for
example, Ref. [1]) but since we intend to inject a time-varying
input field, we solve Eq. (A1) without assuming a stationary
state. As in Ref. [14], we assume that a(t) can be written as
the sum of the solution ah(t) to the associated homogeneous
differential equation and a particular solution ap(t),

a(t) = ah(t) + ap(t). (A3)

We further make the assumption that the particular solution
can be written as ap(t) = ah(t)f (t), where f (t) is a yet-to-be-
determined function of time.

We begin by solving for ah(t) by taking sin(t) = 0. The
resulting differential equation is

ȧh(t) = −
(

κ

2
− i� − iGx(t)

)
ah(t), (A4)

with the solution

ah(t) = a0 exp

[
−

(
κ

2
− i�

)
t + iG

∫
x(t)dt

]
, (A5)

where a0 is an amplitude set by the initial conditions of the
problem. We choose the form

x(t) = x0e
−�t/2 cos 	mt (A6)

for a damped harmonic oscillator with angular frequency 	m,
damping rate �, effective mass meff, and peak amplitude x0 =√

2kBT/meff	2
m at temperature T . Integration yields∫

x(t)dt = x0e
−�t/2

�2

4 + 	2
m

(
	m sin 	mt − �

2
cos 	mt

)

≈ x0

	m
e−�t/2 sin 	mt, (A7)

where we have used the high-Q approximation (	m � �) to
neglect the cosine term.

Substituting Eq. (A7) into Eq. (A5) we have

ah(t) ≈ a0e
−( κ

2 −i�)t

(
1 + ξ

2
e−�t/2[ei	mt − e−i	mt ]

)
, (A8)

where we have written

ξ ≡ Gx0

	m
(A9)

and used the Jacobi-Anger expression to write

ei� sin φ =
+∞∑

k=−∞
Jk(�)eikφ ≈ 1 + i� sin φ (A10)
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for small � = ξe−�t/2 � 1. Here Jk(�) are the kth Bessel
functions of the first kind.

We justify this approximation by first noting that e−�t/2 < 1
for all finite positive times and then rewriting ξ as

ξ =
2g0

√
kBT
�	m

	m
≈ 2g0

√
n̄

	m
(A11)

using the vacuum optomechanical coupling rate g0 = Gxzpf

and the amplitude of the mechanical zero-point fluctua-
tions xzpf = √

�/2meff	m. Here n̄ = kBT/�	m is the average
phonon occupation of the resonator for kBT � �	m. In this
regime, g0 � 	m is absolutely necessary to have ξ � 1, and
we must additionally consider the phonon occupation n̄. For
optical frequency optomechanical devices, this condition is
commonly satisfied, especially at low temperatures where n̄

is small. For the bottle resonators used in our experiments,
g0/2π ∼ 350 Hz, so ξ � 1 and thus ξe−�t/2 � 1 as long as
n̄ � 1010 (corresponding to a temperature of 107 K).

We now return to Eq. (A3) to look for the particular solution
to Eq. (A1). We note that

ȧ(t) = ȧh(t) + ȧh(t)f (t) + ah(t)ḟ (t)

= −
(
κ

2
−i� − iGx(t)

)
[ah(t)+ah(t)f (t)] +√

κexsin(t).

(A12)

Given that the homogeneous solution obeys Eq. (A4), it
follows that

ḟ (t) =
√

κexsin(t)

ah(t)
. (A13)

For the mechanical mode thermometry, we phase modulate
the input laser light by driving an electro-optic modulator with
a sinusoidal signal of the form V0e

−γ t/2 sin 	modt , where V0 is
the drive voltage amplitude, 	mod is the drive frequency, and
γ � � is the linewidth of the driving source. This produces
an input field of the form

sin(t) = sine
iβe−γ t/2 sin 	modt

= sin

+∞∑
k=−∞

Jk(βe−γ t/2)eik	modt , (A14)

where we define the phase modulation depth as β = πV0/Vπ ,
given the device-dependent half-wave voltage Vπ , with am-
plitude sin. If the phase modulation is weak (β � 1), it is
sufficient to consider only the first order sidebands at ±	mod.
In this case, we can again use the approximation in Eq. (A10)
to write

sin(t) = sin

(
1 + β

2
e−γ t/2[ei	modt − e−i	modt ]

)
. (A15)

We substitute this result, along with the homogeneous
solution of Eq. (A8), into Eq. (A13), yielding

ḟ (t) =
√

κexsin

a0
e( κ

2 −i�)t

(
1 + β

2
e−γ t/2[ei	modt − e−i	modt ]

)

×
(

1 − ξ

2
e−�t/2[ei	mt − e−i	mt ]

)
. (A16)

Keeping only terms to first order in the small parameters
ξ and β, integrating Eq. (A16) and multiplying by ah(t)
[Eq. (A8)], we obtain the particular solution

ap(t) = √
κexsin

(
1

κ
2 − i�

+ β

2
e− γ t

2

[
ei	modt

κ
2 − i(� − 	mod)

− e−i	modt

κ
2 − i(� + 	mod)

]
− ξ

2
e− �t

2

[
ei	mt

κ
2 − i(� − 	m)

− e−i	mt

κ
2 − i(� + 	m)

− ei	mt

κ
2 − i�

+ e−i	mt

κ
2 − i�

])
,

(A17)

where we have used the fact that κ � �,γ to simplify the final
expression. We note that ah(t) decays much more rapidly than
ap(t), so we neglect ah(t) and take a(t) ≈ ap(t).

We now calculate the field output by the cavity by
substituting Eqs. (A15) and (A17) into Eq. (A2),

sout(t) = sin

(
1 + β

2
e−γ t/2[ei	modt − e−i	modt ] − κex

κ
2 − i�

− κexβ

2
e−

γ t

2

[
ei	modt

κ
2 −i(� − 	mod)

− e−i	modt

κ
2 −i(�+	mod)

]

+ κexξ

2
e− �t

2

[
ei	mt

κ
2 − i(� − 	m)

− e−i	mt

κ
2 − i(� + 	m)

− ei	mt

κ
2 − i�

+ e−i	mt

κ
2 − i�

])
. (A18)

2. Detection

In our experiments we use a direct detection scheme where
a photodetector sensitive to the intensity of the light outputs a
voltage signal V (t) proportional to |sout(t)|2,

V (t) = VDC + Vm(t) + Vmod(t). (A19)

We have separated the output signal into a part

VDC = H (0)ṅin

(
1 − κ0κex

κ2

4 + �2

)
, (A20)

which is constant in time, and two high-frequency parts which
oscillate at the mechanical resonance frequency,

Vm(t) = H (	m)ṅinκex
ξ

2
e−�t/2

×
(

C1(	m,�) cos 	mt

D(0,�)D(	m,�)D(−	m,�)

+ C2(	m,�) sin 	mt

D(0,�)D(	m,�)D(−	m,�)

)
, (A21)

and at the modulation frequency,

Vmod(t) = −H (	mod)ṅinκex
β

2
e−γ t/2

×
(

C1(	mod,�) cos 	modt

D(0,�)D(	mod,�)D(−	mod,�)

+ C2(	mod,�) sin 	modt

D(0,�)D(	mod)D(−	mod)

)
, (A22)
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respectively. H (ω) is a function which describes the frequency
response of the photodetector and other detection electronics.
We assume that it is locally flat, such that for a suitably chosen
	mod, we can take H (	mod) = H (	m) = H . Note that VDC is
simply the transmission profile for the optical resonance, as
given by Eqs. (1) and (2) in the main text. For convenience we
have also defined

C1(	,�) = �	(−κ[κ2 + 4�2] + κex[κ2 + 4�2 − 4	2]),
(A23)

C2(	,�) = �	2(κ[4κex − 3κ] + 4[�2 − 	2]), (A24)

and

D(	,�) = κ2

4
+ (� − 	)2. (A25)

To obtain the power spectral density of the voltage signal,
we must first Fourier transform V (t). In our experiment, this is
done as part of the software post-processing, but it can also be
performed in hardware, using a network or spectrum analyzer,
for example. VDC is filtered out by a high-pass filter on our
photodetector so we address only the high-frequency part of
V (t).

We define the Fourier transform as

V (ω) =
∫ ∞

−∞
e−iωtV (t)dt. (A26)

Since the Fourier transform is linear, we apply it to Vm(t)
and Vmod(t) separately. We begin by substituting the form of ξ

given by Eq. (A9) into Eq. (A21) and noting that

ẋ(t) = −�x0

2
e−�t/2 cos 	mt − 	mx0e

−�t/2 sin 	mt

≈ −	mx0e
−�t/2 sin 	mt. (A27)

Equation (A21) then becomes

Vm(t)=Hṅin
Gκex

2	m

(
C1(	m,�)x(t)−C2(	m,�)ẋ(t)/	m

D(0,�)D(	m,�)D(−	m,�)

)
,

(A28)

with its Fourier transform given by

Vm(ω)=Hṅin
Gκex

2	m

(
C1(	m,�)−iωC2(	m,�)/	m

D(0,�)D(	m,�)D(−	m,�)

)
X(ω).

(A29)

Near the mechanical resonance frequency ω ≈ 	m and

Vm(ω) = Hṅin
Gκex

2	m

(
C1(	m,�) − iC2(	m,�)

D(0,�)D(	m,�)D(−	m,�)

)
X(ω).

(A30)

Similarly, Vmod(t) can be rewritten in terms of the original
phase modulation signal φ(t) = βe−γ t/2 sin 	modt ,

Vmod(t) = −Hṅin
κex

2

(
C1(	mod,�)φ̇(t)/	mod

D(0,�)D(	mod,�)D(−	mod,�)

+ C2(	mod,�)φ(t)

D(0,�)D(	mod,�)D(−	mod,�)

)
. (A31)

Analogous to Eq. (A30), the Fourier transform of Eq. (A31)
near the modulation frequency is

Vmod(ω) = −Hṅin
κex

2

(
iC1(	mod,�)

D(0,�)D(	mod,�)D(−	mod,�)

+ C2(	mod,�)

D(0,�)D(	mod,�)D(−	mod,�)

)
�(ω),

(A32)

where �(ω) is the Fourier transform of φ(t).
Combining the results of Eqs. (A30) and (A32), we

calculate the voltage power spectral density,

SV V (ω) = lim
τ→∞

1

τ
|Vm(ω) + Vmod(ω)|2, (A33)

which can be reduced to

SV V (ω) = lim
τ→∞

1

τ
|Vm(ω)|2 + lim

τ→∞
1

τ
|Vmod(ω)|2 (A34)

if we choose 	mod such that |	mod − 	m| � �,γ . This
prevents overlap between the peaks in the spectrum and allows
us to neglect the cross terms. The final result is then

SV V (ω) = ṅ2
in

(
G2

	2
m

α(	m,�)Sxx(ω) + α(	mod,�)Sφφ(ω)

)
,

(A35)

where Sφφ(ω) is the PSD of the phase fluctuations induced by
the phase calibration signal. We have defined the transduction
coefficient as

α(	,�) ≡ H 2κ2
ex

4

C2
1 (	,�) + C2

2 (	,�)

D2(0,�)D2(	,�)D2(−	,�)
. (A36)

We see that for a choice of the modulation frequency
	mod ≈ 	m, α(	mod,�) ≈ α(	m,�) and the phase modula-
tion signal is transduced nearly identically to the mechanical
motion by the optical cavity and photodetector. In actuality, α is
also dependent on the detuning of the laser, but it can be shown
that for |	m − 	mod|/	m ∼ 1%, the variation of the ratio of
α(	m,�)/α(	mod,�) with detuning is negligibly small. For
the parameters in our experiment, Figure. 7 illustrates that this
variation across laser detuning is less than 3%.

− 120 − 60 0 60 120
Detuning (2π MHz)

1.00

1.02

1.03

α(
Ω

m
,∆

)/
α(

Ω
m

od
,∆

)

FIG. 7. Calculated ratio of α(	m,�) to α(	mod,�) for experi-
mental parameters (κ/2π = 50 MHz, κex/2π = 20 MHz, 	m/2π =
55 MHz, and 	mod/2π = 54.5 MHz). A variation of less than 3% in
this ratio across the optical resonance is shown.
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Although we have focused on direct detection techniques,
this method of calculating the detected PSD applies equally
well to other detection schemes, including optical homodyne
or heterodyne systems. It can be shown that analogous results,
albeit with a different functional dependence on the laser
detuning, can be obtained for such systems.

We finally note that we have made no assumptions about
the optomechanical system, beyond requiring that κ � �, as is
true for any system in the standard hierarchy of optomechanics.
The only constraints placed on the modulation signal are
that it is small (β � 1) and that its frequency is chosen

appropriately, namely that 	mod is close enough to 	m

that any frequency dependence in the detection electronics
can be neglected and far enough that overlap between the
two peaks can be ignored. It is additionally beneficial if
	mod is chosen close enough to 	m that any detuning
dependence in the ratio α(	m,�)/α(	mod,�) can be neglected
(as is true in our experiment); however, even if this is not
the case, the closed form of α(	,�) allows the for the
analytical calculation of this ratio provided that the optical
resonance is well characterized and the laser detuning is
known.
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